
Consider This Set Covering Problem
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I claim I can solve this by inspection



Now I Start Throwing Things Away ...

The first and last 
constraints are 

redundant – why?

ix
xxx
xx

xx
xx

xxx
xxxxxxz

i  allfor  }1,0{
1
1
1
1
1subject to

252 min

632

63

42

31

521

654321

∈
≥++
≥+
≥+
≥+
≥++

+++++=

OR 541 Fall 2009
Lesson 11-1, p. 2

x3 can be set to 0 -
why?
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Answer: x1 = 1, x2 = 1, x6 = 1, z = 4



Presolve and Node Reductions

• An important feature of commercial codes is presolve
• Looks at problem structure, particularly binary variables
• Uses various techniques to reduce the problem
• Can be applied at any node in a branch-and-bound tree

• These techniques are responsible for much recent 
improvement in MIP codes
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improvement in MIP codes
• Following is a (partial) set of rules for cover (>=) and 
partition (=) problems
• Note: can covert a pack to a partition by adding slack variables
• Then, use the rules for a partition
• These rules assume the Ci’s are all > 0



• (1) (cover, partition): If all Aij’s are 0 in row i, the 
problem’s infeasible

• (2)(cover, partition) If row i has 1 nonzero A (say, A ), 

Reduction Rules

1000000partition
1000000cover

=
≥
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M

M

                 
1,10101110
1,10001000
1,10101100

                 

=≥
=≥
=≥

• (2)(cover, partition) If row i has 1 nonzero Aij (say, Aik), 
then set xik = 1, delete column k, and delete all rows r 
with Ark = 1

k
cover

partition



More Reduction Rules

• (2a) (partition) In addition to the row deletions in (2), 
delete every column where Atj = Atk = 1, j <> k, for 
every row r deleted

M

10001000
10101100

                 

=
=

Variable for this 
column = 1, 

forces all 
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• (3) (cover, partition) If Arj >= Aij for all j for rows r and 
i, delete row r

M                 
10101110
10001000

=
=

               
0000110)(
1000111)(

i
r

forces all 
others to 0



• (3a) (partition) As in (3), but also delete all columns 
with Ark = 1 and Aik = 0

    
0000110)(
1000111)(

                         M

i
r

Yet More Reduction Rules

One of these 
variables will 
be = 1, forces 
all others to 0
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• (4) (cover,partition) If S is a set of columns, and 

then, delete column k

                                    M

k
Sj

j

ik
Sj

ij

CCSk

iAA

≤∉

=

∑

∑

∈

∈

 and ,

, allfor  

all others to 0



Last of the Reductions

• Reduction (4) :

0100003row 
1110102row 
1010011row 
1011242obj
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• Reduction (4a) (cover) as in (4), but with condition

iAA ik
Sj

ij  allfor  >∑
∈



Example: Winston p. 477, ex. 5 (cover)

0011003row 
1000112row 
0000111row 

Rule 3: Delete row 2 
(covered by row 1)
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1100106row 
1110005row 
0111004row 
0011003row (covered by row 1)

Rule 3: Delete row 4 
(covered by row 3)



Example (cont’d)

• No more reductions, but can you solve the problem?

 
0011003row 

 
0000111row 
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• x2 = 1, x4 =1

1100106row 
1110005row 

 



Strong Versus Weak Formulations

• An example from my past:
• Job was associated with an airlift analysis
• Had 100 possible onload locations in the U.S.
• Needed to reduce locations to 10-20; all cargo from other 

locations would go to one of the chosen “hubs”
• Wanted to minimize total tonnage*distance to move cargo to 

hubs
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hubs
• Known as a “k-median” problem

• First used a heuristic on the problem
• Was learning GAMS at the time, so I set it up as an 
integer program



The First K-Median Formulation

• Indicies
• i,j = locations

• Data
• STONSi = short tons to be moved from location i
• DISTij = distance between i and j
• MAXHUBS = maximum number of hubs
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• MAXHUBS = maximum number of hubs
• NUM = total number of locations

• Variables
• assignij = 1 if location i assigned to hub j, 0 otherwise
• choosej = 1 if location j chosen as a hub, 0 otherwise



The First Model

• Objective and constraints:

iassign

assignSTONSDISTz

j
ij

ij
ijiij

  allfor   1

subject to

**min

=

=

∑

∑
What do these 

constraints do?

