
Introduction to Revised Simplex

• Modern simplex does NOT use tableaus
• Would require n x (m+1) storage - most of which would be 0’s
• The tableau updates all the columns with each pivot; do we

need them all?
• Researchers in the early 1950’s realized that tableaus were

inefficient

OR 541 Fall 2009
Lesson 5-1, p. 1

• To introduce you to how simplex really works, it is
necessary to show simplex in a matrix format

• In this section (and in duality), I’ll use Winston’s
notation, but not his general approach

Simplex In Matrix Form

• Using notation in Winston (6.2):
• bv subscript - basic variables
• nbv subscript - nonbasic variables
• c = vector of objective function coefficients
• A = matrix of constraint coefficients
• B = submatrix of A; contains columns associated with basics

OR 541 Fall 2009
Lesson 5-1, p. 2

• B = submatrix of A; contains columns associated with basics
• N = submatrix of A; contains columns associated with nonbasics
• b = vector containing the RHS of the constraints

• So, the basic problem in standard form is:

0

subject to

max

≥=

=

b, xAx

cxz

The Problem at Any Particular Stage

• Assume we have a BFS, xbv. Then the problem can be
written as:

• First, how do we determine the value of x and ?

0

0

subject to ,max

≥
=+=
=−−

 x

bNxBxAx

xcxcz

z

nbvbv

nbvnbvbvbv

OR 541 Fall 2009
Lesson 5-1, p. 3

• First, how do we determine the value of xbv and z?

• Note all we needed to know was which variables were
in the BFS, and the original problem data

bBczbBx

bBx
bNxBx

bvbv

bv

nbvbv

11 ;

why? 0
−− ==

=+
=+

Computing Reduced Costs

• Compute the reduced costs by writing the objective
function in terms of the nonbasics:

NxBbBx

bNxBx

nbvbv

nbvbv
11

:substitute

−− −=
=+

OR 541 Fall 2009
Lesson 5-1, p. 4

()
()

NBcc
dx

dz
xNBccbBcz

xcNxBbBcz

xcxcz

bvnbv
nbv

nbvbvnbvbv

nbvnbvnbvbv

nbvnbvbvbv

1

11

11

0
0

0
:substitute

−

−−

−−

+−=

=−−−
=−−−

=−−

-(original profit/unit - cost/unit to produce) = -re duced cost

Computing the Column; Ratio Test

• Suppose xk has the best reduced cost. How do we
generate its current column (yk) for the ratio test?

()[]k

nbvbv

nbvbv

aBy

aaN

bBNxBx

bNxBx

1

1

11

so ,just is now,
−

−−

=

=+

=+

LK

OR 541 Fall 2009
Lesson 5-1, p. 5

• The current right hand side is B-1b, so we have
everything we need; the pivot row, r, is

• So, the basic variable in row r leaves, and xk enters.
Again, all we needed was B-1

kk aBy 1−=

[]
0:min

1

≥
−

rk
rk

r

r
y

y

bB

Summary: the Revised Simplex Algorithm

1. Put problem in standard form
2. Find initial BFS
3. Compute reduced costs:

4. If all reduced costs nonnegative, STOP; LP is optimal.
Otherwise, choose xk, a variable with a negative reduced

NBcc bvnbv
1−+−

OR 541 Fall 2009
Lesson 5-1, p. 6

Otherwise, choose xk, a variable with a negative reduced
cost, to enter

5. Compute the column:

6. If yk <= 0, STOP: LP is unbounded. Otherwise, find r, the
pivot row, via the ratio test:

7. Update B, B-1, and B-1b. Go to 3.

kk aBy 1−=

[]
0:min

1

≥
−

rk
rk

r

r
y

y

bB

Relationship to Tableau

• You say, “this is new, foreign, and disturbing. It doesn’t
look like tableau simplex at all.”

• But, take a look at an initial tableau for the problem:
max cx, st Ax <= b, x >= 0, with slack vector s:

z c 0 0

OR 541 Fall 2009
Lesson 5-1, p. 7

• I claim: here’s what’s in there after a few pivots:

z
 1−B bB 1−AB 1−
bvx

bBcbv
1−

z c 0 0
s A I b

IBcbv
1−

cAcB −−1

Further Insights

• If we shuffled the columns of the tableau into basics
and nonbasics, it would look like this:

z
 I bB 1−NB 1−
bvx

bBcbv
1−0nbvbv cNBc −−1

OR 541 Fall 2009
Lesson 5-1, p. 8

• And this, in expanded form, is just revised simplex

 bBNBbv

Efficiency & Product Form of the Inverse

• So revised simplex is simple, right?
• Had terrible computational performance in early codes
• “One could have started an iteration, gone to lunch, and

returned before [the iteration] finished” (William Orchard-Hays)
• What’s the problem?

