
Max – Min Problems

• These types of problems have become common
recently in military and security circles

• General characteristics
• Two opposed sides
• One side is attempting to use a system
• The other side is trying to thwart use of that system

OR 541 Fall 2009
Lesson 9-1, p. 1

• The other side is trying to thwart use of that system
• System user has to commit to a course of action, then

opposition reacts
• Each side has limited resources
• Each side knows the other’s capabilities

• This is a Stackelberg (leader-follower) game
• Literature refers to these as attacker-defender models

Example: Roadblock Delay Model

• Consider the modified shortest path model below:

()

 and ,0

 , 1

subject to

* minmax
),(,

disi

si

xx

xyDCz
jiARCSji

ijijijij
xy










≠≠
=

=





−





+=

∑∑

∑
∈

OR 541 Fall 2009
Lesson 9-1, p. 2

• What situation is being modeled? What are the Dij’s?

{ }),(allfor 0,1

),(allfor 10

 , 1

 and ,0

),(,

),(),(

jiARCSy

INTSMAXCHECKPOy

jiARCSx

di

disixx

ij

jiARCSji
ij

ij

ijARCSj
ji

jiARCSj
ij

∈

≤

≤≤













=−
≠≠=





−





∑

∑∑

∈

∈∈

Problems (and the Solution)

• We don’t know how to maximize one set of variables
while minimizing another

• The objective function is nonlinear
• What to do?

• Note that if we fixed the y’s, we’d have a typical shortest path
formulation

OR 541 Fall 2009
Lesson 9-1, p. 3

formulation
• So, let’s do that, and write the dual of the problem:

iu

jiARCSjiyDCuu

uuz

i

ijijiij

sd

 allfor edunrestrict

),(, allfor

subject to

max

∈+≤−

−=

Now We Have Something We Can Solve

• The dual problem is linear in the y’s
• The dual problem is also a maximization
• So, we can solve a single optimization:

subject to

max uuz sd −=

OR 541 Fall 2009
Lesson 9-1, p. 4

),(, allfor }1,0{

 allfor edunrestrict

),(, allfor

subject to

),(,

jiARCSjiy

INTSMAXCHECKPOy

iu

jiARCSjiyDCuu

ij

jiARCSji
ij

i

ijijiij

∈∈

≤

∈+≤−

∑
∈

Application: Changi Naval Base, Singapore

Intelligence service gets word of a
possible terrorist attack against a
ship in port at Changi Where should the

checkpoints be set?

OR 541 Fall 2009
Lesson 9-1, p. 5

Ship needs 2
hours to get
away to safe
distance

From “How to Attack a Linear Program,” Jerry Brown, Matt Carlyle, Terry Harrison, Javier
Salmeron, and Kevin Wood, Naval Postgraduate School , copyright 2003

When Does This Trick Work?

• You need the following structure in your model:
• Variables associated with both sides only appear in the objective

function
• These variables appear in a multiplicative form
• One side can be modeled using continuous variables (so you can

form its dual)

OR 541 Fall 2009
Lesson 9-1, p. 6

• Methodology is available to iterate between
optimizations
• Necessary when both sides require integral variables
• Mechanics of passing solutions between optimizations (and

avoiding cycling) can be complicated

• You can also exploit network structure …

Project Delay Model

• One side has a project, another wants to delay it
• Try augmenting the easy (dual) CPM formulation:

jiARCSjiyDCuu

uuz sd
uy

),(, allfor

subject to

minmax

∈+≥−

−=
Di: delay if
opposition
attacks task i

OR 541 Fall 2009
Lesson 9-1, p. 7

• No go: mixes u’s and y’s in the constraints

{ } iy

iu

DTyDC

jiARCSjiyDCuu

i

i

i
ii

iiiij

 allfor 1,0

 allfor edunrestrict

),(, allfor

∈

≤

∈+≥−

∑
DCi: resource
required to
attack task i

DT: total
resources
available

Try the Primal Form of CPM …

• I’m maximizing both sides, but the objective is nonlinear

()

disi
si

xx

xyDCz

jiij

jiARCSji
ijiii

y

and ,0
 , 1

subject to

* maxmax
),(,

x








≠≠
=

=





−





+=

∑∑

∑
∈

OR 541 Fall 2009
Lesson 9-1, p. 8

• Am I stuck?

