Simplex Algorithm: Tableau and Pivoting

- For this example, I'll show what's going on algebraically and graphically
- Stick with the Wyndor Glass problem:

max $Z = 3x_1 + 5x_2$ subject to : $x_1 \le 4$ (plant 1 capacity) $2x_2 \le 12$ (plant 2 capacity) $3x_1 + 2x_2 \le 18$ (plant 3 capacity) $x_1, x_2 \ge 0$ (no negative production)

> OR 541 Fall 2009 Lesson 4-1, p. 1

Step 1: Convert Problem to Standard Form

max $Z = 3x_1 + 5x_2$, or $Z - 3x_1 - 5x_2 = 0$ subject to : $x_1 + s_1 = 4$ $2x_2 + s_2 = 12$ $3x_1 + 2x_2 + s_3 = 18$ $x_1, x_2, s_1, s_2, s_3 \ge 0$

> OR 541 Fall 2009 Lesson 4-1, p. 2

Step 2: Arrange Into Simplex Tableau

z $-3x_1$ $-5x_2$ =0 x_1 $+s_1$ =4 $2x_2$ $+s_2$ =12 $3x_1$ $+2x_2$ $+s_3$ =18

Equation Form

Tableau Form

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	-3	-5	0	0	0	0	z
1		1	0	1	0	0	4	s1
2		0	2	0	1	0	12	s2
3		3	2	0	0	1	18	s3

Decoding the Tableau

Deciding How To Move

- We want to go to an *adjacent* extreme point
- We have to determine:
 - Which variable leaves the basis (solution)
 - Which variable enters the basis (solution)
 - The value of the entering variable
 - The resulting value of the objective function
- How to think about this
 - Variables in the basis are *dependent*, think of their values as *data*
 - Nonbasic variables are *independent*
 - Right now, the objective function, in terms of the independent variables only, is $z = 3x_1 + 5x_2$

Choosing the Entering Variable

- We'd like as much improvement as possible
- From calculus:

•
$$z = 3x_1 + 5x_2, \frac{dz}{dx_1} = 3, \frac{dz}{dx_2} = 5$$

- So, which is the better choice?
 - Note also the economic interpretation; for every unit increase of x₂, we get \$5 additional profit
- How far can we go? Which variable will exit?

Simplex "Pivoting"

- Swapping a variable into the basis is called a *pivot*
- This operation has to maintain feasibility, for both the leaving and entering variables
- Method:
 - Take rows out of the tableau containing x₂
 - Write x₂ in terms of the current basic variables
 - Determine the maximum x_2 can increase

$$2x_2 + s_2 = 12, \Rightarrow x_2 = 6 - \frac{s_2}{2}$$

$$2x_2 \qquad + s_3 = 18, \Rightarrow x_2 = 9 - \frac{s_3}{2}$$

- What's the most x₂ can increase?
- What if x₂'s coefficient was negative?

Doing the Pivot Via the Tableau

- So, x_2 comes in, and s_2 leaves; the cell is the pivot
- Doing this operation in the tableau is the so-called "minimum ratio test"

Row	z	x1	x2	s1	s2	s3	RHS	BV	Ratio
0	1	-3	-5	0	0	0	0	Z	
1		1	0	1	0	0	4	s1	
2		0	2	0	1	0	12	s2	6
3		3	2	0	0	1	18	s3	9

- What's the objective function value now?
- How do we update the tableau?

Tableau Updating

- Do elementary row operations in the tableau to make x₂'s column look like s₂'s
 - Divide pivot row by pivot element
 - Add/subtract multiples of pivot row to get 0's above and below the pivot element

Row	Z	x1	x2	s1	s2	s3	RHS	BV
0	1	-3	-5	0	0	0	0	Z
1		1	0	1	0	0	4	s1
2		0	1	0	0.5	0	6	x2
3		3	2	0	0	1	18	s3

Remaining Row Operations

Row 3 = Row 3 - 2*Row 2

Row	Z	x1	x2	s1	s2	s 3	RHS	BV
0	1	-3	-5	0	0	0	0	Z
1		1	0	1	0	0	4	s1
2		0	1	0	0.5	0	6	x2
3		3	0	0	-1	1	6	s3

Row 0 = Row 0 +5*Row 2

Row	Z	x1	x2	s 1	s2	s3	RHS	BV
0	1	-3	0	0	2.5	0	30	Z
1		1	0	1	0	0	4	s1
2		0	1	0	0.5	0	6	x2
3		3	0	0	-1	1	6	s3

What We Did (Linear Algebra)

• The initial BFS was s_1 , s_2 , s_3 , and the system was:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} \Rightarrow \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

• Now, the BFS is s_1 , x_2 , s_3 , and the system is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} \Rightarrow \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

- All the tableau does is provide bookkeeping for a sequence of solutions of the form Ax = b
 - Does the inverse look familiar?