What does this 
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jchoose

i,jassign

jchooseNUMassign

MAXHUBSchoose

j

ij

j
i

ij

j
j

 allfor  }1,0{

 allfor  }1,0{

 allfor  *

∈

∈

≤

≤

∑

∑
What does this 
constraint do?

What do these 
constraints do?



No Luck

• Tried to solve this in OSL
• Still didn’t meet integrality gap requirements after 100,000 

iterations
• Ran for several hours
• No progress
• Went back to heuristic, wondered what I did wrong
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• Asked an optimization professor a year later at a 
meeting
• He sent back an answer the next day
• His change allowed OSL to solve the problem in about 10 

seconds
• What was it?



A Stronger Formulation

• All he suggested was the following:

MAXHUBSchoose

iassign

assignSTONSDISTz

j

j
ij

ij
ijijij

  allfor   1

subject to

**min

≤

=

=

∑

∑

∑
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• Note that this increased the number of constraints by 
100 x 100 - 100 = 9900

• How could it be so much faster?

jchoose

i,jassign

jichooseassign

MAXHUBSchoose

j

ij

jij

j
j

 allfor  }1,0{

 allfor  }1,0{

, allfor  

∈

∈

≤

≤∑



3

4

5

x2

With MIPs, More Constraints Are Better

• The first formulation 
encouraged 
“fractionation” of the 
binary variables

• The second cuts off 
many possible 

LP Feasible 
Region

OR 541 Fall 2009
Lesson 11-2 p. 6

0

1

2

0 1 2 3 4 5

x1

x2fractional solutions
• Want to get as close to 

the “integer hull” as 
possible



Another Strengthening Example

• From the mining example:

M
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• A stronger set of constraints:

M
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Cuts

• See Winston, Sec. 9-8
• Note that branching requires solving two LPs

• One for the integer floor of the branching variable
• One for the integer ceiling of the branching variable

• An alternative approach is called a cut
• The idea here is to “cut off” the fractional solution, but don’t cut 
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• The idea here is to “cut off” the fractional solution, but don’t cut 
off any feasible integer solutions

• The aim is to generate constraints that form the integer hull of 
the feasible region

• Such constraints are called facets



From the Dual Simplex Lesson (6-1)

• Recall this was the optimal (fractionated) tableau:

Row z x1 x2 s1 s2 RHS BV
0 1 0 0 2/5 9/5 44/5 z
1 1 0 -2/5 1/5 4/5 x1
2 0 1 1/5 -3/5 8/5 x2
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• Row 2 can be written as:

• In Lesson 6-1, I used this row (called a source row) to 
generate a mysterious constraint; how did I do that?

5

8

5

3

5

1
212 =−+ ssx



Generating a Gomory Cut

• We rewrite this constraint by recognizing that any 
fraction can be written as

• So, applying this to Row 2, we get:





 +=

 +−+
 ++ 3

1
21

0 22112 ssssx

  10, <<+= ffxx
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• Now, group the integral terms on the left and the 
fractional terms on the right:







+=





+−+





++
5

1
55

0 22112 ssssx

5

3

5

2

5

1
10 21212 +−−=−−+ ssssx

Part we would like to get rid of



Some Arguments

• For integer feasibility:
• The left-hand side must be integer
• Therefore, the right-hand side must be integer
• s1 and s2 must be >= 0 

• So, what’s the biggest the right-hand side can be and 
still be feasible? 

OR 541 Fall 2009
Lesson 11-2 p. 11

still be feasible? 
• Result: we add the cut:

• Is this cool, or what?