• Consider the issue of updating the RHS

OR 541 Fall 2009
Lesson 5-1, p. 9

• Consider the issue of updating the RHS
• At any iteration, the values of the basics are given by B-1b
• But, suppose B is a 10,000 x 10,000 matrix
• How much work is it to compute the inverse?

• On the other hand, what does it take to update it in the
tableau? We’re only substituting one column; why is
this so tough?

An Example of RHS Updating

• Suppose the pivot column and current RHS are as
below, and the pivot is in the 3rd row:

• The row operations are to add 1/2 of row 3 to row 2,

































−
4

2

9

2

1

2

L

OR 541 Fall 2009
Lesson 5-1, p. 10

• The row operations are to add 1/2 of row 3 to row 2,
subtract row 3 from row 1, and divide row 3 by 2 :

































⇒

































⇒

































⇒

































−
2

4

5

1

0

0

4

4

5

2

0

0

4

4

9

2

0

2

4

2

9

2

1

2

LLLL

Extension to Matrix Multiplication

• The following matrix operation does the same thing:

















=
















∗



















−−

−

2

4

5

4

2

9

2
100

2
110
2

201

OR 541 Fall 2009
Lesson 5-1, p. 11

• In general, the row ops for a pivot can be expressed as:





























−

−

⇒





























−

−

⇒























10

0
1

0

01

1

11

1

LL

MLMLM

LL

MLMLM

LL

M

M

M

M

rk

m

rk

rk

rk

m

rk

rk

m

rk

y

y

y

y

y

y

y

y

y

y

y

y

y
multipliers for a
pivot in row r go in
column r of this
matrix

Elementary Matrices; Product Form of the
Inverse

• These matrices are called elementary matrices
• We can store them economically for each pivot
• Just need the nonzero multipliers and the pivot row

• If Ej is the elementary matrix for the jth pivot, then:
1

21
1

0

−
−−

− = BEEB jjj L

OR 541 Fall 2009
Lesson 5-1, p. 12

• So, we don’t recompute B-1 at every step; we use the
sequence of pivots to generate any column we need!

• The exploitation of this “product form” of the inverse
(due to Alex Orden in 1953) was probably the most
crucial part of making simplex computable

0

Revised Simplex with Product Form Inverse

1. Put problem in standard form

2. Find initial BFS and initial B-1 (will be I in many cases)
3. Compute reduced costs for iteration j:

4. If all reduced costs nonnegative, STOP; LP is optimal. Otherwise,

wNcBEEEcw nbvjjbv +−== −
−− costs reduced ;1

0121 L

OR 541 Fall 2009
Lesson 5-1, p. 13

4. If all reduced costs nonnegative, STOP; LP is optimal. Otherwise,
choose xk, a variable with a negative reduced cost, to enter

5. Compute the column:

6. If yk <= 0, STOP: LP is unbounded. Otherwise, find r, the pivot row,
via the ratio test:

7. Store Ej and update RHS: Go to 3.

kjjk aBEEEy 1
0121
−

−−= L

0:min ≥rk
rk

r

r
y

y

b

bEb j=:

Example

0,,

52

622

4

subject to

2max

321

21

321

321

321

≥
≤+

≤−+−
≤++

−+

xxx

xx

xxx

xxx

xxx

0,,

52

622

4

subject to

2max

321

321

2321

1321

321

≥
=++

=+−+−
=+++

−+

xxx

sxx

sxxx

sxxx

xxx

OR 541 Fall 2009
Lesson 5-1, p. 14

0,, 321 ≥xxx 0,, 321 ≥xxx

{ } { }

[]0,0,0,
6
5
4

,0

,,,,,
1

321321

=











=

===

==
−

bv

nbvbv

cb

IBBz

xxxxsssx

[] [] []












==

−−=+−−
=+−

== −

1
2
1

 enters;

1,2,10,0,01,2,1

0

222

1

ayx

wNc

Bcw

nbv

bv

Iteration 1:

Example (cont’d)












==



















−

−

=⇒=



















2
3
1

: ;

12
10

02
10

02
11

 exits; 3

1
5

2
6

1
4

min 112 bEbEs

Iteration 2:

OR 541 Fall 2009
Lesson 5-1, p. 15

Iteration 2:

{ } { }
[] []

[]

[] []

[] enters 1,3,2

002
211

101
0,1,01,0,1

0,1,0

6

1,0,1,0,2,0

,,,,,

1

1

321321

x

wNc

Ecw

bcz

cc

xsxxsxsx

nbv

bv

bv

nbvbv

nbvbv

⇒−−=











−−∗+−−=+−

==
==

−==
==

Example (cont’d)



















==



















−

=












=



















−=











−==

1
3

10
3

2

:;

105

013
1

003
2

E

exits ;3
2 is ratio min ;

2
3
1

;

2
5

2
1
2

3

2
1

1

22

11111

bEb

sbEaEy

OR 541 Fall 2009
Lesson 5-1, p. 16


− 3

1103
5

Iteration 3: { } { } [] []

[]
[] []

[] optimal is solution cost; reduced favorable no 3
5,3

1,3
4

000
210

101
0,3

1,3
41,0,0

0,3
1,3

4
3

22

1,0,0,0,2,1,,,,,,

12

321321

⇒=












−∗+−−=+−

==

==

−====

wNc

EEcw

bcz

ccxssxsxxx

nbv

bv

bv

nbvbvnbvbv

What Happens in Modern LP Codes

• You may notice that, after many iterations, we start
maintaining lots of elementary matrices

• To solve this, simplex codes do periodic “reinversions”
to build a new B-1

• Then, they start all over again
• Other details:

OR 541 Fall 2009
Lesson 5-1, p. 17

• Other details:
• Most LP codes use a different factorization (LU) to store the

pivots (won’t cover this here, but it will be in your next LP course)
• Basis reinversion also helps control roundoff errors
• LP codes also pay a lot of attention to the order of rows and

columns in B-1; goal is to keep the stored matrices and vectors
sparse

Final Tricks with Elementary Matrices

• Premultiplication:
• Suppose E is an elementary matrix with a “nonidentity” column g in

the rth position, and c is a row vector. Then:

• The result is equal to c, except the rth element is cg (dot product)

[]mrr ccccc ,,,,,,, 1121 LL cgcE −=

OR 541 Fall 2009
Lesson 5-1, p. 18

• Postmultiplication:
• Same as before, but now a is a column vector. Then:

gEa r

m

r

r

a

a

a

a

a

+























=
+

−

M

M

1

1

1

0

Duality

• Our standard problem (call it P) is:

• Suppose we use the same A, b, c data and
“transpose” the problem:

0

subject to
max:

≥
≤

=

x
bAx

cxzP

OR 541 Fall 2009
Lesson 5-2, p. 1

“transpose” the problem:

• The related problem D is called the “dual” of the
“primal” problem P

0
 w

subject to
min:

≥
≥

=

w
cA

wbyD

Functional Relationship between Primal, Dual

• These problems share parameters, but use them
differently

• One interpretation:
• Primal: determine mix of products (x’s) to maximize profit (c)

for given availability of resources (b)
• Dual: determine prices (w’s) to minimize the total paid for

OR 541 Fall 2009
Lesson 5-2, p. 2

• Dual: determine prices (w’s) to minimize the total paid for
resources (b) with a particular profit potential (c)

• Economic theory would assert that these two problems
should have some sort of equilibrium solution

• So what are the relationships?

Weak Duality

• Suppose xf is a feasible solution for P, and wf is a
feasible solution for D. Then:

bwcx

bwAxwcx
cxAxw

bwAxw
cAw
bAx

ffff
fff

fff

f

f

≤⇒

≤≤⇒







≥
≤

⇒







≥
≤

OR 541 Fall 2009
Lesson 5-2, p. 3

• So, any feasible solution for P has an objective
function value <= any feasible solution for D

• This property is called weak duality (and we just
proved it)

bwcx ff ≤⇒

Strong Duality

• If there’s a weak case, is there a strong one? Suppose
x* is optimal for P. Then:

• Assume that D can reach this value. If so:

01

1**

≥−
==

−

−

nbvbv

bvbv

cNBc
bBcxcz

OR 541 Fall 2009
Lesson 5-2, p. 4

• Is w* feasible for D? Check:

1*

*1**

−

−

=⇒

===
Bcw

ybBcxcz

bv

bvbv

[] []

[] []
[] [] ?

?
so ,

?
?