The Next Pivot

 Note that the equation for z changes, because the independent variables have changed

•
$$z = 3x_1 - 2.5s_2 + 30$$

 $\frac{dz}{dx_1} = 3, \frac{dz}{ds_2} = -2.5$

- Which variable should enter?
- Which variable should exit?

Tableau Operations

Min ratio test: s₃ goes out, as expected

Row	z	x1	x2	s1	s2	s3	RHS	BV	Ratio
0	1	-3	0	0	2.5	0	30	Z	
1		1	0	1	0	0	4	s1	4
2		0	1	0	0.5	0	6	x2	
3		3	0	0	-1	1	6	s 3	2

Row	Z	x1	x2	s1	s2	s3	RHS	BV
0	1	-3	0	0	2.5	0	30	z
1		1	0	1	0	0	4	s1
2		0	1	0	0.5	0	6	x2
3		1	0	0	-0.333	0.333	2	x1

Row 3 = Row 3/3

Row	Z	x1	x2	s1	s2	s3	RHS	BV
0	1	-3	0	0	2.5	0	30	z
1		0	0	1	0.333	-0.333	2	s1
2		0	1	0	0.5	0	6	x2
3		1	0	0	-0.333	0.333	2	x1

OR 541 Fall 2009 Lesson 4-1, p. 13

The Finale

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	1.5	1	36	Z
1		0	0	1	0.333	-0.333	2	s1
2		0	1	0	0.5	0	6	x2
3		1	0	0	-0.333	0.333	2	x1

Row 0 = Row 0 + 3*Row 3

$$z = -1.5s_2 - s_3 + 36$$
$$\frac{dz}{ds_2} = -1.5, \frac{dz}{ds_3} = -1$$

NO IMPROVEMENT POSSIBLE; SOLUTION IS OPTIMAL

Some Parting Questions

- The coefficients in row 0 for the variables are commonly called "reduced costs." Why?
- What's the stopping rule for simplex?
- Take a look at the last 3 columns in the final tableau. If we multiply that matrix by the original RHS, what do you think we get?
- The last 3 columns in the final tableau are the inverse of some matrix. What is that matrix?
- If we could add 1 more unit of resource to one of the constraints, which one would we add it to? Can you tell from the tableau?

Simplex II: Other Stopping Conditions

- Remember that an algorithm needs 3 elements:
 - A way to start
 - A way to iterate
 - A way to stop
- We have covered the way simplex iterates, and the normal stopping condition
- There are three other stopping conditions to consider
 - Multiple optimal solutions
 - Unbounded solution
 - Degenerate optimal solution
- Why don't we have an "infeasible problem" case?

A Benign Case: Alternative Optima

• Suppose we change the Wyndor Glass problem as follows:

max
$$Z = 3x_1 + 2x_2$$
, or
 $Z - 3x_1 - 2x_2 = 0$
subject to :
 $x_1 + s_1 = 4$
 $2x_2 + s_2 = 12$
 $3x_1 + 2x_2 + s_3 = 18$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

• What did we do?

The Final Tableau

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	0	1	18	Z
1		0	0	1	0.333	-0.333	2	s1
2		0	1	0	0.5	0	6	x2
3		1	0	0	-0.333	0.333	2	x1

- The reduced cost of s_2 is 0, but it's nonbasic
 - Bringing it in wouldn't hurt the solution
 - But it wouldn't help, either
 - What happens if we do pivot it in?
 - Can we pivot it in? What variable exits?

