Simple Bounds in the Dual

- Many problems have simple bounds on primal variables
 - How do these show up in the dual?
 - Also, what if we have simple bounds on the dual variables?
- Consider the following "elastic" LP:

```
max z = c_1 x + c_2 s_1 - c_3 s_2
subject to
Ax + s_1 - s_2 = b
l \le x \le u
s_1, s_2 \ge 0
```

- In this LP, every constraint is really a "goal"
 - Objective function has rewards and penalties for deviations
 - The auxiliary variables are slacks (s_1) and surpluses (s_2)

The Dual of the Elastic LP

• The primal bounds end up in the dual objective, and the primal rewards/penalties become dual bounds

```
min y = w_1b + w_2u - w_3l
subject to
w_1A + w_2 - w_3 \ge c_1
c_2 \le w_1 \le c_3
w_2, w_3 \ge 0
```

- This is a useful model when:
 - It is unclear what the RHS should be
 - It is unclear if the RHS can even be achieved (FOOTSTOMP)
 - You can estimate the feasible range of the shadow prices

Adding Constraints to an LP

• Suppose I have the following integer program:

```
min z = 3x_1 + 4x_2
subject to
3x_1 + x_2 \ge 4, or 3x_1 + x_2 - s_1 = 4
x_1 + 2x_2 \ge 4, or x_1 + 2x_2 - s_2 = 4
x_1, x_2 \ge 0 and integer, s_1, s_2 \ge 0
```

- I employ the "prayer method" (solve as an LP and hope the answer's integral) and get:
- **x**₁ = 4/5, **x**₂ = 8/5
- Now what?

Adding a "Cut"

• I will now do something *very strange*; I add the following constraint to the model:

$$\frac{1}{5}s_1 + \frac{2}{5}s_2 \ge \frac{3}{5}, \text{ or } -\frac{1}{5}s_1 - \frac{2}{5}s_2 + s_3 = -\frac{3}{5}, s_3 \ge 0$$

- This is called a "Gomory dual fractional cut"
 - What exactly is getting cut?
 - We will touch on this more in the IP part of the course
- Now, do we want to solve the problem all over again?
 - Seems like we could do some sort of "restart"
 - However, adding this constraint will make the problem infeasible

Graphical Depiction of the Cut

Adding the Constraint to the Tableau

• Here's the LP tableau at optimality (via LINDO):

Row	Z	x1	x2	s1	s2	RHS	BV	note –
0	1	0	0	(-2/5)	(-9/5)	44/5	Z	since
1		1	0	-2/5	1/5	4/5	x1	this is a min
2		0	1	1/5	-3/5	8/5	x2	problem

• Here's the new tableau with the constraint, slack s_3 :

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	-2/5	-9/5	0	44/5	Z
1		1	0	-2/5	1/5	0	4/5	x1
2		0	1	1/5	-3/5	0	8/5	x2
3		0	0	-1/5	-2/5	1	-3/5	s3

• Is this primal feasible? Dual feasible?

Introduction to Dual Simplex

- The tableau is dual feasible
 - Adding a row to the dual is the same as adding a column to the primal
 - Can you make the primal infeasible by adding more variables?
- Leads to an alternative scheme, called *dual simplex*
 - Discovered by C. E. Lemke in 1954 (Lemke was George Dantzig's first doctoral student)
 - Iterates among *dual* feasible solutions in a *primal* tableau
 - Improvements in dual simplex are responsible in dramatic improvements in LP solve times in the 1990's
 - More importantly, a key method for adding constraints in integer programming

Pivoting in Dual Simplex

- This method is a "transpose" of primal simplex
 - The pivot row is the most negative RHS
 - We only pivot on columns with *negative* coefficients
 - The ratio test is computed using the *objective function row;* take the ratio with the smallest *absolute value*
- Example:

Dual Simplex Termination

- Dual simplex finishes when the tableau is *primal feasible*
 - Recall that we started, and stay, dual feasible
 - If both primal and dual are feasible, then where are we?
- Row operations are exactly the same in dual simplex
 - Once you pick a pivot element, you get a 1 there, and 0's in the rest of the column
 - Here's the tableau after the pivot:

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	-1	2	10	z
1		1	0	0	1	-2	2	x1
2		0	1	0	-1	1	1	x2
3		0	0	1	2	-5	3	s1

• It's optimal, and integer

Dual Simplex as a Solution Method

• Consider the starting tableau for the same problem:

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		3	1	-1	0	4	x1
2		1	2	0	-1	4	x2

• We can't do primal simplex; no BFS, need Phase I

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		-3	-1	1	0	-4	x1
2		-1	-2	0	1	-4	x2

This equivalent tableau, however, is dual feasible; we can do dual simplex immediately

The Pivots

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		(-3)	-1	1	0	-4	s1
2		-1	-2	0	1	-4	s2

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	0	-3	-1	0	4	Z
1		1	1/3	-1/3	0	4/3	x1
2		0	-5/3	-1/3	1	-8/3	s2

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	0	0	-2/5	-9/5	44/5	Z
1		1	0	-2/5	1/5	4/5	x1
2		0	1	1/5	-3/5	8/5	x2

Comprehensive Example

- This is a small problem
- Intended to show the entire process
 - Initial problem statement
 - First formulations
 - First solutions
 - Reformulations and modifications
 - Subsequent solutions
 - Sensitivity analysis
- Typical stumbling blocks

The Situation

- A group of investors wants to start a small passenger airline operation
 - The area they're targeting is currently only served by inconvenient hub-and-spoke routes
 - They believe they can compete and not get crushed in a price war; specialize in charters
 - They have a route structure and can lease various aircraft
 - The need to schedule their routes
- They call you in to assist
 - After some conversation, you believe you can model the problem
 - You're sent off to gather relevant data

Initial Information

- You meet with others involved in the new company
 - Most are irritated an outsider has been brought in
 - Cooperation is grudging; management has to threaten one group (the market forecasters) to get them to talk to you
- Here's the initial information
 - The airline wants to cover 5 routes
 - They have a forecast for demand on each route
 - They have leased 4 different aircraft types
 - Tentative operating costs (\$/ac/route) are available for each aircraft type
 - The pax capacity of each aircraft is known

What's the Objective and the Constraints?

- Minimize overall cost?
 - Only costs we have are operating (marginal) costs
 - Company claims to have fixed costs in hand, so you don't have to worry about them
- Other questions you might ask
 - Does it matter whether we have multiple aircraft types? (no, all lease, with contract maintenance)
 - Can we get different aircraft configurations? (No)
 - Are there limits on the number of aircraft available (No, they don't think so)
 - Does all demand have to be met? (Yes)
 - Is there a maximum operating cost? (No ... but they hadn't considered this yet)

Your Initial Formulation

- Determine the aircraft mix that:
 - Minimizes total operating cost, and
 - Covers all demand
- Management agrees
- Indicies:
 - a: aircraft types
 - *r*: routes
- Data
 - *DEMAND*_{*r*} = passengers flying route *r* per month (100's)
 - **COST**_{ar} = \$1K/month to operate aircraft type **a** on route **r**
 - CAP_a = maximum *monthly* capacity of aircraft type **a** (100's)

Formulation, cont'd

- Variables
 - *aca_{ar}* = # of aircraft a assigned to route r per day
- Objective and Constraints

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar}$$

subject to
$$\sum_{a} CAP_{ar} * aca_{ar} \ge DEMAND_{r} \text{ for all } r$$

$$aca_{ar} \ge 0 \text{ for all } a, r$$

MPL Code

INDEX

```
a := (ac1, ac2, ac3, ac4); { aircraft types }
   r := (r1, r2, r3, r4, r5);
                                   { routes }
DATA
   COST[a,r] := (18,21,18,16,10, { cost of aircraft a on route r, $1k/month }
                   0,15,16,14,9,
                   0,10,0,9,6,
                   17,16,17,15,10); { NOTE: 0 cost means can't fly that route! }
   CAP[a,r] := (16,15,28,23,81,
                                     { capacity of aircraft a on route r, 100's/month }
                  0,10,14,15,57,
                  0,5,0,7,29,
                  9,11,22,17,55);
                                      { NOTE: 0 capacity means can't fly that route! }
   DEMAND[r] := (253,120,180,80,600); { demand per month (100's) on route r }
DECISION VARIABLES
              { number of aircraft a flying on route r }
   aca[a,r];
MODEL
   MIN totexpcost = SUM(a,r: COST[a,r]*aca[a,r]);
SUBJECT TO
   demreq[r]: { demand constraints }
     SUM(a: CAP[a,r]*aca[a,r]) > DEMAND[r] ;
```

