OR/MATH 441: Deterministic Operations Research

Spring 2010 Innovation Hall, room 205 Monday & Wednesday, 10:30-11:45am

Professor:	Stephen G. Nash
Office:	Nguyen Engineering Bldg., room 2219
Phone:	703-993-1678
E-mail:	snash@gmu.edu
Office hours:	Monday 2-4pm, and by appointment; via e-mail at other times

Prerequisite: MATH 203

All course materials will be posted at http://courses.gmu.edu

Textbook:	Operations Research Applications and Algorithms, Wayne L. Winston (4 th edition)
Software:	MPL, available from www.maximal-usa.com

Overview: This course will introduce the basic mathematical ideas and methods of Deterministic Operations Research. We will discuss modeling real life problems, the basic concepts of Linear Programming (LP), and methods for solving LP problems. We are going to discuss briefly some concepts of nonlinear optimization and their applications. There will be a project, which requires modeling real life problems using MPL languages available for downloading from the Internet (www.maximal-usa.com).

Tentative Course Schedule

Date	Topic	Chapters

1/20	Introduction to Operations Research	1
1/25	Linear Programming (I)	3.1-3.2
1/27	Linear Programming (II)	3.3-3.4
2/1	Linear Programming (III)	3.5-3.9
2/3	The Simplex Method (I)	4.1-4.2
2/8	The Simplex Method (II)	4.5
2/10	The Simplex Method (III)	4.6-4.8
2/15	The Simplex Method (IV)	4.12
2/17	Sensitivity Analysis & Duality (I)	6.1-6.2
2/22	Sensitivity Analysis & Duality (II)	6.3
2/24	Sensitivity Analysis & Duality (III)	6.5-6.7
3/1	Sensitivity Analysis & Duality (IV)	6.8-6.9
3/3	Review	
3/8	[no class; spring break]	
3/10	[no class; spring break]	
3/15	The Transportation Problem (I)	7.1
2/17	Midtown (Transportation problem NO	T on midte

3/17 *Midterm* (Transportation problem NOT on midterm)

3/22	The Transportation Problem (II)	7.2
3/24	Networks (I)	8.1-8.2
3/29	Networks (II)	8.3, 8.6
3/31	Integer Programming (I)	9.1-9.2
4/5	Integer Programming (II)	9.3
4/7	Integer Programming (III)	9.5
4/12	Integer Programming (IV)	9.7
4/14	Nonlinear Programming (I)	11.1-11.3
4/19	Nonlinear Programming (II)	11.4, 11.6
4/21	Nonlinear Programming (III)	11.8
4/26	Nonlinear Programming (IV)	11.9
4/28	Nonlinear Programming (V)	11.10
5/3	Review	
5/5	Final Exam (10:30am-1:15pm)	

Grading:	25%	Homework
<u> </u>	/ -	

- 25% Midterm exam
- Computational project Final exam 15%
- 35%