1

1

1*

*

*

nbvbvbvbv

nbvbvbv

bv

nbvbv

ccNBcc
ccNBBc

Bcw
ccNBw

cAw

≥
≥

=
≥

≥

−

−

−

Answer is yes;
last equation is
primal optimality
condition

Implications

• Weak duality says for any set of feasible solutions for
P and D, the objective function of P <= the objective
function of D

• Strong duality says that at optimality, the objective
function values are equal (provided both P and D are
feasible)

OR 541 Fall 2009
Lesson 5-2, p. 5

feasible)
• Furthermore, there is a strong relationship between
resource use and prices (more on that in a moment)

• Consequently, it is worth studying the solution of the
dual to learn more about the solution of the primal

Writing the Dual of a General LP

• Here’s the rule for writing the dual of an LP with
variables and constraints in various forms:

)(
)(

subject to
max:

111

≥
≤

=

wbxA
wbxA

cxzP

0
)(

subject to
min:

1

332211

332211

w
xcAwAwAw

bwbwbwyD

≥
≥++

++=

OR 541 Fall 2009
Lesson 5-2, p. 6

• Note the correspondences between types of
constraints and bounds of variables

• Good habit: write names of dual variables next to
constraints

0
)(
)(

333

222

≥
=
≥

x
wbxA
wbxA

edunrestrict
0
0

3

2

1

w
w
w

≤
≥

Example Dual Formulations

• Have to think hard to write duals of “real” problems
• Remember - a constraint in the primal is a variable in
the dual, and vice versa

• Example: product blending
• Indices

• p = products {1,2}

OR 541 Fall 2009
Lesson 5-2, p. 7

• p = products {1,2}
• f = factories {1,2,3}

• Data
• PROFITp = $ profit per unit of p sold
• CAPpf = capacity required per unit of p built at f
• TOTCAPf = total capacity available at f

• Variables
• nump = units of p to produce
• totprofit = total profit

Dual of Product Mix Problem

∑ ∗=
p

pp numPROFITtotprofitmax

()
pnum

pricefTOTnumCAP

p

ff
p

ppf

 allfor 0

 allfor *

≥

≤∑

P:

subject to

OR 541 Fall 2009
Lesson 5-2, p. 8

∑ ∗=
f

ff priceTOTtotcostmin

()
fprice

numpPROFITpriceCAP

f

pp
f

fpf

 allfor 0

 allfor *

≥

≥∑

D:

subject to

A Harder Example: Product Blending, p. 93,
#14

• Indicies
• g = gasolines {r,p}
• i = inputs {ref, fcg, iso, pos, mtb, but}

• Data
• AVAIL i = daily availability of input i in liters
• RONi = octane of input i
• RVP = RVP rating of input i

OR 541 Fall 2009
Lesson 5-2, p. 9

• RVPi = RVP rating of input i
• A70 i = ASTM volatility of i at 70C
• A130 i = ASTM volatility of i at 130C
• RONRQg = required octane of gas g
• RVPRQg = required RVP rating of gas g
• A70RQg = ASTM volatility of g at 70C required
• A130RQg = ASTM volatility of g at 130C required
• DEMANDg = daily minimum demand for gas g
• PRICEg = selling price/liter of gas g
• FCGLIM = limit on proportion of FCG in each gas g

Blending Dual (cont’d)

• Variables
• inpgi = liters of input i used to make gas g (all >=0)
• totgross = total gross from gas sales

∑=
ig

gig inpPRICEtotgross
,

*max

 allfor iAVAILinp i
g

gi ≤

∑

∑

P:

subject to
NOW WHAT?

OR 541 Fall 2009
Lesson 5-2, p. 10

 allfor gDEMANDinp g
i

gi ≥∑
ginpFGCLIMinp

i
gifcgg allfor *"", ∑≤

 allfor ** ginpRONRQinpRON
i

gig
i

gii ∑∑ ≥

ginpA130RQinpA130

ginpA70RQinpA70

ginpRVPRQinpRVP

i
gig

i
gii

i
gig

i
gii

i
gig

i
gii

 allfor **

 allfor **

 allfor **

∑∑

∑∑

∑∑

≥

≥

=

NOW WHAT?

