
Networks

• People have been thinking about network problems for 
a long time

• Koenigsberg Bridge problem (Euler, 1736)

OR 541 Fall 2009
Lesson 8-1, p. 1

• Can you cross all 7 bridges exactly once on a walk?



Types of Network Flow Problems (Winston)

• Transportation problem (Hitchcock, 1941)
• Given a set of sources, destinations
• Have source capacities, destination demands
• Know shipping cost/unit for each source-destination pair
• Minimize total cost of meeting demands at destinations

• Assignment Problem
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• Assignment Problem
• Restricted transportation problem
• Each source can supply 1 object
• Each destination demands 1 object

• Transshipment Problem
• Transportation problem with intermediate (transshipment) points
• Generalizes both transportation and assignment problem



Other Network Models in Winston

• Shortest path problem (Dijkstra1959)
• Find the shortest route between an origin and a destination
• Algorithms range simple “greedy” algorithm to very complex
• Special case of the transshipment problem

• Maximum flow problem
• Maximize flows from a single source to a single destination
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• Maximize flows from a single source to a single destination
• Important dual result: finds the minimum “cut” in a network

• Minimum spanning tree
• Objective is to connect all nodes in a network
• Want to minimize the total length of the connections

• Project management (PERT-CPM)
• Find time to complete a linked set of tasks
• Is actually a “longest path” problem



Some Network Models Not in Winston

• Circulation problem
• Transshipment problem with no source or demand nodes
• Example: airline routing schedules

• Generalized flow problem
• Some of the material flowing on the network is lost in transmission
• Example: electrical power transmission, water distribution
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• Example: electrical power transmission, water distribution

• Multicommodity flow problem
• More than one type of material is flowing on the network
• Different materials consume network capacity, but may have 

different transmission costs

• Network interdiction problem
• Bad guys are moving on a network; good guys try to stop them
• Each side has to choose what paths to use or interdict



Network Models Not in Winston (cont’d)

• Network reliability problem
• Find the maximum reliability set of routes in network
• In certain cases, can be recast as an MCNFP

• Network models with “side constraints”
• Knapsack problem: optimize the “goodness” of a set of objects that 

must fit into a finite-sized “knapsack”
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must fit into a finite-sized “knapsack”
• Traveling Salesman Problem: find the minimum-cost tour among a 

set of destinations, but only visit each destination once
• Various vehicle routing problems

• Network optimization literature is gigantic
• Seminal text is Ahuja, Magnanti, and Orlin (1993); 846 pages!
• Huge number of applications 
• Inspiration for much of the research into algorithmic efficiency



Concentration in This Course

• I will emphasize the transshipment problem
• Otherwise known as the minimum-cost network flow 
problem (MCNFP) 

• Reasons:
• Transportation, assignment, max flow, shortest path problems are 

all cases of MCNFP
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all cases of MCNFP
• All commercial software implements a modified simplex method 

based on MCNFP
• To exploit this capability, you have to formulate in terms of MCNFP
• Specialized transportation and assignment problem algorithms are 

largely unnecessary (e.g., stepping-stone and Hungarian methods)



Network Jargon

• To model a problem as a network, we need some 
terminology

• A graph G consists of:
• A set of nodes (N)
• A set of arcs (A), which connect the nodes
• So, G = (N,A) specifies the “topology” of the network
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• So, G = (N,A) specifies the “topology” of the network

• Graph characteristics
• Let i,j be indices for the nodes
• Then the pair (i,j) identifies an arc
• This notation allows us to define things such as:

• Unit transportation costs on an arc (Cij)
• Supplies at each source node (Si)
• Demands at each demand node (Dj)



From Network to Optimization Model

• Consider the transshipment network below:
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• What does all this mean?
• Numbers in circles are node labels
• Numbers next to nodes are supplies (>0) and demands (<0)
• Numbers on arcs are (cost/unit to ship, max flow on arc)

• Assume we want to minimize total cost

52

-12

(11,7)

(11,8)



Optimization Model (Winston format)

• Let xij be the flow on arc (i,j)
• Then, the model is:
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Some Key Points

• FLOW MUST BALANCE!
• For pure supply nodes, flow out must equal supply
• For pure demand nodes, flow in must equal demand
• For transshipment nodes, flow out must equal flow in
• Note the example has nodes that demand and transship

• What do we do if supply is unequal to demand?