After the Pivot

- This is a case of alternative optima
 - The points (2,6) and (4,3) give the same value for z
 - Any point on the line segment is optimal
 - \bullet Swapping $\boldsymbol{s_1}$ and $\boldsymbol{s_2}$ moves from one extreme point to another

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	0	1	18	Z
1		0	0	3	1	-1	6	s2
2		0	1	-1.5	0	0.5	3	x2
3		1	0	1	0	0	4	x1

Practical Advice: Alternative Optima

- You should look at your solution for these situations
- Not easy (particularly in large-scale problems) to compute all alternative optimal extreme points
 - Variable approach: convert z to a constraint, then maximize the variable (or sum of variables) not in the solution
 - Constraint approach: force constraints to equality, see what happens
- Normally a signal to do more work refining the problem
 - There are normally other conditions to differentiate solutions
 - In Wyndor Glass, **(4,3)** might be better because it's a "more balanced" production scheme

Unbounded Solutions

• Suppose we run into a tableau like the one below:

Row	Z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	-3	2	0	0	32	z
1		0	0	3	1	0	7	s2
2		0	-4	-1.5	0	1	3	s3
3		1	-5	1	0	0	8	x1

• Where do we pivot? The equations are:

$$-4x_{2} + s_{3} = 3, \Rightarrow x_{2} = \frac{3+s_{3}}{4}$$
$$-5x_{2} + x_{1} = 8, \Rightarrow x_{2} = \frac{8+x_{1}}{5}$$

• Nothing wants to be driven to 0!

What Negative Column Coefficients Mean

- If there is negative coefficient in a nonbasic variable column, the feasible region is unbounded
- If there is NO CHOICE of leaving variable (all pivot elements nonpositive) the problem is unbounded
- What happened? You either:
 - Omitted a variable in a constraint
 - Inadvertently added a variable in the objective
 - Entered a coefficient wrong
- Chasing this down can drive you crazy in a large problem SO BOUND ALL YOUR VARIABLES
 - Aside: putting bounds on variables makes simplex much more efficient

Degenerate Optimal Solutions

- An objective function coefficient of 0 does not always mean there are multiple optima
- Consider a modification of Wyndor Glass:

→ Factory 3 Capacity

OR 541 Fall 2009 Lesson 4-2, p. 8

Finale Tableaus

• There are multiple representations of the same point!

Row	Z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	0	1	36	z
1		0	0	1	0.333	-0.333	0	s1
2		0	1	0	0.5	0	6	x2
3		1	0	0	-0.333	0.333	2	x1

Row	z	x1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	0	1	36	Z
1		0	0	3	1	-1	0	s2
2		0	1	-1.5	0	0.5	6	x2
3		1	0	1	0	0	2	x1

 Such as case is called a degenerate basic solution, and it's very common

Cycling

- If it's common to get multiple representations of the same point, can simplex get stuck?
 - Is it possible for the method to just swap among a number of solutions?
- Answer YES: called cycling
 - Winston says (p. 162) "in practice, however, cycling is an extremely rare occurrence"
 - HE IS WRONG, particularly for network problems and huge LPs
- Some history
 - In the early days of LP, cycling was rare due to small problem sizes and computer round-off error
 - Precision arithmetic and large-scale problems reintroduced it

Cycling and Stalling

- Cycling simplex gets stuck among a set of BFS's, with no solution improvement
- Stalling a long sequence of degenerate pivots, with no solution improvement
- So: a cycle is a stall that doesn't quit (or else you get upset and shut down the solve, which has the same effect)
- Every commercial solver devotes a great deal of code to anti-stalling (and cycling) techniques
- If it's rare (as Winston claims), why is everyone worried about it?

Bland's Rule (1977) for Cycling Prevention

- Here's a very simple technique:
 - 1. Give each of the **n** variables an index number
 - 2. At each iteration, look at all nonbasic variables with a favorable reduced cost
 - 3. Enter the one with the smallest index
 - 4. If there is a tie in the ratio test for the leaving variable, choose the one with the smallest index
- Why does this break a cycle?
 - In a cycle, some variable \mathbf{x}_{i} must enter and leave the basis
 - However, if it leaves, it must be replaced by some variable with an index *higher* than j that was nonbasic when x_i entered
 - Essentially forces simplex to avoid previously-examined variables

Some Methods Used by Commercial Solvers

- Stalling prevention
 - Problem scaling
 - Alternative reduced cost schemes (e.g. DEVEX, steepest edge)
- Stalling cures
 - Most solvers monitor progress of objective, and turn on procedures if they detect stalling
 - Bland's Rule and derivatives
 - Perturbation (artificially moving variables/constraints off bounds)
 - You will see evidence in solver reports of this occurring
- EVERY NONTRIVIAL PROBLEM WILL HAVE SOME SET OF DEGENERATE PIVOTS

