
Simple Bounds in the Dual

• Many problems have simple bounds on primal variables
• How do these show up in the dual?
• Also, what if we have simple bounds on the dual variables?

• Consider the following “elastic” LP:

subject to

max 23121 −+= scscxcz
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• In this LP, every constraint is really a “goal” 
• Objective function has rewards and penalties for deviations
• The auxiliary variables are slacks (s1) and surpluses (s2)
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The Dual of the Elastic LP

• The primal bounds end up in the dual objective, and 
the primal rewards/penalties become dual bounds
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• This is a useful model when:
• It is unclear what the RHS should be
• It is unclear if the RHS can even be achieved (FOOTSTOMP)
• You can estimate the feasible range of the shadow prices
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Adding Constraints to an LP

• Suppose I have the following integer program:
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• I employ the “prayer method” (solve as an LP and 
hope the answer’s integral) and get:

• x1 = 4/5, x2 = 8/5
• Now what?

0, integer, and  0,            2121 ≥≥ ssx x



Adding a “Cut”

• I will now do something very strange; I add the 
following constraint to the model:

• This is called a “Gomory dual fractional cut”
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• This is called a “Gomory dual fractional cut”
• What exactly is getting cut?
• We will touch on this more in the IP part of the course

• Now, do we want to solve the problem all over again?
• Seems like we could do some sort of “restart”
• However, adding this constraint will make the problem 

infeasible
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Adding the Constraint to the Tableau

• Here’s the LP tableau at optimality (via LINDO):

Row z x1 x2 s1 s2 RHS BV
0 1 0 0 -2/5 -9/5 44/5 z
1 1 0 -2/5 1/5 4/5 x1
2 0 1 1/5 -3/5 8/5 x2

note –
since 

this is a 
min 

problem
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• Here’s the new tableau with the constraint, slack s3:

• Is this primal feasible? Dual feasible?

Row z x1 x2 s1 s2 s3 RHS BV
0 1 0 0 -2/5 -9/5 0 44/5 z
1 1 0 -2/5 1/5 0 4/5 x1
2 0 1 1/5 -3/5 0 8/5 x2
3 0 0 -1/5 -2/5 1 -3/5 s3



Introduction to Dual Simplex

• The tableau is dual feasible
• Adding a row to the dual is the same as adding a column to the 

primal
• Can you make the primal infeasible by adding more v ariables?

• Leads to an alternative scheme, called dual simplex
• Discovered by C. E. Lemke in 1954 (Lemke was George Dantzig’s 
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• Discovered by C. E. Lemke in 1954 (Lemke was George Dantzig’s 
first doctoral student)

• Iterates among dual feasible solutions in a primal tableau
• Improvements in dual simplex are responsible in dramatic 

improvements in LP solve times in the 1990’s
• More importantly, a key method for adding constraints in integer 

programming



Pivoting in Dual Simplex

• This method is a “transpose” of primal simplex
• The pivot row is the most negative RHS
• We only pivot on columns with negative coefficients
• The ratio test is computed using the objective function row; 

take the ratio with the smallest absolute value

• Example:
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• Example:

Row z x1 x2 s1 s2 s3 RHS BV
0 1 0 0 -2/5 -9/5 0 44/5 z
1 1 0 -2/5 1/5 0 4/5 x1
2 0 1 1/5 -3/5 0 8/5 x2
3 0 0 -1/5 -2/5 1 -3/5 s3

ratio = 2 ratio = 9/2



Dual Simplex Termination

• Dual simplex finishes when the tableau is primal feasible
• Recall that we started, and stay, dual feasible
• If both primal and dual are feasible, then where are we?

• Row operations are exactly the same in dual simplex
• Once you pick a pivot element, you get a 1 there, and 0’s in the 

rest of the column
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rest of the column
• Here’s the tableau after the pivot:

• It’s optimal, and integer

Row z x1 x2 s1 s2 s3 RHS BV
0 1 0 0 0 -1 2 10 z
1 1 0 0 1 -2 2 x1
2 0 1 0 -1 1 1 x2
3 0 0 1 2 -5 3 s1



Dual Simplex as a Solution Method

• Consider the starting tableau for the same problem:

Row z x1 x2 s1 s2 RHS BV
0 1 -3 -4 0 0 0 z
1 3 1 -1 0 4 x1
2 1 2 0 -1 4 x2
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• We can’t do primal simplex; no BFS, need Phase I

• This equivalent tableau, however, is dual feasible; we 
can do dual simplex immediately