OR 541 Fall 2009
Lesson 8-1, p. 10

• What do we do if supply is unequal to demand?
• Create dummy node to absorb (ship) excess supply (demand)
• Create costs that make sense in the model

• Arc costs can be negative
• Can also force flow on arcs by putting in lower bounds
• Sign conventions

• Flow out is positive
• Flow in is negative



Optimization Model (Algebraic format)

• Indices
• i, j = nodes {1,2,3,4,5}

• Subsets
• ARCS(i,j) = connections between nodes

• Data
• C = cost per unit to ship on arc i,j
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• Cij = cost per unit to ship on arc i,j
• Lij = lower bound on flow on arc i,j
• Uij = upper bound on flow on arc i,j
• SDi = supply or demand at node i

• Variables
• xij = flow on arc i,j



Algebraic Format (cont’d)

• So, the general MCNFP is:

subject to
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• One MPL program can represent any MCNFP!
• So, are we done yet?
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Answer is NO

• The trick with networks is to translate the problem into 
a network structure

• Many things that don’t appear to be networks are
• See Winston, pp. 366-368 on the inventory problem
• Many, many other models can be represented by a network

• So, the challenge is to:
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• So, the challenge is to:
• Determine if the problem can be represented by a network
• If so, come up with the nodes, arcs, costs, and capacities

• Why do we want to do this?
• Speed: network codes are much faster than normal LP simplex
• Integrality: if a problem can be represented by an MCNFP, it 

will have integral answers (if the supplies, demands and 
bounds are integer)



Common MCNFP Models - Transportation

• Transportation problem
• This is an MCNFP with no transshipment nodes
• Nodes are divided into two disjoint sets, SOURCES and SINKS

• So, the formulation becomes:
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• Winston shows a special algorithm for this, but it’s 
unnecessary
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Common MCNFP Models - Assignment

• A very simple model (too simple to be of much use)
• We are matching demands to supplies
• Each demand (supply) node demands (supplies) 1 unit
• Number of supply and demand nodes are equal

• So, this model is: *min
),(,
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• Again, Winston shows a special (Hungarian) algorithm 
for this - it’s not needed
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Common MCNFP Problems - Max Flow

• This is useful, but is a twist on the MCNFP formulation
• We are maximizing flow from a single source (s) to a single 

destination (d)
• This flow, however, is a variable, v

• This model is:
subject to

max vz =
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• Note here that the variable v represents a “return arc” 
from d to s

),( allfor   0

for
nodes allfor    0

for  

),(),(

jiARCSUx

d  iv  
ds,i i  

s iv   
xx

ijij

ijARCSj
ji

jiARCSj
ij

≤≤







=−
≠≠

=
=








−








∑∑

∈∈



Shortest (Longest) Path Problem

• This can also be represented by an MCNFP
• Costs are arc lengths
• Flow 1 unit from the origin s to the destination d
• Minimize (maximize) the sum of the arcs used

• Formulation:
( ) *  maxor min
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• NOTE: lots of simple algorithms (e.g., Dijkstra) 
available for this problem
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Converting a Problem to a Network

• Many hard problems become easy if you can convert 
them to a network

• Example: open-pit mining problem
• An open pit mine can be represented as a set of blocks
• Each block i has a net profit wi if you choose to extract it
• But, you have to remove the blocks above it to get to it
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• But, you have to remove the blocks above it to get to it

• This problem is called a “maximum weight closure”
• The graph is a set of nodes with weights
• The arcs show dependencies among nodes
• A closure is a set of nodes with no outgoing arcs
• The objective is to find the closure with maximum weight



