
Introduction to Revised Simplex

• Modern simplex does NOT use tableaus
• Would require n x (m+1) storage - most of which would be 0’s 
• The tableau updates all the columns with each pivot; do we 

need them all?
• Researchers in the early 1950’s realized that tableaus were 

inefficient
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• To introduce you to how simplex really works, it is 
necessary to show simplex in a matrix format

• In this section (and in duality), I’ll use Winston’s 
notation, but not his general approach



Simplex In Matrix Form

• Using notation in Winston (6.2):
• bv subscript - basic variables
• nbv subscript - nonbasic variables
• c = vector of objective function coefficients
• A = matrix of constraint coefficients
• B = submatrix of A; contains columns associated with basics
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• B = submatrix of A; contains columns associated with basics
• N = submatrix of A; contains columns associated with nonbasics
• b = vector containing the RHS of the constraints

• So, the basic problem in standard form is:
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The Problem at Any Particular Stage

• Assume we have a BFS, xbv. Then the problem can be 
written as:

• First, how do we determine the value of x and ?
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• First, how do we determine the value of xbv and z?

• Note all we needed to know was which variables were 
in the BFS, and the original problem data
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Computing Reduced Costs

• Compute the reduced costs by writing the objective 
function in terms of the nonbasics:
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Computing the Column; Ratio Test

• Suppose xk has the best reduced cost. How do we 
generate its current column (yk) for the ratio test?
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• The current right hand side is B-1b, so we have 
everything we need; the pivot row, r, is

• So, the basic variable in row r leaves, and xk enters. 
Again, all we needed was B-1
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Summary: the Revised Simplex Algorithm

1. Put problem in standard form
2. Find initial BFS
3. Compute reduced costs:

4. If all reduced costs nonnegative, STOP; LP is optimal. 
Otherwise, choose xk, a variable with a negative reduced 

NBcc bvnbv
1−+−
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Otherwise, choose xk, a variable with a negative reduced 
cost, to enter

5. Compute the column:

6. If yk <= 0, STOP: LP is unbounded. Otherwise, find r, the 
pivot row, via the ratio test:

7. Update B, B-1, and B-1b. Go to 3.
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Relationship to Tableau

• You say, “this is new, foreign, and disturbing. It doesn’t 
look like tableau simplex at all.”

• But, take a look at an initial tableau for the problem: 
max cx, st Ax <= b, x >= 0, with slack vector s:

z c 0 0
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• I claim: here’s what’s in there after a few pivots:

z    
    1−B bB 1−AB 1−
bvx

bBcbv
1−

z c 0 0
s A I b

IBcbv
1−

cAcB −−1



Further Insights

• If we shuffled the columns of the tableau into basics 
and nonbasics, it would look like this:

z    
    I bB 1−NB 1−
bvx

bBcbv
1−0nbvbv cNBc −−1
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• And this, in expanded form, is just revised simplex

    bBNBbv



Efficiency & Product Form of the Inverse

• So revised simplex is simple, right?
• Had terrible computational performance in early codes
• “One could have started an iteration, gone to lunch, and 

returned before [the iteration] finished” (William Orchard-Hays)
• What’s the problem?

• Consider the issue of updating the RHS

OR 541 Fall 2009
Lesson 5-1, p. 9

• Consider the issue of updating the RHS
• At any iteration, the values of the basics are given by B-1b 
• But, suppose B is a 10,000 x 10,000 matrix
• How much work is it to compute the inverse?

• On the other hand, what does it take to update it in the 
tableau? We’re only substituting one column; why is 
this so tough?