{ } iy

DTyDC

jiARCSx
di

disixx

i

i
ii

ij

ijARCSj
ji

jiARCSj
ij

 allfor 0,1

),(allfor 10
 , 1
and ,0

),(),(

∈

≤
≤≤







=−
≠≠=





−





∑

∑∑
∈∈

The Trick

• Create additional arcs, which the attacker controls

()

disi
si

xxxx

xCxDCz
jiARCSji

iji
jiARCSji

ijii
y

and ,0
 , 1

''

subject to

' maxmax
),(,),(,

x








≠≠
=

=





+−





+

++=

∑∑

∑∑
∈∈

OR 541 Fall 2009
Lesson 9-1, p. 9

{ } iy

jiARCSxx

DTyDC

jiARCSxx

jiARCSyx

jiARCSyx
di

disixxxx

i

ijij

i
ii

ijij

iij

iij

ijARCSj
jiji

jiARCSj
ijij

 allfor 0,1
),(allfor 1'0,10

),(allfor 1'0,10
),(allfor 1

),(allfor '
 , 1
and ,0''

),(),(

∈
≤≤≤≤

≤
≤≤≤≤

−≤
≤











=−
≠≠=





+−





+

∑

∑∑
∈∈

What do these
constraints do?

Can We Allow the Other Side to Crash Jobs?

• Change the (one-sided) project crashing model a bit
to minimize total project time, with a constraint on
added resources

()

sd uuz

subject to

min

∈−≥−

−= cr i: amount to
expedite task i

CC : resource

OR 541 Fall 2009
Lesson 9-1, p. 10

• We need to form the dual of this model

()
()

()iiii

i

i
ii

ijiiij

qiMINCcr

iu

vCTcrCC

xjiARCSjicrCuu

 allfor 0

 allfor edunrestrict

),(, allfor

−≤≤

≤⋅

∈−≥−

∑

CCi: resource
per unit time to
expedite task i

CT: total
resources
available

Dual of Project Crashing Model

()

()and ,0
 , 1

subject to

 max
),(,








≠≠
=

=





−





⋅−−+=

∑∑

∑∑
∈

udisi
si

xx

vCTqCMINxCz
i

iii
jiARCSji

iji
x,q,v

OR 541 Fall 2009
Lesson 9-1, p. 11

()

()

0, allfor 0
),(allfor 10

 allfor 0

 , 1
and ,0

),(

),(),(

≥≥
≤≤

≤−⋅−










=−
≠≠=





−





∑

∑∑

∈

∈∈

viq

jiARCSx

criqvCCx

u
di

disixx

i

ij

iii
jiARCSj
ij

i
ijARCSj
ji

jiARCSj
ij

Now, Use the Same Trick …

() ()

di
disi

si
xxxx

vCTqCMINxCxDCzm

ijARCSj
jiji

jiARCSj
ijij

i
iii

jiARCSji
iji

jiARCSji
ijii

 , 1
and ,0
 , 1

''

subject to

'ax

),(),(

),(,),(,















=−
≠≠

=
=








+−








+

⋅−−+++=

∑

∑∑

∑∑∑

∈∈

∈∈

OR 541 Fall 2009
Lesson 9-1, p. 12

{ } iy
v iq

jiARCSxx

DTyDC

jiARCSxx

jiARCSyx

jiARCSyx

 iqvCCxx

i

i

ijij

i
ii

ijij

iij

iij

ii
jiARCSj

ijij

 allfor 0,1
0,allfor 0

),(allfor 1'0,10

),(allfor 1'0,10
),(allfor 1

),(allfor '

allfor 0'
),(

∈
≥≥
≤≤≤≤

≤
≤≤≤≤

−≤
≤

≤−⋅−







+

∑

∑
∈

Morals …

• We can solve a very important set of two-sided models
using elementary LP theory

• A wide range of such models can be solved as a
single optimization

• You have to be able to form the dual of one of the
sides to do this

OR 541 Fall 2009
Lesson 9-1, p. 13

sides to do this
• You have to know which constraints in this dual
correspond to the variables of that side (why?)

Review of Forming Duals

• Let’s do a simple version of the project crashing
problem

• Assume we can crash the jobs s, 1, and 2
• Let’s write down the problem in standard form …

s d

2

1

OR 541 Fall 2009
Lesson 9-2, p. 1

• Let’s write down the problem in standard form …

()
()

()iiii

i

i
ii

ijiiij

sd

qiCMINcr
iu

vCTcrCC

xjiARCSjiCcruu

uuz

 allfor
 allfor ed unrestrict

),(, allfor
subject to
min

−≥−

−≥⋅−
∈≥+−

−=

∑

Write the Problem in Tableau Form

• This is an exercise you can do in a spreadsheet
• Remember that each row will become a variable in the
dual, and each column will become a constraint