Aside: Unrestricted Variables

- Winston (Sec. 4.14) conflates several ideas
 - Solvers do NOT handle unrestricted variables the way he suggests
 - He does, however, raise an important issue
- Yet another Wyndor Glass modification
 - Suppose we are penalized \$2/unit for every unit of factory capacity that is either over or under the target of 18
 - We cleverly decide to use an unrestricted variable, y₁:

max
$$Z = 3x_1 + 5x_2 - 2y_1$$

subject to :
 $x_1 + s_1 = 4$
 $2x_2 + s_2 = 12$
 $3x_1 + 2x_2 + y_1 = 18$
 $x_1, x_2, s_1, s_2 \ge 0$
 y_1 unrestricted

OR 541 Fall 2009 Lesson 4-3, p. 1

We Load the Problem, and ...

- The solution is:
 - $x_1 = 6$, $x_2 = 4$, $y_1 = -6$, z = 54
 - Is this right? Should be **z** = 3*4+5*6-2*6 = **30**!
- We must have messed up the objective
 - Change it to $3x_1 + 5x_2 + 2y_1$
 - New answer is $x_1 = 0$, $x_2 = 6$, $y_1 = 6$, z = 42
 - Is this right? Should be **z** = 3*0+5*6-2*6 = **18**!
- What the #\$%@^&!! is going on here?

Here's the Issue

• If a solver sees an unrestricted variable, it will (generally) substitute it out of the problem

$$\begin{array}{c} \max \quad Z = 3x_1 + 5x_2 - 2(18 - 3x_1 - 2x_2) \\ = 9x_1 + 9x_2 - 36 \\ \text{subject to :} \\ x_1 \quad + s_1 \quad = 4 \\ 2x_2 \quad + s_2 \quad = 12 \\ x_1, x_2, s_1, s_2 \ge 0 \end{array}$$

-

• Now we see what it did! It turns out our formulation is WRONG

A (1 A)

~

-

The Fix (and What Winston Does)

• It turns out that the objective function really is:

$$\max \quad Z = 3x_1 + 5x_2 - 2|y_1|$$

- We need to define two new variables to do this:
 - y₁: number of units below 18
 - y₂: number of units above 18

$$\max Z = 3x_1 + 5x_2 - 2y_1 - 2y_2$$

subject to :
$$x_1 + s_1 = 4$$

$$2x_2 + s_2 = 12$$

$$3x_1 + 2x_2 + y_1 - y_2 = 18$$

$$x_1, x_2, s_1, s_2, y_1, y_2 \ge 0$$

• We can guarantee that y₁ and y₂ will never both be in the solution! Why?

Simplex III: Finding an Initial BFS

- We know how to iterate, and how to stop
- But, how do we start?
- Consider the following LP, not in standard form:

 $\begin{array}{ll} \min & z = x_1 + 4x_2 - x_4 \\ \text{subject to :} \\ &- x_1 + 2x_2 - x_3 + x_4 \leq 2 \\ &2x_1 + x_2 + 2x_3 - 2x_4 = 4 \\ &x_1 - 3x_3 + x_4 \geq 2 \\ &x_1, x_2, x_4 \geq 0, x_3 \text{ unrestricted} \end{array}$

Convert to Standard (Max) Form, But Then?

- No obvious starting solution
 - There's no identity matrix for a basis
 - If we try to put in s₂ directly, its value is negative (a violation)

max
$$z = -x_1 - 4x_2 + x_4$$

subject to :
 $-x_1 + 2x_2 - x_3 + x_4 + s_1 = 2$
 $2x_1 + x_2 + 2x_3 - 2x_4 = 4$
 $x_1 - 3x_3 + x_4 - s_2 = 2$
 $x_1, x_2, x_4, s_1, s_2 \ge 0, x_3$ unrestricted

- Cure: add "artificial variables"
 - Only need artificials for the last two constraints
 - Yields starting solution of s₁=2, a₁=4, a₂=2

max
$$z = -x_1 - 4x_2 + x_4$$

subject to :
 $-x_1 + 2x_2 - x_3 + x_4 + s_1 = 2$
 $2x_1 + x_2 + 2x_3 - 2x_4 + a_1 = 4$
 $x_1 - 3x_3 + x_4 - s_2 + a_2 = 2$
 $x_1, x_2, x_4, s_1, s_2, a_1, a_2 \ge 0$
 x_3 unrestricted
OR 541 Fall 2009

Lesson 4-3, p. 6

How Do We Get Rid of These Artificials?