END

Initial Solution

- Initial solution: use nothing but aircraft type 1
 - Optimal cost: \$698K/month
 - Assignment data:
 - VARIABLE aca[a,r] :

•	a	r	Activity	Reduced Cost
•				
•	acl	rl	15.8125	0.0000
•	acl	r2	8.0000	0.0000
•	acl	r3	6.4286	0.0000
•	acl	r4	3.4783	0.0000
•	ac1	r5	7.4074	0.0000

- What do you think the optimal integer solution is? Why?
- Change MPL code as follows to see:
 - INTEGER VARIABLES
 - aca[a,r]; { number of aircraft a flying on route r }

Integer Solution and First Revisions

- The best integer solution is NOT to use all AC 1:
 - Optimal cost: \$720K/month
 - Aircraft assignments:

•	a	r	Activity	Reduced Cost
•				
•	acl	r1	16.0000	18.0000
•	ac1	r2	8.0000	0.0000
•	ac1	r3	6.0000	18.0000
•	ac1	r 4	2.0000	-4.2941
•	ac1	r 5	6.0000	-2.7895
•	ac2	r 3	1.0000	16.0000
•	ac2	r 5	2.0000	0.0000
•	ac4	r4	2.0000	0.0000

- You present this to management
 - They say "we forgot; we can't get that many of AC 1"
 - It turns out there's limits on availability of all the aircraft types

Model Adjustments

- Data
 - **AVAIL**_a = number of aircraft a available
- New Model

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar}$$

subject to
$$\sum_{a} CAP_{ar} * aca_{ar} \ge DEMAND_{r} \text{ for all } r$$

$$\sum_{a} aca_{ar} \le AVAIL_{a} \text{ for all } a$$

$$aca_{ar} \ge 0 \text{ for all } a, r$$

First Model Death

• Here's the MPL changes:

```
AVAIL[a] := (10,19,25,15); { aircraft availability }
acavail[a]: { aircraft availability }
SUM(r: aca[a,r]) < AVAIL[a];</pre>
```

- You run the model, and MPL says "integer infeasible"
 - What happened?
 - Change it back to an LP, see if it solves; it's still infeasible
 - Now what?
- Solve a different problem
 - Minimize the unmet demand, given the aircraft availability
 - See if you can figure out what combinations are causing trouble

The Next Model - Where Are We Short?

• Here's the new formulation; minimize unmet demand

min
$$z = \sum_{r} unmet_{r}$$

subject to
 $\sum_{a} (CAP_{ar} * aca_{ar}) + unmet_{r} \ge DEMAND_{r}$ for all r
 $\sum_{a} aca_{ar} \le AVAIL_{a}$ for all a
 $aca_{ar} \ge 0$ for all a, r
 $unmet_{r} \ge 0$ for all r
Is this right? Why?

The Answers

• LP results - close, but can't satisfy Route 1

RIABLE u	nmet[r] :	CONSTRAINT acavail[a] :					
r	Activity	Reduced Cost	a	Slack	Shadow Price		
r1	9.7476	0.0000	ac1	0.0000	-16.0000		
r2	0.0000	0.4273	ac2	0.0000	-5.7273		
r3	0.0000	0.5909	ac3	0.0000	-2.8636		
r4	0.0000	0.6182	ac4	0.0000	-9.0000		
r5	0.0000	0.9013					

- Which aircraft type do we probably want more of?
- Note that the integer answer is somewhat worse:

VARIABLE unmet[r] :

r	Activity	Reduced Cost
r1	12.0000	0.0000
r2	0.0000	0.0000
r3	0.0000	0.2857
r4	3.0000	0.0000
r5	0.0000	0.7586