Row z x1 x2 s1 s2 RHS BV
0 1 -3 -4 0 0 0 z
1 -3 -1 1 0 -4 x1
2 -1 -2 0 1 -4 x2



The Pivots

Row z x1 x2 s1 s2 RHS BV
0 1 -3 -4 0 0 0 z
1 -3 -1 1 0 -4 s1
2 -1 -2 0 1 -4 s2

Row z x1 x2 s1 s2 RHS BV
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Row z x1 x2 s1 s2 RHS BV
0 1 0 -3 -1 0 4 z
1 1 1/3 -1/3 0 4/3 x1
2 0 -5/3 -1/3 1 -8/3 s2

Row z x1 x2 s1 s2 RHS BV
0 1 0 0 -2/5 -9/5 44/5 z
1 1 0 -2/5 1/5 4/5 x1
2 0 1 1/5 -3/5 8/5 x2



Comprehensive Example

• This is a small problem
• Intended to show the entire process

• Initial problem statement
• First formulations
• First solutions
• Reformulations and modifications
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• Reformulations and modifications
• Subsequent solutions
• Sensitivity analysis

• Typical stumbling blocks



The Situation

• A group of investors wants to start a small passenger 
airline operation
• The area they’re targeting is currently only served by 

inconvenient hub-and-spoke routes
• They believe they can compete and not get crushed in a price 

war; specialize in charters
• They have a route structure and can lease various aircraft
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• They have a route structure and can lease various aircraft
• The need to schedule their routes

• They call you in to assist
• After some conversation, you believe you can model the problem
• You’re sent off to gather relevant data



Initial Information

• You meet with others involved in the new company
• Most are irritated an outsider has been brought in
• Cooperation is grudging; management has to threaten one group 

(the market forecasters) to get them to talk to you

• Here’s the initial information
• The airline wants to cover 5 routes
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• The airline wants to cover 5 routes
• They have a forecast for demand on each route
• They have leased 4 different aircraft types
• Tentative operating costs ($/ac/route) are available for each 

aircraft type
• The pax capacity of each aircraft is known



What’s the Objective and the Constraints?

• Minimize overall cost? 
• Only costs we have are operating (marginal) costs
• Company claims to have fixed costs in hand, so you don’t have 

to worry about them

• Other questions you might ask
• Does it matter whether we have multiple aircraft types? (no, all 

OR 541 Fall 2009
Lesson 6-2, p. 4

• Does it matter whether we have multiple aircraft types? (no, all 
lease, with contract maintenance)

• Can we get different aircraft configurations? (No)
• Are there limits on the number of aircraft available (No, they don’t 

think so)
• Does all demand have to be met? (Yes)
• Is there a maximum operating cost? (No … but they hadn’t 

considered this yet)



Your Initial Formulation

• Determine the aircraft mix that:
• Minimizes total operating cost, and
• Covers all demand

• Management agrees
• Indicies:

• a: aircraft types
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• a: aircraft types
• r: routes

• Data
• DEMANDr = passengers flying route r per month (100’s)
• COSTar = $1K/month to operate aircraft type a on route r
• CAPa = maximum monthly capacity of aircraft type a (100’s)



Formulation, cont’d

• Variables
• acaar = # of aircraft a assigned to route r per day

• Objective and Constraints

acaCOSTz ar
ra

armin
,

∗=∑
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MPL Code

INDEX
a := (ac1, ac2, ac3, ac4);      { aircraft types }
r := (r1, r2, r3, r4, r5);      { routes }

DATA
COST[a,r]  := (18,21,18,16,10,    { cost of aircraf t a on route r, $1k/month }

0,15,16,14,9,
0,10,0,9,6,
17,16,17,15,10);  { NOTE: 0 cost means can't fly th at route! }

CAP[a,r]   := (16,15,28,23,81,    { capacity of air craft a on route r, 100’s/month }
0,10,14,15,57,
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0,10,14,15,57,
0,5,0,7,29,
9,11,22,17,55);     { NOTE: 0 capacity means can't fly that route! }

DEMAND[r]   := (253,120,180,80,600); { demand per m onth (100’s) on route r }

DECISION VARIABLES
aca[a,r];    { number of aircraft a flying on route  r }

MODEL
MIN  totexpcost = SUM(a,r: COST[a,r]*aca[a,r]);

SUBJECT TO
demreq[r]:  { demand constraints }

SUM(a: CAP[a,r]*aca[a,r])  >  DEMAND[r] ;

END



Initial Solution

• Initial solution: use nothing but aircraft type 1
• Optimal cost: $698K/month
• Assignment data:

• VARIABLE aca[a,r] :

• a    r            Activity     Reduced Cost

• ---------------------------------------------

• ac1  r1           15.8125           0.0000 
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• ac1  r2            8.0000           0.0000 

• ac1  r3            6.4286           0.0000 

• ac1  r4            3.4783           0.0000 

• ac1  r5            7.4074           0.0000

• What do you think the optimal integer solution is? Why?
• Change MPL code as follows to see:

• INTEGER VARIABLES

• aca[a,r];    { number of aircraft a flying on route  r }



Integer Solution and First Revisions

• The best integer solution is NOT to use all AC 1:
• Optimal cost: $720K/month
• Aircraft assignments:

• a    r            Activity     Reduced Cost

• ---------------------------------------------

• ac1  r1           16.0000          18.0000 

• ac1  r2            8.0000           0.0000 
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• ac1  r3            6.0000          18.0000 

• ac1  r4            2.0000          -4.2941 

• ac1  r5            6.0000          -2.7895 

• ac2  r3            1.0000          16.0000 

• ac2  r5            2.0000           0.0000 

• ac4  r4            2.0000           0.0000 

• You present this to management
• They say “we forgot; we can’t get that many of AC 1”
• It turns out there’s limits on availability of all the aircraft types



Model Adjustments

• Data
• AVAILa = number of aircraft a available

• New Model

acaCOSTz ar
ra

armin
,

∗=∑
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First Model Death

• Here’s the MPL changes:

• You run the model, and MPL says “integer infeasible”

AVAIL[a]    := (10,19,25,15);  { aircraft availabil ity }

acavail[a]: { aircraft availability }
SUM(r: aca[a,r]) < AVAIL[a];
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• What happened?
• Change it back to an LP, see if it solves; it’s still infeasible
• Now what? 

• Solve a different problem
• Minimize the unmet demand, given the aircraft availability
• See if you can figure out what combinations are causing trouble
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The Next Model - Where Are We Short?

• Here’s the new formulation; minimize unmet demand
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Is this right? Why?



The Answers

• LP results - close, but can’t satisfy Route 1

VARIABLE unmet[r] :

r            Activity     Reduced Cost
----------------------------------------

r1            9.7476           0.0000 
r2            0.0000           0.4273 
r3            0.0000           0.5909 
r4            0.0000           0.6182 
r5            0.0000           0.9013 

CONSTRAINT acavail[a] :

a                Slack     Shadow Price
-----------------------------------------

ac1            0.0000         -16.0000 
ac2            0.0000          -5.7273 
ac3            0.0000          -2.8636 
ac4            0.0000          -9.0000 

-----------------------------------------
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• Which aircraft type do we probably want more of?
• Note that the integer answer is somewhat worse:

r5            0.0000           0.9013 
----------------------------------------

-----------------------------------------

VARIABLE unmet[r] :

r            Activity     Reduced Cost
----------------------------------------

r1           12.0000           0.0000 
r2            0.0000           0.0000 
r3            0.0000           0.2857 
r4            3.0000           0.0000 
r5            0.0000           0.7586 

----------------------------------------



Negotiations with the Customer

• Marketing group is upset; claims answer is wrong
• They show the following table:

Route AC 1 AC 2 AC 3 AC 4 Max
1 16 0 0 9 295
2 15 10 5 11 630
3 28 14 0 22 876

Aircraft Capacity
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• How would you argue your way out of this?
• But, suppose you win
• Management says, “get with marketing and figure this out”

3 28 14 0 22 876
4 23 15 7 17 945
5 81 57 29 55 3443

AC Avail 10 19 25 15



Adding a Bumping Cost

• Marketing says, “we can bump people at a price”
• Data: BPCOSTr = $K lost per 100 passengers bumped on route r
• Variable: bumpedr = passengers bumped on route r (100’s)

• New model:

bumpedBPCOSTacaCOSTz rrarar *min +∗= ∑∑
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• LP solution: z = $999K/month

The New Solution

VARIABLE bumped[r] :

r            Activity     Reduced Cost
----------------------------------------

r1            0.0000           1.3016 
r2            0.0000           6.4000 
r3            0.0000           2.2143 
r4            0.0000           2.6667 
r5           98.7143           0.0000 

----------------------------------------

CONSTRAINT acavail[a] :

a                Slack     Shadow Price
-----------------------------------------

ac1            0.0000        -169.1746 
ac2            0.0000         -51.0000 
ac3            0.0000         -23.0000 
ac4            0.0000         -88.2857 

-----------------------------------------
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• Integer solution: z = $1012K/month

----------------------------------------

VARIABLE bumped[r] :

r            Activity     Reduced Cost
----------------------------------------

r1            3.0000           0.0000 
r2            0.0000           6.4000 
r3            0.0000           2.2143 
r4            0.0000           2.4286 
r5           78.0000           0.0000 

----------------------------------------

CONSTRAINT acavail[a] :

a                Slack     Shadow Price
-----------------------------------------

ac1            0.0000        -190.0000 
ac2            0.0000         -51.0000 
ac3            0.0000         -23.0000 
ac4            0.0000         -88.2857 

-----------------------------------------



The Management Responds

• Leadership doesn’t like the answer
• Almost all the bumping occurs in route 5
• Wants the risk of bumping spread out more evenly across routes
• Now what?