An Example of RHS Updating

• Suppose the pivot column and current RHS are as 
below, and the pivot is in the 3rd row:

• The row operations are to add 1/2 of row 3 to row 2, 
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• The row operations are to add 1/2 of row 3 to row 2, 
subtract row 3 from row 1, and divide row 3 by 2 :
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Extension to Matrix Multiplication

• The following matrix operation does the same thing:
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• In general, the row ops for a pivot can be expressed as:
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Elementary Matrices; Product Form of the 
Inverse

• These matrices are called elementary matrices
• We can store them economically for each pivot 
• Just need the nonzero multipliers and the pivot row

• If Ej is the elementary matrix for the jth pivot, then:
1
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• So, we don’t recompute B-1 at every step; we use the 
sequence of pivots to generate any column we need!

• The exploitation of this “product form” of the inverse 
(due to Alex Orden in 1953) was probably the most 
crucial part of making simplex computable

0



Revised Simplex with Product Form Inverse

1. Put problem in standard form

2. Find initial BFS and initial B-1 (will be I in many cases)
3. Compute reduced costs for iteration j:

4. If all reduced costs nonnegative, STOP; LP is optimal. Otherwise, 

wNcBEEEcw nbvjjbv +−== −
−−   costs reduced   ;1

0121 L
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4. If all reduced costs nonnegative, STOP; LP is optimal. Otherwise, 
choose xk, a variable with a negative reduced cost, to enter

5. Compute the column:

6. If yk <= 0, STOP: LP is unbounded. Otherwise, find r, the pivot row, 
via the ratio test:

7. Store Ej and update RHS: Go to 3.
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Example
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Example (cont’d)
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Iteration 2:
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Example (cont’d)
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What Happens in Modern LP Codes

• You may notice that, after many iterations, we start 
maintaining lots of elementary matrices

• To solve this, simplex codes do periodic “reinversions” 
to build a new B-1

• Then, they start all over again
• Other details:
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• Other details:
• Most LP codes use a different factorization (LU) to store the 

pivots (won’t cover this here, but it will be in your next LP course)
• Basis reinversion also helps control roundoff errors
• LP codes also pay a lot of attention to the order of rows and 

columns in B-1; goal is to keep the stored matrices and vectors 
sparse



Final Tricks with Elementary Matrices

• Premultiplication:
• Suppose E is an elementary matrix with a “nonidentity” column g in 

the rth position, and c is a row vector. Then:

• The result is equal to c, except the rth element is cg (dot product)
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• Postmultiplication:
• Same as before, but now a is a column vector. Then:
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Duality

• Our standard problem (call it P) is:

• Suppose we use the same A, b, c data and 
“transpose” the problem:
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“transpose” the problem:

• The related problem D is called the “dual” of the 
“primal” problem P
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Functional Relationship between Primal, Dual

• These problems share parameters, but use them 
differently

• One interpretation:
• Primal: determine mix of products (x’s) to maximize profit (c) 

for given availability of resources (b)
• Dual: determine prices (w’s) to minimize the total paid for 
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• Dual: determine prices (w’s) to minimize the total paid for 
resources (b) with a particular profit potential (c)

• Economic theory would assert that these two problems 
should have some sort of equilibrium solution

• So what are the relationships?



Weak Duality

• Suppose xf is a feasible solution for P, and wf is a 
feasible solution for D. Then:
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• So, any feasible solution for P has an objective 
function value <= any feasible solution for D

• This property is called weak duality (and we just 
proved it)

bwcx ff ≤⇒



Strong Duality

• If there’s a weak case, is there a strong one? Suppose 
x* is optimal for P. Then:

• Assume that D can reach this value. If so:
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• Is w* feasible for D? Check:
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Implications

• Weak duality says for any set of feasible solutions for 
P and D, the objective function of P <= the objective 
function of D

• Strong duality says that at optimality, the objective 
function values are equal (provided both P and D are 
feasible)
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feasible)
• Furthermore, there is a strong relationship between 
resource use and prices (more on that in a moment)

• Consequently, it is worth studying the solution of the 
dual to learn more about the solution of the primal



Writing the Dual of a General LP

• Here’s the rule for writing the dual of an LP with 
variables and constraints in various forms:
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• Note the correspondences between types of 
constraints and bounds of variables