- Textbook approaches:
 - Give them a big penalty in the objective function, hope they go away (Big-M method)
 - Minimize their sum, and throw them away when done (Two-Phase)
- Two-Phase applied to our example:

min $y = a_1 + a_2$, or max $-y = -a_1 - a_2$ subject to :

$$-x_{1} + 2x_{2} - x_{3} + x_{4} + s_{1} = 2$$

$$2x_{1} + x_{2} + 2x_{3} - 2x_{4} + a_{1} = 4$$

$$x_{1} - 3x_{3} + x_{4} - s_{2} + a_{2} = 2$$

$$z = -x_{1} - 4x_{2} + x_{4}$$

$$x_{1}, x_{2}, x_{4}, s_{1}, s_{2}, a_{1}, a_{2} \ge 0$$

$$x_{3}, z \text{ unrestricted}$$

OR 541 Fall 2009 Lesson 4-3, p. 7

Set Up a Phase I Tableau

• We will carry the original objective function row, plus add a row for the Phase I objective

Row	Z	у	x1	x2	x3	x4	s1	s2	a1	a2	RHS
z	1		1	4	0	-1	0	0	0	0	0
Ph I		1	0	0	0	0	0	0	1	1	0
1		s1	-1	2	-1	1	1	0	0	0	2
2		a1	2	1	2	-2	0	0	1	0	4
3		a2	1	0	-3	1	0	-1	0	1	2

- Note we can't start yet; we have to "clear out" the Phase I objective row (just subtract Row 2 and Row 3)
- For the rest of the pivots, we will transform the z row as well

Pivot Sequence

Clear Ph 1 Row: Ph1 = Ph1 - Row 2 - Row 3

Row	Z	у	x1	x2	x3	x4	s1	s2	a1	a2	RHS
z	1		1	4	0	-1	0	0	0	0	0
Ph I		1	-3	-1	1	1	0	1	0	0	-6
1		s1	-1	2	-1	1	1	0	0	0	2
2		a1	2	1	2	-2	0	0	1	0	4
3		a2	1	0	-3	1	0	-1	0	1	2

After a pivot in x1 column, row 3

Row	Z	у	x1	x2	x3	x4	s1	s2	a1	a2	RHS
z	1		0	4	3	-2	0	1	0	-1	-2
Ph I		1	0	-1	-8	4	0	-2	0	3	0
1		s1	0	2	-4	2	1	-1	0	1	4
2		a1	0	1	8	-4	0	2	1	-2	0
3		x1	1	0	-3	1	0	-1	0	1	2

The Results of Phase I

Row	Z	У	x1	x2	х3	x4	s1	s2	a1	a2	RHS
Z	1		0	3.63	0	-0.5	0	0.25	-0.4	-0.3	-2
Ph I		1	0	0	0	0	0	0	1	1	0
1		s1	0	2.5	0	0	1	0	0.5	0	4
2		x3	0	0.13	1	-0.5	0	0.25	0.13	-0.3	0
3		x1	1	0.38	0	-0.5	0	-0.3	0.38	0.25	2

- OK artificials out (but what's wrong now?)
- What does it mean if:
 - (Case A) At least one artificial stays in the solution at optimality?
 - (Case B) At least one artificial is in the basis, but is equal to 0, at optimality?

Outcomes

- Case A: if an artificial stays in, the problem is infeasible
- Case B: a couple things can happen
 - We can pivot all the degenerate artificials out of the basis; then we proceed as usual
 - Suppose some artificials remain at the 0 level
 - In the last case, it turns out that this is an indication that the rows (constraints) where the remaining artificials are basic are *redundant*, and can be thrown away

Final Thoughts on Getting an Initial Solution

- Why do you think implementing the Big-M method might be a problem? What is the advantage of Big-M?
- Many large LPs spend the majority of their time in Phase I, trying to get feasible
 - This happens when the model has lots of "chains" of relationships that must be satisfied
 - Models like this are prone to stalling in Phase I
- Most commercial solvers will let you provide an initial solution
 - If you have one (from a previous solve or via some heuristic), by all means use it!