Example Closure Problem

A(-10) B(-10) C(-20) D(-20)

E(30) G(5)F(-5)

OR 541 Fall 2009
Lesson 8-2, p. 6

E(30) G(5)F(-5)

H(50) I(10)

Number in parentheses 
is payoff for choosing 

that node

Example: A, B, and 
E is a closure, with 

total weight = 10



Converting a Closure to a Max Flow Problem

• Add two new nodes, s and t
• Connect all nodes with positive payoffs with arcs from
node s

• Connect all nodes with negative payoffs arcs to node t
• Make the upper bound on all new arcs the absolute 
value of the weight of the node
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value of the weight of the node
• Make the upper bound on the original arcs infinite
• Solve a maximum flow problem with this network



The Maximum Weight Closure as a Max Flow

A(-10) B(-10) C(-20) D(-20)

T
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E(30) G(5)F(-5)

H(50) I(10)

S

Upper bound on 
flow for all new 
arcs is the absolute 
value of the node 
they connect to 
(except for T to S)



Getting the Answer 

A(-10) B(-10) C(-20) D(-20)

T

Objective function 20

10 20

1010

10 5 15

15
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E(30) G(5)F(-5)

H(50) I(10)

S

Objective function 
value: 60

Flows shown on 
diagram

But what nodes are 
in the closure? And 
what’s the weight?20

20

25

25

10

1010

10

5

15



Aside: the Max-Flow Min-Cut Theorem

• In a maximum flow problem, the optimal flow is equal to 
the capacity of the minimum “cut”
• A cut is a set of arcs that divides the network into two sets of 

nodes, one containing the source (S) and the other the sink (T)
• Call these sets of nodes N1 and N2

• Each arc in the cut set has one endpoint in N1 and another in N2
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1 2

• Consequences:
• Solving the max flow problem also gives the minimal set of arcs 

that can “disconnect” the network
• The arcs in the cut will all be at their upper bounds
• A large network can have many cutsets
• May have to resort to a separate algorithm to find them all 



Finding the Min Cut in the Closure Problem

A(-10) B(-10) C(-20) D(-20)

T

10 2010 5
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E(30) G(5)F(-5)

H(50) I(10)

S

10

5

Marked arcs are at 
their upper bounds

Note that the sum 
of those bounds is
the max flow



Delete the Arcs in the Min Cut

A(-10) B(-10) C(-20) D(-20)

T

Now we see the 
partition of the 
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E(30) G(5)F(-5)

H(50) I(10)

S

partition of the 
nodes ...

Which partition is 
the maximum 
weight closure? 
And what is its 
weight?



Some Final Notes

• We can solve the max weight closure problem directly:
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• People convert it to a network because:
• There are special max flow algorithms available that do not 

require expensive LP solvers
• It’s relatively easy to code these algorithms and they run quickly

• However, you must do added work to find the solution
• See http://128.32.125.151/riot/index.html (the Remote 
Interactive Optimization Testbed) website for a demo



The Critical Path Method (CPM)

• Recent evolution of project scheduling
• Methodology depended on who was in charge
• After WW I, the Gantt (bar) chart became a popular method
• But, bar charts had limited ability to depict complex 

relationships

• DuPont and Remington Rand Univac developed a new 
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• DuPont and Remington Rand Univac developed a new 
method in the late 1950’s
• Approach was to depict the project as a network
• Aim was provide a means to investigate tradeoffs in project 

cost and duration
• Came to be known as CPM



CPM Formulation

• CPM is essentially a longest-path problem (and can be 
depicted as an MCNFP)

• Consider the following example (from Schrage):

Activity Job # Time Predecessors
Dig basement A 3 none
Pour foundation B 4 A
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Pour foundation B 4 A
Pour basement floor C 2 B
Install floor joists D 3 B
Install Walls E 5 B
Install rafters F 3 C,E
Install flooring G 4 D
Rough interior H 6 G
Install roof I 7 F
Finish interior J 5 I,H
Landscape K 2 C,E



• Nodes represent precedences
• Arcs represent activities and completion times
• Project time is the longest path from 1 to 9
• What’s the critical path?