Disentangling the Dual

• 1st step: rewrite the constraints in P in standard form
for a min problem

 allfor

 allfor

gDEMANDinp

iAVAILinp

g
i

gi

i
g

gi

≥

−≥−

∑

∑

g -inpinpFGCLIM allfor 0* ≥∑

OR 541 Fall 2009
Lesson 5-2, p. 11

()
()
()
()

iginp

ginpA130RQA130

ginpA70RQA70

ginpRVPRQRVP

ginpRONRQRON

gi

i
gigi

i
gigi

i
gigi

i
gigi

, allfor 0

 allfor 0*

 allfor 0*

 allfor 0*

 allfor 0*

≥

≥−

≥−

=−

≥−

∑

∑

∑

∑

g -inpinpFGCLIM fcgg
i

gi allfor 0* "", ≥∑

Disentangling the Dual (cont’d)

• Second step: assign dual variable names for each
constraint, and determine their bounds

()

()02 allfor

0 allfor

≥≥

≥−≥−

∑

∑

gg
i

gi

ii
g

gi

wgDEMANDinp

w1iAVAILinp

()03 allfor 0* ≥≥∑ wg -inpinpFGCLIM

OR 541 Fall 2009
Lesson 5-2, p. 12

() ()
() ()
() ()
() ()

iginp

wginpA130RQA130

wginpA70RQA70

wginpRVPRQRVP

w4ginpRONRQRON

gi

g
i

gigi

g
i

gigi

g
i

gigi

g
i

gigi

, allfor 0

07 allfor 0*

06 allfor 0*

 edunrestrict 5 allfor 0*

0 allfor 0*

≥

≥≥−

≥≥−

=−

≥≥−

∑

∑

∑

∑

()03 allfor 0* "", ≥≥∑ gfcgg
i

gi wg -inpinpFGCLIM

Disentangling the Dual (cont’d)

• Third step: write the objective function of D using the
dual variables and RHS of P

• Note that the RHS’s of all the other constraints are 0;

() ()∑∑ +−=
g

gg
i

ii wDEMANDw1AVAILy 2* *minD:

OR 541 Fall 2009
Lesson 5-2, p. 13

• Note that the RHS’s of all the other constraints are 0;
the associated dual variables DO NOT appear in the
objective

Disentangling the Dual (cont’d)

• Fourth step: write a constraint for every variable in the
objective function of P
• D will have g X i constraints, each with a RHS of PRICEg

• What do these constraints look like?

• Hint: transpose the coefficients from each column in P
to a constraint row in D

OR 541 Fall 2009
Lesson 5-2, p. 14

to a constraint row in D

()
()
()

() fcg"" i g, allfor 7*
6*
5*
4*
3*
2*1
1*1

<>≤−
+−
+−
+−
+
+

+−

gggi

ggi

ggi

ggi

g

g

i

PRICEwA130RQA130
wA70RQA70
wRVPRQRVP
wRONRQRON
wFGCLIM
w
w

Handling the Exception

• We need different dual constraints when i = “fcg”
because the coefficients in the FGC constraint are
different:

() 3*1
2*1
1*1

+−
+

+−
g

i

wFGCLIM
w
w

OR 541 Fall 2009
Lesson 5-2, p. 15

()
()

()
()

() fcg"" i g, allfor 7*
6*
5*
4*
3*1

=≤−
+−
+−
+−
+−

gggi

ggi

ggi

ggi

g

PRICEwA130RQA130
wA70RQA70
wRVPRQRVP
wRONRQRON
wFGCLIM

Complementary Slackness

• Go back to the “standard” primal and dual problems:

• Strong duality says the following:

0

subject to
max:

≥
≤

=

x
bAx

cxzP

0
 w

subject to
min:

≥
≥

=

w
cA

wbyD

OR 541 Fall 2009
Lesson 5-3, p. 1

• But, feasibility in P and D stipulates the following:

**** ybwcxz ===

*

*

*

*

0

0

zcxAxw
x

cAw

ybwAxw
w

bAx

=≥⇒







≥
≥

=≤⇒







≥
≤

Complementary Slackness Theorem

• The only way to get the strong duality result (equality) is:
• For each of the n constraints in P, either

• For each of m constraints in D, either

() 0 OR ** == iii wbAx

() 0 OR ** == xcAw

OR 541 Fall 2009
Lesson 5-3, p. 2

• This result is called “complementary slackness,” and has
a simple economic interpretation
• If you don’t use all of the ith resource, how much would you pay

for more? 0!
• If you do use all of the ith resource, how much would you pay for

one more unit? wi!

() 0 OR ** == jjj xcAw

Shadow Prices

• This is why we care about the dual solution
• The optimal dual values give sensitivity information about the

primal constraints
• Similarly, the optimal primal variables give sensitivity

information about the dual constraints

• Some asides on shadow prices

OR 541 Fall 2009
Lesson 5-3, p. 3

• Note from the text that the reduced cost for a slack (surplus)
variable does give the value (negative value) of the dual
variable; why does this make sense?