5

3

5

2

5

1

or  ,0
5

3

5

2

5

1

321

21

−=+−−

≤+−−

sss

ss



More Info on Cuts

• Cutting plane algorithms had a bad reputation early
• Algorithms only added one cut at a time
• Had very slow convergence

• Have recently become very popular
• No reason to add cuts one at a time
• Can add a cut for virtually any fractional row
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• Can add a cut for virtually any fractional row
• Can combine with branch-and-bound (branch on one variable, 

generate cuts for others)
• Easy to implement, run very quickly

• Bixby article shows that installing these cuts in CPLEX 
gives tremendous improvements



A (Very) Quick Tour of CPLEX MIP Switches

• For a small MIP or one known to be easy, you can 
stick with the defaults

• For anything else, you should always set the 
following:
• Time limit (p. 95): CPLEX has a huge default (100,000,000 

hours, a bit longer than I’d wait)
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hours, a bit longer than I’d wait)
• MIP strategy (p. 98): choose depth-first to emphasize 

feasibility, others to search for better solutions
• Upper cutoff/lower cutoff (p. 106): if you have a solution, set 

these to avoid unproductive parts of the b-b tree
• Relative/absolute gap (p. 106): a good starting relative gap is 

0.10; absolute gap depends on the problem



CPLEX Switches You Can Play With

• Bound strengthening, coefficient reduction (p. 90)
• These are more aggressive prereduce options
• You should consider them if you have lots of binary variables 

and “chains” of relationships

• MIP probing (p. 99)
• Explores implications of binary settings at every node
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• Explores implications of binary settings at every node
• Time consuming, but may crack the problem early

• Variable selection (p. 99)
• Strong branching is “probing lite” - can be very helpful
• Maximum infeasibility branching is useful if you have feasible 

solutions and want to get faster improvement



CPLEX Cuts

• CPLEX can employ 9 different types of cuts
• Some are easy (like Gomory fractional cuts)
• Some involve substantial math (disjunctive cuts)
• Not easy to figure out a priori which will work

• Some general advice
• CPLEX is fairly intelligent on when to apply cuts
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• CPLEX is fairly intelligent on when to apply cuts
• If you’re really having trouble, go aggressive on everything 

(kitchen sink approach)
• Bixby’s article gives good statistics on general performance of 

cuts on a large suite of MIPs
• Clique cuts good for partition problems; cover cuts good for 

covers
• Implied bound cuts good for problems with lots of general 

integer variables



Conclusion

• Be prepared for a lot of work with a big MIP
• Exploit as much problem structure as you can
• Use strong formulations; when in doubt, add more constraints
• Help the solver with cutoff values and branch priorities
• First get a feasible answer , then work from there

• Once you’re feasible, work on improvement
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• Once you’re feasible, work on improvement
• Throw more switches to drive down the integrality gap
• Recognize that some problems have “loose” LP formulations 

and require very long b-b solves to tighten the gap
• Pay close attention to the structure of the interim feasible 

solutions
• Add more constraints if you see opportunities (like the 

NOSWOT problem)



Constraint-Satisfaction Problems (CSPs)

• Sometimes we just want to find a feasible solution
• Map-coloring problem: 

• assign colors to maps so no adjacent countries have the same 
color

• Stable marriage problem
• Have a group of N men, and a group of N women
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• Have a group of N men, and a group of N women
• Each woman has rated the men 1-N, as have each of the men
• Assign men to the women so that if Man A prefers Man B’s 

wife, Man B’s wife prefers her husband to Man A

• Scene labeling
• Recognize 3-D objects by assigning lines in 2-D drawings



The Idea of Constraint Programming

• Basic algorithm
• You have a set of variables, each with a finite domain
• You have a set of constraints that determine allowable settings 

on combinations of variables
• Successive applications of those constraints reduce the 

domains of the variables
• Stop when you come up with variable settings that satisfy all 
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• Stop when you come up with variable settings that satisfy all 
constraints

• Several commercial products, such as ILOG’s OPL, 
provide a language for constraint programming



Integer Programming for CSPs

• In some cases, we can write integer programs to solve 
CSPs

• Consider SuDoKu
• Problems consist of a 9 x 9 grid
• Have to assign numbers 1-9 so that each row, column, and the 

9 3 x 3 subgrids contains each number exactly once
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9 3 x 3 subgrids contains each number exactly once

• How do you solve these manually? 
• Chances are, you use your own version of constraint 
programming



The Challenge

• Formulate an integer 
program in MPL to solve 
the SuDoKu problem 
shown to the right

• Furthermore, SuDoKu 
puzzles are advertised 
to have a single solution 

7 3 1

6 8 4 3

5 8

2 8

2 1 6

6 9
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to have a single solution 
• Does this one have a 

single solution? Modify 
your formulation to find 
out

6 9

5 1

6 3 5 4

2 7 9


