OR / STAT 645: Stochastic Processes Course Overview, Fall 2013

Many real-world processes are fundamentally *stochastic* – that is, they have some degree of randomness or uncertainty. This course provides an in-depth survey of models that can be used to analyze a wide variety of stochastic processes. The focus includes quantitative and theoretical analysis of such models as well as practical issues using such models to represent real problems. This course assumes some prior knowledge of probability and basic stochastic models (like Markov chains). The pre-requisite is OR 542 (Stochastic Models), or STAT 544 (Applied Probability), or permission of the instructor.

Class Hours: Pre-requisites:	Tuesday, 4:30 – 7:10 pm, Robinson Hall A, room 105 OR 542, or STAT 544, or permission of instructor
Instructor:	John Shortle jshortle@gmu.edu 703-993-3571 Nguyen Engineering Building, room 2210 Office hours: Tue 3:30 – 4:30 pm, Wed 2 – 3 pm.
Textbook:	S. Ross. Introduction to Probability Models (10 th edition

Textbook: S. Ross, *Introduction to Probability Models* (10th edition; earlier editions may be fine too)

Student Evaluation Criteria		
Homework	10%	
Midterm	40%	
Final exam	50%	

Student Evaluation Criteria

Syllabus and Course Schedule Last updated: 8/5/13

Class	Lecture Topic	Homework
Aug. 27	Review of probability	
	The exponential distribution	
Sep. 3	The Poisson process	Hmwk #1 due
Sep. 10	The Poisson process	
Sep. 17	Markov chains	Hmwk #2 due
Sep. 24	Markov chains	
Oct. 1	Markov chains	Hmwk #3 due
Oct. 8	** Midterm **	
Oct. 15	** Columbus Day **	
Oct. 22	Markov chains	Hmwk #4 due
Oct. 29	Renewal theory	
Nov. 5	Renewal theory	Hmwk #5 due
Nov. 12	Renewal theory	
Nov. 19	Brownian motion	Hmwk #6 due
Nov. 26	Brownian motion	
Dec. 3	Brownian motion	Hmwk #7 due
Dec. 10	** Final Exam **, 4:30 pm – 7:15 pm	