• First, check for multiple optima in the solution
• May be an alternative that is cost optimal, but spreads out bumps

OR 541 Fall 2009
Lesson 6-2, p. 17

• May be an alternative that is cost optimal, but spreads out bumps
• But, there are none in the LP solution
• This means that spreading out bumping will cost more

• Note, however, that this is based on expected demand
• Marketing says forecasts probably good to within 5%
• Implies that total costs have about 5% accuracy as well
• This is how we will try to spread out bumping



New Model to Spread Out Bumping

• Previous objective function now becomes a constraint
• We add a new variable, maxbump 
• Here’s the new model:

maxbumpz

subject to

min =
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And, What Happens?

• This solution does indeed spread out bumping:
VARIABLE bumped[r] :

r            Activity     Reduced Cost
----------------------------------------

r1            3.9969           0.0000 
r2            3.8324           0.0000 
r3            3.9969           0.0000 
r4            3.9969           0.0000 
r5            3.9969           0.0000 

----------------------------------------
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• This does not really make things equitable
• Demand differs on each route
• Management wants an equal chance of bumping on each route
• Need to recast maxbump as a proportion of route demand



Bumping As a Proportion

• This solution has the optimal maxbump at 2.01%
• New bumping results: VARIABLE bumped[r] :

r            Activity     Reduced Cost
----------------------------------------

r1            5.0832           0.0000 
r2            2.4110           0.0000 
r3            3.6165           0.0000 
r4            1.6073           0.0000 
r5           12.0551           0.0000 

----------------------------------------
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• Here’s how it varies by total cost:
----------------------------------------
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Demand Scrutiny

• However, this whole exercise causes scrutiny of 
demand forecast

• Management to marketing: “Where the #$%^@&!! did 
this come from?”

• Marketing digs through the files, comes up with the 
following spreadsheet data
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following spreadsheet data



The Original Demand Data

• Here’s where the expected demand was derived from:

Route 1 2 3 4 5
1 200 220 250 270 300
2 50 150
3 140 160 180 200 220
4 10 50 80 100 340

Demand State

DEMAND
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• Looks like it’s time for a recourse model

4
5 580 600 620

Route 1 2 3 4 5
1 0.2 0.05 0.35 0.2 0.2
2 0.3 0.7
3 0.1 0.2 0.4 0.2 0.1
4 0.2 0.2 0.3 0.2 0.1
5 0.1 0.8 0.1

Demand State

LIKELIHOOD



Extracting Scenarios

• Note that this data is by route
• The joint distribution of demand is unclear
• Seems reasonable, though, that if demand is high on one route, it 

is probably also high on another

• We decide to use 6 scenarios:
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s1 s2 s3 s4 s5 s6
probability 0.2 0.2 0.2 0.2 0.1 0.1

route 1 200 243 250 270 300 300
route 2 50 100 150 150 150 150
route 3 150 170 180 190 200 220
route 4 10 50 80 90 100 340
route 5 590 600 600 600 600 620

scenario



The New Scenario Model

• Go back to minimizing cost, but add:
• Index s = scenario
• Data SPROBs = probability of scenario s
• Add s index to demand data and bumping variables

• New model
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As You Would Expect ...

• This answer is nowhere near as rosy
• Total expected cost: $1562K
• Operating cost: $887K
• Bumping cost: $678K

• One route/scenario combo has 26,000 pax/month unmet 
demand
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demand
• Conversation ensues

• First question: what if the route data is all independent?
• Second question: If the 6-scenario model is valid, what’s the 

minimum number of aircraft needed to ensure a less than 10% 
chance of bumping on any route?



Assume the Route Demands are Independent

• Model mods:
• Index d = demand state (1-5)
• Data DPROBrd = probability of demand state d on route r
• Data DDEMrd = demand on route r in demand state d
• Variable bumpedrd = number bumped from route r in demand 

state d 
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• New Model
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Answer to the Independent Demand Case

• Total expected cost: $1566K
• $883K operating cost
• $683K bumping cost
• Bumping statistics similar to scenario case 
• Integer answer: $1580K (very similar)

• Interesting result: total expected cost is slightly higher 
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• Interesting result: total expected cost is slightly higher 
than the scenario case



Homework

• Answer the second question
• Formulate and solve in MPL the case that minimizes the number 

of aircraft required to get less than 10% bumping for any route 
and scenario
• Turn in separate formulation (written out, NOT MPL code)
• Provide MPL code for new model

• Also, investigate sensitivity of the solution for the range 5-15%
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• Also, investigate sensitivity of the solution for the range 5-15%
• Changes in total costs
• Changes in optimal fleet mixes

• I have provided MPL code for the first question; work from there

• Also:
• p. 335: 2a