• Good habit: write names of dual variables next to 
constraints
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Example Dual Formulations

• Have to think hard to write duals of “real” problems
• Remember - a constraint in the primal is a variable in 
the dual, and vice versa

• Example: product blending
• Indices

• p = products {1,2}
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• p = products {1,2}
• f =  factories {1,2,3}

• Data
• PROFITp = $ profit per unit of p sold
• CAPpf = capacity required per unit of p built at f
• TOTCAPf = total capacity available at f

• Variables
• nump = units of p to produce
• totprofit = total profit



Dual of Product Mix Problem
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A Harder Example: Product Blending, p. 93, 
#14

• Indicies
• g = gasolines {r,p}
• i = inputs {ref, fcg, iso, pos, mtb, but}

• Data
• AVAIL i = daily availability of input i in liters
• RONi = octane of input i
• RVP = RVP rating of input i
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• RVPi = RVP rating of input i
• A70 i = ASTM volatility of i at 70C
• A130 i = ASTM volatility of i at 130C
• RONRQg = required octane of gas g
• RVPRQg = required RVP rating of gas g
• A70RQg = ASTM volatility of g at 70C required
• A130RQg = ASTM volatility of g at 130C required
• DEMANDg = daily minimum demand for gas g
• PRICEg = selling price/liter of gas g
• FCGLIM = limit on proportion of FCG in each gas g



Blending Dual (cont’d)

• Variables
• inpgi = liters of input i used to make gas g (all >=0)
• totgross = total gross from gas sales
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Disentangling the Dual

• 1st step: rewrite the constraints in P in standard form 
for a min problem
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Disentangling the Dual (cont’d)

• Second step: assign dual variable names for each 
constraint, and determine their bounds
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Disentangling the Dual (cont’d)

• Third step: write the objective function of D using the 
dual variables and RHS of P

• Note that the RHS’s of all the other constraints are 0; 
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• Note that the RHS’s of all the other constraints are 0; 
the associated dual variables DO NOT appear in the 
objective



Disentangling the Dual (cont’d)

• Fourth step: write a constraint for every variable in the 
objective function of P
• D will have g X i constraints, each with a RHS of PRICEg

• What do these constraints look like?

• Hint: transpose the coefficients from each column in P
to a constraint row in D
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to a constraint row in D
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Handling the Exception

• We need different dual constraints when i = “fcg” 
because the coefficients in the FGC constraint are 
different:
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Complementary Slackness

• Go back to the “standard” primal and dual problems:

• Strong duality says the following:
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• But, feasibility in P and D stipulates the following:
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Complementary Slackness Theorem

• The only way to get the strong duality result (equality) is:
• For each of the n constraints in P, either

• For each of m constraints in D, either

( ) 0    OR     ** == iii wbAx

( ) 0    OR    ** == xcAw
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• This result is called “complementary slackness,” and has 
a simple economic interpretation
• If you don’t use all of the ith resource, how much would you pay 

for more? 0!
• If you do use all of the ith resource, how much would you pay for 

one more unit? wi!

( ) 0    OR    ** == jjj xcAw



Shadow Prices

• This is why we care about the dual solution
• The optimal dual values give sensitivity information about the 

primal constraints
• Similarly, the optimal primal variables give sensitivity 

information about the dual constraints

• Some asides on shadow prices
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• Note from the text that the reduced cost for a slack (surplus) 
variable does give the value (negative value) of the dual 
variable; why does this make sense?