Z U(s) U(1) U(2) U(d) cr(s) cr(1) cr(2)
dual vars 1 -1 0 0 1 0 0 0

x(s,1) 0 -1 1 0 0 1 0 0 >= C(s)
x(s,2) 0 -1 0 1 0 1 0 0 >= C(s)

OR 541 Fall 2009
Lesson 9-2, p. 2

x(s,2) 0 -1 0 1 0 1 0 0 >= C(s)
x(1,d) 0 0 -1 0 1 0 1 0 >= C(1)
x(2,d) 0 0 0 -1 1 0 0 1 >= C(2)
q(s) 0 0 0 0 0 -1 0 0 >= MIN(s) - C(s)
q(1) 0 0 0 0 0 0 -1 0 >= MIN(1) - C(1)
q(2) 0 0 0 0 0 0 0 -1 >= MIN(2) - C(2)

v 0 0 0 0 0 -CC(s) -CC(1) -CC(2) >= -CT

Write the Transpose to Form the Dual

• Again, you can cut and paste the transpose of the
matrix in the spreadsheet

Z x(s,1) x(s,2) x(1,d) x(2,d) q(s) q(1) q(2) v
dual vars 1 C(s) C(s) C(1) C(2) MIN(s) - C(s) MIN(1) - C(1) MIN(2) - C(2) -CT

U(s) 0 -1 -1 0 0 0 0 0 0 = -1
U(1) 0 1 0 -1 0 0 0 0 0 = 0
U(2) 0 0 1 0 -1 0 0 0 0 = 0
U(d) 0 0 0 1 1 0 0 0 0 = 1
cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0

OR 541 Fall 2009
Lesson 9-2, p. 3

• Does this match the dual formulation?
• If not, what doesn’t match?

cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0
cr(1) 0 0 0 1 0 0 -1 0 -CC(1) <= 0
cr(2) 0 0 0 0 1 0 0 -1 -CC(2) <= 0

Making the Formulation Match

• The network flow constraints are all equalities
• If you multiply them each by –1, you get the dual
formulation back

Z x(s,1) x(s,2) x(1,d) x(2,d) q(s) q(1) q(2) v
dual vars 1 C(s) C(s) C(1) C(2) MIN(s) - C(s) MIN(1) - C(1) MIN(2) - C(2) -CT

U(s) 0 1 1 0 0 0 0 0 0 = 1
U(1) 0 -1 0 1 0 0 0 0 0 = 0

OR 541 Fall 2009
Lesson 9-2, p. 4

• This preserves the network convention that flow out is
positive

U(1) 0 -1 0 1 0 0 0 0 0 = 0
U(2) 0 0 -1 0 1 0 0 0 0 = 0
U(d) 0 0 0 -1 -1 0 0 0 0 = -1
cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0
cr(1) 0 0 0 1 0 0 -1 0 -CC(1) <= 0
cr(2) 0 0 0 0 1 0 0 -1 -CC(2) <= 0

Another Useful Model - Network Interdiction

• Two players:
• The network user wants to maximize flow through a

capacitated network
• The network interdictor wants to reduce flow by interdicting

arcs in the same network

• The interdictor can interdict a limited number of arcs

OR 541 Fall 2009
Lesson 9-2, p. 5

• Rules of the game
• Both players know the network and the arc capacities
• The interdictor chooses which arcs to interdict
• All interdictions are completely successful
• The user observes the interdictions and then maximizes flow

on the remaining network

The Model (sparing the derivation)

()sdjiARCSybww

bUz

ijijji

jiARCSi,j
ijij

,),(allfor 0

subject to

min
),(

−≥++−

= ∑
∈ Uij: upper bound

for flow on arc

d (s): source
(destination) node

R: interdiction

OR 541 Fall 2009
Lesson 9-2, p. 6

()

i w

jiARCSi,j by

rRy

 bww

i

ijij

dssd

ijijji

 allfor }1,0{

),(allfor }1,0{,

1

∈

∈∈

≤
≥+−

R: interdiction
consumption
parameters

r: interdiction
resources available

w, b : dual variables
for network user

Example: Winston p. 472, #2

NY

DENCHI

LA

300 (300)

400 (400)
500 (500)

OPTIMAL
FLOWS IN

RED

OR 541 Fall 2009
Lesson 9-2, p. 7

MEP DAL

Dummy arc:
set capacity
at large #
(like 10000)

400 (250)

150 (150)

250 (200)200 (100)

350 (350)

Solution with New Model, 1 Arc Interdicted

NY

DENCHI

LA

300 (0)