Network Representation (Activity-on-Arc, or AOA)

6
4 (G) 6 (H)
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21

5

4

3

8

7 9

3 (A) 4 (B)

3 (D)

4 (G) 6 (H)

5 (J)7 (I)

3 (F)2 (C)

5 (E) 2 (K)



• Here is the same problem with the nodes as activities

A Better Representation: Activity on Node (AON)

s A B

C

D

F

G H

I

J
0

4

3

4

2

2

3

3

7

4 6
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• This representation is far superior to AOA
• AOA frequently requires dummy arcs to depict precedences
• Minimizing the number of dummy arcs is a difficult problem
• We will not use AOA representations in this course

E K d

5
4 5

5 2



CPM as a Longest Path Problem

• Just maximize the shortest path formulation:
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• However, we will work (for now) with the dual of this 
problem
• The indicies i, j (with start s and finish d) now represent jobs
• The variable ui is the start time for each job
• Let Ci be the completion time of job i

( )
),( allfor   10
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udi

ij
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Dual Formulation

• Here’s what the dual looks like:
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• The dual is not a network!
• The total time is the difference between ud and us

• The rest of the constraints enforce precedences, completion times
• The dual is easier to formulate (and extend) than the MCNFP

• This formulation does let us get at what the original researchers 
wanted to investigate, though ... 

iui  allfor  edunrestrict 



Project Crashing

• Addresses trades between expenditures, completion time
• Assume that:

• You know the cost per unit time to “crash” a job (CCi)
• You know the minimum job completion time (MINi)
• TOT is the total desired project time

• Formulation, where cri is the amount a job is crashed:
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• Formulation, where cri is the amount a job is crashed:
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Just-In-Time Scheduling

• In this model, some jobs must start within a certain 
amount of time of other jobs

• Let Sij be the max length of time between the start of 
job i and the start of job j 

• How do we modify the formulation to handle this?
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Another Twist

• Suppose instead we penalize the time difference 
between the completion of job i and the start of job j

• Let:
• Pij be the late penalty per unit time
• TOT be the total desired project time

• The following formulation minimizes these penalties:
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• The following formulation minimizes these penalties:
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How Do You Find the Critical Path?

• Suppose you solve the 
example problem in MPL

• You get task start times, but 
don’t know which ones are 
critical

• The key is to look at the dual 
values of the constraints, 

i j Slack
Shadow 

Price
s A 0 1
A B 0 1
B C -3 0
B D -2 0
B E 0 1
C F 0 0
C K -13 0
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values of the constraints, 
which represent the arcs

• Any arc with a nonzero dual 
value is on the critical path

C K -13 0
D G 0 0
E F 0 1
E K -13 0
F I 0 1
G H 0 0
H J 0 0
I J 0 1
J d 0 1
K d 0 0



MPL Code 

TITLE
CPM; {  Schrage CPM example; MPL must be } 

{   in case sensitive mode! }

INDEX
node  := (s,A,B,C,D,E,F,G,H,I,J,K,d);
i         := node;
j         := node;

DATA

{ prec is used to define precedence arcs }

{ note 0 (dummy) duration times for s and d }

dur[i] := (0,3,4,2,3,5,3,4,6,7,5,2,0);

VARIABLES

u[node];

MODEL
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{ prec is used to define precedence arcs }

prec[i,j] :=

[s,A,1, 
A,B,1,
B,C,1, B,D,1, B,E,1,
C,F,1, C,K,1,
D,G,1,
E,F,1, E,K,1,
F,I,1
G,H,1,
H,J,1,
I,J,1,
J,d,1,
K,d,1];

MODEL

min span = u["d"] - u["s"];

SUBJECT TO

precedence[i,j] where prec[i,j]>0:

u[node:=j] - u[node:=i] > dur[i];

END


