George Mason University Department of Systems Engineering

Fa Quantitative Methods for Systems Engineering, Operations Research, and Computational Science

Description:

This course is designed to provide the basic quantitative foundations that students need to pursue a graduate program in Systems Engineering, Operations Research, and Computational Science. Topics include vector and matrices, differential equations, Laplace transforms and probability theory. A brief review of calculus and complex numbers will also be provided. The course will require some computational work using the software *Matlab*, available on the GMU computer systems.

Pre-requisites:	MATH 203 (Matrix Algebra)		
	MATH 113 (Analytic Geometry and Calculus I)		
	MATH 114 (Analytic Geometry and Calculus II)		

Text:

Advanced Engineering Mathematics (Selected Chapters) by Peter O'Neil (2010) – ISBN-13 #978-1-1-1163288-5, ISBN-10 #1-111-63288-X **Software:** Matlab+Simulink R2011A, Student Version, 11th edition (other versions may suffice)

Instructor: Dr. Monica Carley-Spencer, mcarley@gmu.edu, (434) 964-5018

Policy: All work is to be done individually. All students must abide by the GMU Honor Code. Homework is due <u>at the beginning of class</u>, one class period from the date assigned, unless otherwise indicated. Late homework will be not be accepted.

Class website: login to Blackboard and click on this course (https://mymason.gmu.edu)

Class outline:

Week 1	Thursday 9/1	Introduction, vectors and matrices		
Week 2	Thursday 9/8	Matrices: rank, determinants, inverse		HMWK 1 due
Week 3	Thursday 9/15	Eigenvalues/vectors, complex numbers		HMWK 2 due
Week 4	Thursday 9/22	Calculus review		HMWK 3 due
Week 5	Thursday 9/29	First-order differential equations		HMWK 4 due
Week 6	Thursday 10/6	Higher-order differential equations		HMWK 5 due
Week 7	Thursday 10/13	Higher-order differential equations		HMWK 6 due
Week 8	Thursday 10/20	MID-TERM EXAM	Weeks 1-6 (HMWKs 1-5)	
Week 9	Thursday 10/27	Systems of differential equations		HMWK 7 due
Week 10	Thursday 11/3	Laplace transforms		HMWK 8 due
Week 11	Thursday 11/10	Power and geometric series		HMWK 9 due
Week 12	Thursday 11/17	Probability and random variables		HMWK 10 due
Week 13	Thursday 11/24	Thanksgiving recess – No Class		
Week 14	Thursday 12/1	Multiple random variables & Review		HMWK 11 due
Week 15	Thursday 12/8	Review		HMWK 12 due
Week 16	Thursday 12/15	FINAL EXAM	Comprehensive	Extra credit due

Grading: Homework = 36%, Midterm Exam = 32%, Final Exam = 32%

A-/A/A+: 90-92, 93-97, 98-100%, B-/B/B+: 80-82, 83-87, 88-89%, C-/C/C+: 70-72, 73-77, 78-79%, F: < 70%