THIS ARC IS
INTERDICTED

500 (200)

OPTIMAL
FLOWS IN

RED

OR 541 Fall 2009
Lesson 9-2, p. 8

MEP DAL

400 (150)

150 (150)

250 (200)200 (0)

350 (350)

1
),(,

≤⇒≤ ∑
∈ jiARCSji

ijyrRy

Other Notes About This Model

• Interpreting the solution
• The y’s that are 1 give the arcs that are interdicted
• The objective function gives the resulting max flow
• The b’s that are 1 give the min-cut arcs in the remaining

(uninterdicted) network

• Some interesting extensions

OR 541 Fall 2009
Lesson 9-2, p. 9

• Some interesting extensions
• Suppose interdicting each arc has a an interdiction cost; then,

you could let the interdiction be subject to a budget constraint
• To make an arc “uninterdictable” just bound the corresponding

y variable to be equal to 0

A General Attacker – Defender Model

• Suppose y represents the defender, and x the attacker
• The attacker can take away certain of the defender’s
resources, but he is limited by his own resources

• The resulting model (in matrix-vector notation) is:

c: defender’s cost vector

OR 541 Fall 2009
Lesson 9-2, p. 10

0,0

)1(

subject to

minmax

≥≥
≤

−≤
≥

=

yx

dCx

xUFy

bAy

cyz
yx

A: consumption parameters for
unattackable resources

b: available unattackable
resources

F: consumption parameters for
attackable resources

U: available attackable resources
= diag(u)

C: attacker’s
consumption
parameters

d: attacker’s
available resources

Switching Problem to “Cost Attack”

• As before, we can’t handle x’s and y’s in the
constraints

• Instead, we penalize y’s use of resources that x
attacks by attaching penalties in the objective

minmax += PFyxcyz T

OR 541 Fall 2009
Lesson 9-2, p. 11

()
()

0,0

subject to

minmax

≥≥
≤
≤
≥

+=

yx

dCx

wuFy

vbAy

PFyxcyz
yx

P: matrix containing
penalties for using
attacked resources

Proportion of y’s
attackable resources
taken away by attacker

Converting to a Single Optimization

• As before, take the dual of the inner problem to form a
single maximization:

subject to

max
,,

+= uwvbT

wvx

OR 541 Fall 2009
Lesson 9-2, p. 12

0,0,0

subject to

≤≥≥
≤

+≥+

wvx

dCx

PxFcwFvA TTT

Parting Notes

• If you build a model like this:
• You have to choose which side will be represented by the dual
• You must be careful about choosing penalties; should be as small

as possible, otherwise results may be unreasonable

• This is growth area in optimization modeling
• Some useful articles:

• Brown, Carlyle, Salmeron, and Wood, “Defending Critical

OR 541 Fall 2009
Lesson 9-2, p. 13

• Brown, Carlyle, Salmeron, and Wood, “Defending Critical
Infrastructure”

• Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K., 2005, “ A
Two-Sided Optimization for Theater Ballistic Missile Defense,”
Operations Research,53, pp. 263-275

• Available at http://www.nps.navy.mil/orfacpag/resumePages/papers/
browngpa.htm

Integer Programming

• Time to drop the divisibility assumption of LP
• Most obvious reason

• Many resources or decisions restricted to integral values
• Rounding an LP answer often infeasible or suboptimal

• Less obvious (but maybe more important) reason
• Integer variables can implement logical conditions (if-then, one

OR 541 Fall 2009
Lesson 9-3, p. 1

• Integer variables can implement logical conditions (if-then, one
of many, etc.)

• Allows the model to make complex decisions

• Another reason
• Integer variables can be used to approximate nonlinear

functions
• Often employed for things like quantity discounts

These Capabilities Come at a Price

• Integer programming much more difficult
• We’re searching a “lattice” of points, not a continuous space
• Many problems contain a combinatorially explosive number of

possible solutions

• Example: “NOSWOT” problem from MIPLIB
• 128 total variables - 75 binary {0,1}, 25 integer

OR 541 Fall 2009
Lesson 9-3, p. 2

• 128 total variables - 75 binary {0,1}, 25 integer
• CPLEX 6.0: did not solve after running for several days
• CPLEX 6.5: solved in 6.2 hours, but required solving

26,521,191 LP’s in a branch-and-cut tree

• And what became of NOSWOT?
• CPLEX guys declared war, examined core problem
• Added 8 additional constraints; problem now solves in 16

seconds

Morals of Integer Programming

• It is very, very difficult to beat an experienced human
scheduler

• If you have an existing heuristic way to get a solution,
you should start with that

• Problems that look innocuous can be very tough or
impossible

OR 541 Fall 2009
Lesson 9-3, p. 3

impossible
• Add any constraints or exploit any problem structure
you can

• Read both Woolsey articles!