• Winston has all sorts of discussion about tricky ways to find
shadow prices; just compute them via w = cbvB-1!

zbBcy bv == −1Dual
Variable
Values

Primal
Variable
Values

Warnings on Shadow Prices

• These are estimates of objective function changes at a
point

• These estimates only apply to changes in a single
right-hand-side; they are not additive across multiple
changes

• They are good indications of the relative importance of

OR 541 Fall 2009
Lesson 5-3, p. 4

• They are good indications of the relative importance of
resources, and are good indicators for further analysis

• Degeneracy makes shadow prices meaningless
• If a slack variable is 0 and basic, the shadow price of the

associated constraint can be 0 or large
• The situation is ambiguous, and cannot be resolved unless you

change some parameters and run the LP again

Objective Function and RHS Ranging

• Most LP solvers give “range” information on objective
function and RHS coefficients

• Objective function range
• For each ci, gives range cl <= ci <= ch for which the basic

variables do not change (either the basics or their values)
• Get new objective function value by multiplying the change in the

OR 541 Fall 2009
Lesson 5-3, p. 5

• Get new objective function value by multiplying the change in the
cost coefficient by the value of the variable (which is 0 if
nonbasic)

• RHS range
• For each bj, gives range bl <= bj <= bh for which the optimal

solution will not change
• Have to compute x = B-1b to get new x’s; however, can get new

objective function quickly using shadow prices

Example: Stochastic Cop Problem

• Here’s some of the MPL/CPLEX output:
VARIABLE cop[t] :

t Activity Reduced Cost

a12 4.0000 0.0000
a6 0.0000 0.0000
p12 7.0000 0.0000
p6 8.0000 0.0000

OR 541 Fall 2009
Lesson 5-3, p. 6

• Changing p6 to 51 increases objective by 8*(51-48) = 24
• How about changing these coefficients: a12 = 47, a6 =
49, p12 = 47, p6 = 51? (should give z = 1185 - 4 - 7 + 24
= 1198)

VARIABLE cop[t] :

t Coefficient Lower Range Upper Range
--
a12 48.0000 45.0000 48.0000
a6 48.0000 48.0000 1E+020
p12 48.0000 45.0000 48.0000
p6 48.0000 48.0000 51.0000
--

Moral: Only Valid for One Change at a Time

• Note changes in variable values; objective change
NOT as predicted (z = 1190)

VARIABLE cop[t] :

t Activity Reduced Cost

a12 8.0000(4) 0.0000
a6 0.0000(0) 6.0000
p12 11.0000(7) 0.0000

OR 541 Fall 2009
Lesson 5-3, p. 7

VARIABLE cop[t] :

t Coefficient Lower Range Upper Range
--
a12 47.0000 31.0000 49.0000
a6 49.0000 43.0000 1E+020
p12 47.0000 45.0000 49.0000
p6 51.0000 49.0000 53.0000
--

p12 11.0000(7) 0.0000
p6 4.0000(8) 0.0000

Problems with Sensitivity Analysis

• Most of this theory was developed when it was time-
consuming and expensive to rerun an LP

• This is no longer the case
• LP sensitivity analysis only applies to changes in a
single parameter
• Again, ranges given in solution outputs are NOT additive

OR 541 Fall 2009
Lesson 5-3, p. 8

• Again, ranges given in solution outputs are NOT additive
• There is no way to assess interactions among parameter

changes

• The sensitivities, particularly in large problems, are
only valid over a uselessly small region

• If you want sensitivity analysis, run the #@%^&!! LP
again!

Other Uses for Dual Values

• These are the foundation for so-called “decomposition
methods”
• Column generation
• Dantzig-Wolfe and Benders’ decomposition

• Duality theory is also crucial in nonlinear optimization
• Linear optimization is a subset of a larger body of nonlinear

OR 541 Fall 2009
Lesson 5-3, p. 9

• Linear optimization is a subset of a larger body of nonlinear
theory

• We will not get into this in this course …

Final Notes on Primal-Dual Relationships

• Suppose you have an optimal solution
• Change the cost parameters (c)

• Can this affect primal feasibility? NO
• Can this affect dual feasibility? YES

• Change the RHS (b)
• Can this affect primal feasibility? YES

OR 541 Fall 2009
Lesson 5-3, p. 10

• Can this affect primal feasibility? YES
• Can this affect dual feasibility? NO

• “Screw-up” relationships
• Primal infeasible = dual unbounded or infeasible
• Primal unbounded = dual infeasible
• Moral: if one is screwed up, so is the other