OR 541 Fall 2009 Lesson 6-2, p. 13

Negotiations with the Customer

- Marketing group is upset; claims answer is wrong
- They show the following table:

Aircraft Capacity									
Route	AC1 AC2 AC3 AC4 Max								
1	16	0	0	9	295				
2	15	10	5	11	630				
3	28	14	0	22	876				
4	23	15	7	17	945				
5	81	57	29	55	3443				
AC Avail	10	19	25	15					

- How would you argue your way out of this?
 - But, suppose you win
 - Management says, "get with marketing and figure this out"

Adding a Bumping Cost

- Marketing says, "we can bump people at a price"
 - Data: *BPCOST*_r = \$K lost per 100 passengers bumped on route *r*
 - Variable: *bumped*_r = passengers bumped on route *r* (100's)
- New model:

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r} BPCOST_{r} * bumped_{r}$$

subject to

$$\sum_{a} CAP_{ar} * aca_{ar} + bumped_{r} \ge DEMAND_{r} \text{ for all } r$$

$$\sum_{r} aca_{ar} \le AVAIL_{a} \text{ for all } a$$

$$aca_{ar} \ge 0 \text{ for all } a, r \text{ ; } bumped_{r} \ge 0 \text{ for all } r$$

The New Solution

• LP solution: z = \$999K/month

```
VARIABLE bumped[r] :
```

CONSTRAINT acavail[a] :

r	Activity	Reduced Cost	a	Slack	Shadow Price
r1	0.0000	1.3016	ac1	0.0000	-169.1746
r2	0.0000	6.4000	ac2	0.0000	-51.0000
r3	0.0000	2.2143	ac3	0.0000	-23.0000
r4	0.0000	2.6667	ac4	0.0000	-88.2857
r5	98.7143	0.0000			

• Integer solution: z = \$1012K/month

VARIABLE bumped[r] :

CONSTRAINT acavail[a] :

r	Activity	Reduced Cost	a	Slack	Shadow Price
r1	3.0000	0.0000	ac1	0.0000	-190.0000
r2	0.0000	6.4000	ac2	0.0000	-51.0000
r3	0.0000	2.2143	ac3	0.0000	-23.0000
r4	0.0000	2.4286	ac4	0.0000	-88.2857
r5	78.0000	0.0000			

OR 541 Fall 2009 Lesson 6-2, p. 16

The Management Responds

- Leadership doesn't like the answer
 - Almost all the bumping occurs in route 5
 - Wants the risk of bumping spread out more evenly across routes
 - Now what?
- First, check for multiple optima in the solution
 - May be an alternative that is cost optimal, but spreads out bumps
 - But, there are none in the LP solution
 - This means that spreading out bumping will cost more
- Note, however, that this is based on *expected* demand
 - Marketing says forecasts probably good to within 5%
 - Implies that total costs have about 5% accuracy as well
 - This is how we will try to spread out bumping

New Model to Spread Out Bumping

- Previous objective function now becomes a constraint
- We add a new variable, *maxbump*
- Here's the new model:

And, What Happens?

• This solution does indeed spread out bumping:

VARIABLE	<pre>bumped[r] :</pre>
----------	------------------------

r	Activity	Reduced Cost
r1 r2	3.9969 3.8324	0.0000 0.0000
r3	3.9969	0.0000
r4	3.9969	0.0000
r5	3.9969	0.0000

- This does not really make things equitable
 - Demand differs on each route
 - Management wants an equal chance of bumping on each route
 - Need to recast *maxbump* as a proportion of route demand

Bumping As a Proportion

- This solution has the optimal *maxbump* at 2.01%
- New bumping results:

VARIABLE bumped[r] :

r	Activity	Reduced Cost
r1	5.0832	0.0000
r2	2.4110	0.0000
r3	3.6165	0.0000
r4	1.6073	0.0000
r5	12.0551	0.0000

• Here's how it varies by total cost:

OR 541 Fall 2009 Lesson 6-2, p. 20

Demand Scrutiny

- However, this whole exercise causes scrutiny of demand forecast
- Management to marketing: "Where the #\$%^@&!! did this come from?"
- Marketing digs through the files, comes up with the following spreadsheet data

The Original Demand Data

• Here's where the expected demand was derived from:

	Demand State									
Route	1	1 2 3 4 5								
1	200	220	250	270	300					
2	50	150								
3	140	160	180	200	220					
4	10	50	80	100	340					
5	580	600	620							

DEMAND

	Demand State						
Route	1	2	3	4	5		
1	0.2	0.05	0.35	0.2	0.2		
2	0.3	0.7					
3	0.1	0.2	0.4	0.2	0.1		
4	0.2	0.2	0.3	0.2	0.1		
5	0.1	0.8	0.1				

LIKELIHOOD

• Looks like it's time for a recourse model

Extracting Scenarios

- Note that this data is by route
 - The *joint* distribution of demand is unclear
 - Seems reasonable, though, that if demand is high on one route, it is probably also high on another
- We decide to use 6 scenarios:

	scenario						
	s1	s1 s2 s3 s4 s5 s6					
probability	0.2	0.2	0.2	0.2	0.1	0.1	
route 1	200	243	250	270	300	300	
route 2	50	100	150	150	150	150	
route 3	150	170	180	190	200	220	
route 4	10	50	80	90	100	340	
route 5	590	600	600	600	600	620	

The New Scenario Model

- Go back to minimizing cost, but add:
 - Index s = scenario
 - Data SPROB_s = probability of scenario s
 - Add s index to demand data and bumping variables
- New model

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r,s} SPROB_s * BPCOST_r * bumped_{rs}$$

subject to

$$\sum_{a} CAP_{ar} * aca_{ar} + bumped_{rs} \ge DEMAND_{rs} \text{ for all } r, s$$

$$\sum_{r} aca_{ar} \le AVAIL_{a} \text{ for all } a$$

$$aca_{ar} \ge 0 \text{ for all } a, r; bumped_{rs} \ge 0 \text{ for all } r, s$$

As You Would Expect ...

- This answer is nowhere near as rosy
 - Total expected cost: \$1562K
 - Operating cost: \$887K
 - Bumping cost: \$678K
- One route/scenario combo has 26,000 pax/month unmet demand
- Conversation ensues
 - First question: what if the route data is all independent?
 - Second question: If the 6-scenario model is valid, what's the minimum number of aircraft needed to ensure a less than 10% chance of bumping on any route?

Assume the Route Demands are Independent

• Model mods:

- Index *d* = demand state (1-5)
- Data **DPROB**_{rd} = probability of demand state **d** on route **r**
- Data **DDEM**_{rd} = demand on route **r** in demand state **d**
- Variable *bumped_{rd}* = number bumped from route *r* in demand state *d*
- New Model

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r,d} DPROB_{rd} * BPCOST_{r} * bumped_{rd}$$

subject to
$$\sum_{a} CAP_{ar} * aca_{ar} + bumped_{rd} \ge DDEM_{rd} \text{ for all } r, d$$

$$\sum_{a} aca_{ar} \le AVAIL_{a} \text{ for all } a$$

$$aca_{ar} \ge 0 \text{ for all } a, r \text{ ; } bumped_{rd} \ge 0 \text{ for all } r, d$$

OR 541 Fall 2009 Lesson 6-2, p. 26

Answer to the Independent Demand Case

- Total expected cost: \$1566K
 - \$883K operating cost
 - \$683K bumping cost
 - Bumping statistics similar to scenario case
 - Integer answer: \$1580K (very similar)
- Interesting result: total expected cost is slightly *higher* than the scenario case

Homework

- Answer the second question
 - Formulate and solve in MPL the case that minimizes the number of aircraft required to get less than 10% bumping for *any* route and scenario
 - Turn in separate formulation (written out, NOT MPL code)
 - Provide MPL code for new model
 - Also, investigate sensitivity of the solution for the range 5-15%
 - Changes in total costs
 - Changes in optimal fleet mixes
 - I have provided MPL code for the first question; work from there
- Also:
 - p. 335: 2a