Restricting Variables to Integral Values

• For variables restricted to integral values, just declare
them as “integer”

• We’ll deal with how this works later
• If your problem has no logical conditions, rounding
often works
• Such problems are said to have a feasible “interior”

OR 541 Fall 2009
Lesson 9-3, p. 4

• Such problems are said to have a feasible “interior”
• Early IP literature filled with rounding schemes
• Some still used on enormous problems

Using Binary Variables for Logical
Conditions

• Suppose y1, y2, and y3 are binary {0,1} variables
• Let 1 represent true (or “on”), 0 be false (or “off”)
• The following table gives a logical expression and the
appropriate constraint:

• y3 = y1 and y2
13

≤
≤

yy

yy

OR 541 Fall 2009
Lesson 9-3, p. 5

• y3 = y1 and y2

• y3 = y1 or y2

• if y1, then y2

1213

23

−+≥
≤

yyy

yy

213

23

13

yyy

yy

yy

+≤
≥
≥

21 yy ≤

Fixed Charge Formulations

• Typical situation: have to pay a fixed cost before
producing or consuming something
• Example: have to build a factory before making a car
• If cars made = 0, you don’t need the factory
• If cars made > 0, you need the factory (but just one!)

• How to do this:

OR 541 Fall 2009
Lesson 9-3, p. 6

• How to do this:
• Assume x is the variable that depends on some fixed condition
• Let y be a binary {0,1} variable, with 0 = off, 1 = on
• Let U be the upper bound on x
• The following constraint forces x to 0 unless y is 1 (on)

xUy ≥

Either-Or Conditions

• Used in situations where one of two constraints apply,
depending on a decision variable

• Example: saving for your kid’s future
• y = 0 send kid to vocational school, at cost Uv

• y = 1 send kid to Harvard, at cost Uh

• xv = amount saved for vocational school

OR 541 Fall 2009
Lesson 9-3, p. 7

• xv = amount saved for vocational school
• xh = amount saved for Harvard
• The following enforces this condition:

()
hh

vv

xyU

xyU

≤
≤−1

Generalizing the Either-Or Conditions

• We may have situations where we want to choose
among constraints
• Example: y = 1 means overthrow despot of oil rich country; y =

0 means don’t overthrow him
• Constraints on military expenditures and oil availability may or

may not apply, depending on the value of y

OR 541 Fall 2009
Lesson 9-3, p. 8

• Choosing among two constraints:
• y = 1 “turns off” constraint 1
• y = 0 “turns off” constraint 2

()yMbxabxa

yMbxabxa

i
ii

i
ii

i
ii

i
ii

−≤−⇒≤

≤−⇒≤

∑∑

∑∑

1

or

22
2

2
2

11
1

1
1

Choosing K out of N Constraints

• You can extend this to the “K out of N” case:
• Define y1 … yN as binary variables
• The following ensures that only N-K constraints will hold:

yMbxabxa
i

ii
i

ii 111
1

1
1 ≤−⇒≤ ∑∑

OR 541 Fall 2009
Lesson 9-3, p. 9

{ } iy

Ky

yMbxabxa

i

i
i

NNN
i

i
N
iN

i
i

N
i

ii

 allfor 1,0∈

≤

≤−⇒≤

∑

∑∑

M

Functions or Variables with N Possible Values

• Sometimes a function or variable can only take on a
set of values
• Example: raw materials available only in certain lot sizes
• Only certain combinations of waist size and sleeve length

available

• Let D1 … DN be the values the function can take on;

OR 541 Fall 2009
Lesson 9-3, p. 10

• Let D1 … DN be the values the function can take on;
then:

{ } iy

y

yDxa

i

i
i

i
ii

j
jj

 allfor 1,0

1

∈

=

=

∑

∑∑

If-Then Conditions

• If the first condition applies, then so must the second
• Example from Winston:

• This is logically equivalent to an either-or condition:

0)(0)(≥⇒> xgxf

 BOTHOR 0)(OR 0)(≥≤ xgxf

OR 541 Fall 2009
Lesson 9-3, p. 11

• So, if Gl is a lower bound on g(x) , Fu is an upper
bound on f(x) , and y is binary, the following constraints
implement the condition:

()
{ }1,0

1*)(

 *)(

∈
−≤

≥

y

yFxf

yGxg

u

l

