SYLLABUS SYST 221 – Systems Modeling Laboratory Spring 2011

Instructor:	Dr. Harold Camp			
Phone:				
E-mail:	hcamp@gmu.edu			
	1 8			
Office Hours:	Mondays 3:00 to 4:00 and Tuesdays 6:00 to 7:00 at the Jazzman Cafe in			
	the Johnson Center (by Radio Station). Others by appointment (see email and Phone Number)			
Course				
Description:	SYST 221 Systems Modeling Laboratory (1:0:3) <i>Corequisite:</i> SYST 220. This course introduces students to fundamental principles of simulation and			
Description.	modeling using an engineering modeling environment such as MATLAB®			
	and Simulink. Students will learn how to develop solutions to solve and			
	interpret mathematical models. Problems from topics covered in Dynamic			
	Systems I (SYST 220) will be taken up for class examples and lab			
	assignments. Throughout the course we will discuss different features and			
	capabilities of the MATLAB® software. Each lecture will be followed by a			
	laboratory time to work on exercises involving concepts covered that day.			
Text:	1. System Dynamics by William J. Palm III, Mc Graw Hill (same as			
	SYST 220)			
	2. Mathlab with Simulink, Release 14 with service pack 05 or later (available in GMU Bookstore).			
	3. University of Texas On-Line MATLAB Tutorial (link to be			
	provided in class).			
	4. Recommended: Introduction to MATLAB 7 for Engineers			
	(Paperback) by William J Palm III.			
	5. Recommended: How to Solve It, George Polya, Available			
	from Amazon for nominal price.			
Grades:	25% - Group Project:			
	 Define the Project & Modeling Plan 			
	 Build the Model and Execute Parametric Study 			
	 Interpret and Present Results 			
	35 % - Laboratory Reports (Groups)			
	15% Mid-Term			
	25 % - Final Exam			

Group Project:

The group projects will be executed outside of class. Each group of four students will select a complex system (second order ordinary differential equation), define a problem regarding that system, create a mathematical model, build a simulation, and solve the defined problem using parametric analysis. Each group will present their project to the class.

Examinations:

Examinations are comprehensive over the work performed during the course and the course lecture material. Examinations will be test you on the application of principles learned. Exams interpret the material of the course, not to repeat it via rote memory. Examinations enhance the student's experience and challenge the student to apply course material.

Laboratories:

Students are assigned to groups. Laboratories will be worked by the group. Please turn in only one Laboratory Report with all the names of the individuals who contributed to the report. Caution: one who relies on the group and does not learn for him/herself probably does not perform well on the examinations (or in life).

SYLLABUS SYST 221 – Systems Modeling Laboratory Spring 2011

CLASS SCHEDULE

Week	DATE	TOPICS	LAB DUE
1	Jan 24	 Introduction to the MATLAB environment, plotting and formatting graphs, Form Groups, Problem Solving 	
2	Jan 31	 Mathematical operations involving scalars, working with variables, Introduction to linear algebra, Arrays, and array operations in MATLAB, Programming using MATLAB (loops, conditional statements, switch-case statements) 	1
3	Feb 7	 Writing MATLAB scripts, built-in library functions, Examples from Chapter 1 (including polynomials, curve fitting, interpolation) 	2
4	Feb 14	 Writing function files, invoking functions, Examples from Chapter 2, Assign Group Projects 	3
5	Feb 21	 Solving algebraic equations, systems of linear equations, solving differential equations, Examples from Chapter 3 	4
6	Feb 28	 Transfer function analysis, Higher order differential equations, Examples from Chapter 3 	5
7	Mar 7	Mid-Term Exam	
8	Mar 14	SPRING BREAK	
9	Mar 21	 Numerical methods, Examples from Chapter 4 	6
10	Mar 28	Introduction to Simulink and Linear, Begin Group Projects	7
11	April 4	 Simulink Features, State Model Block 	8
12	April 11	 Simulink Features 	9
13	April 18	Simulink and Nonlinear Models	10
14	April 25	 Examples from Discrete Dynamical Systems, Group Presentations (3) 	
15	May 2	 Review for Final, Group Presentations (3) 	
16	May 16	◆ FINAL EXAM	