• Winston has all sorts of discussion about tricky ways to find 
shadow prices; just compute them via w = cbvB-1!

zbBcy bv == −1Dual 
Variable 
Values

Primal 
Variable 
Values



Warnings on Shadow Prices

• These are estimates of objective function changes at a 
point

• These estimates only apply to changes in a single 
right-hand-side; they are not additive across multiple 
changes

• They are good indications of the relative importance of 
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• They are good indications of the relative importance of 
resources, and are good indicators for further analysis

• Degeneracy makes shadow prices meaningless
• If a slack variable is 0 and basic, the shadow price of the 

associated constraint can be 0 or large
• The situation is ambiguous, and cannot be resolved unless you 

change some parameters and run the LP again



Objective Function and RHS Ranging

• Most LP solvers give “range” information on objective 
function and RHS coefficients

• Objective function range
• For each ci, gives range cl <= ci <= ch for which the basic 

variables do not change (either the basics or their values)
• Get new objective function value by multiplying the change in the 
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• Get new objective function value by multiplying the change in the 
cost coefficient by the value of the variable (which is 0 if 
nonbasic)

• RHS range
• For each bj, gives range bl <= bj <= bh for which the optimal 

solution will not change
• Have to compute x = B-1b to get new x’s; however, can get new 

objective function quickly using shadow prices



Example: Stochastic Cop Problem

• Here’s some of the MPL/CPLEX output:
VARIABLE cop[t] :

t             Activity     Reduced Cost
-----------------------------------------
a12            4.0000           0.0000 
a6             0.0000           0.0000 
p12            7.0000           0.0000 
p6             8.0000           0.0000 
-----------------------------------------
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• Changing p6 to 51 increases objective by 8*(51-48) = 24
• How about  changing these coefficients: a12 = 47, a6 = 
49, p12 = 47, p6 = 51? (should give z = 1185 - 4 - 7 + 24 
= 1198)

VARIABLE cop[t] :

t          Coefficient      Lower Range      Upper Range
----------------------------------------------------------
a12           48.0000          45.0000          48.0000 
a6            48.0000          48.0000           1E+020 
p12           48.0000          45.0000          48.0000 
p6            48.0000          48.0000          51.0000 
----------------------------------------------------------



Moral: Only Valid for One Change at a Time

• Note changes in variable values; objective change 
NOT as predicted (z = 1190)

VARIABLE cop[t] :

t             Activity     Reduced Cost
-----------------------------------------
a12            8.0000(4) 0.0000 
a6             0.0000(0) 6.0000 
p12           11.0000(7) 0.0000 
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VARIABLE cop[t] :

t          Coefficient      Lower Range      Upper Range
----------------------------------------------------------
a12           47.0000          31.0000          49.0000 
a6            49.0000          43.0000           1E+020 
p12           47.0000          45.0000          49.0000 
p6            51.0000          49.0000          53.0000 
----------------------------------------------------------

p12           11.0000(7) 0.0000 
p6             4.0000(8) 0.0000 

-----------------------------------------



Problems with Sensitivity Analysis

• Most of this theory was developed when it was time-
consuming and expensive to rerun an LP

• This is no longer the case
• LP sensitivity analysis only applies to changes in a 
single parameter
• Again, ranges given in solution outputs are NOT additive
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• Again, ranges given in solution outputs are NOT additive
• There is no way to assess interactions among parameter 

changes

• The sensitivities, particularly in large problems, are 
only valid over a uselessly small region

• If you want sensitivity analysis, run the #@%^&!! LP 
again!



Other Uses for Dual Values

• These are the foundation for so-called “decomposition 
methods”
• Column generation
• Dantzig-Wolfe and Benders’ decomposition

• Duality theory is also crucial in nonlinear optimization
• Linear optimization is a subset of a larger body of nonlinear 
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• Linear optimization is a subset of a larger body of nonlinear 
theory

• We will not get into this in this course …



Final Notes on Primal-Dual Relationships

• Suppose you have an optimal solution
• Change the cost parameters (c)

• Can this affect primal feasibility? NO
• Can this affect dual feasibility? YES

• Change the RHS (b)
• Can this affect primal feasibility? YES
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• Can this affect primal feasibility? YES
• Can this affect dual feasibility? NO

• “Screw-up” relationships
• Primal infeasible = dual unbounded or infeasible
• Primal unbounded = dual infeasible
• Moral: if one is screwed up, so is the other


