
An Example (based on the Phillips article)

• Suppose you’re the hapless MBA, and you haven’t 
been fired

• You decide to use IP to find the best N-product 
solution, for N = 21 to 56
• Let y i be 0 if you don’t produce product i, 1 if you do
• Let Mi be the maximum of product i you could produce
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• Let Mi be the maximum of product i you could produce

• Suppose there’s a minimum production quantity L i for 
each product you opt to produce. What constraints 
implement that?
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Price Breaks/Quantity Discounts

• A typical situation:
• The first N1 items cost $D apiece
• The next N2 items cost, say $0.8D apiece
• The next N3 items cost, say, $0.6D apiece

• With no constraints, an optimization will try to buy the 
cheapest ones first
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cheapest ones first
• So, how do we implement these conditions?

• Let x1, x2, x3 be the number bought at each price
• Let y1, y2 be binary
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A Slightly Different Scheme

• Suppose instead the price break is as follows:
• Buy up to N1 items: cost $D apiece
• Buy up to N2 items: cost, say $0.8D apiece
• Buy up to N3 items: cost, say, $0.6D apiece

• This defines a cost curve for the items
• Let x1, x2, x3 be the number bought 
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• Let x1, x2, x3 be the number bought 
• Let y1, y2, y3 be binary; the constraints are:
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Modeling Piecewise Linear Functions

• Suppose you have some variable x that has a “piece-
wise linear” cost function:
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• This appears to be a forbidding thing to model
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But, We Can Handle It

• Replace every occurrence of the variable x in the 
model with:

• Replace every occurrence of f(x) within the model 
with:

nn yUyUyUyU ++++ K332211    
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with:

• Add the constraints

nn yVyVyVyV ++++ K332211    
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Handling the Adjacency Condition

• Note that for this to work:
• The y’s give the weight on the ith and i+1st point (they are 

NOT binary!)
• At most two y’s can be nonzero, and they must be adjacent

• Winston shows how to do this with a bunch more 
constraints (p. 482)
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constraints (p. 482)
• That is NOT what we’re going to do
• Instead, tell your solver that these variables are type 
“SOS2”

• The solver will automatically enforce the adjacency 
condition



OK, So What is an SOS Variable?

• SOS stands for “special ordered set”
• There are two general types
• SOS type 1: a set of variables for which at most 1 may be 

nonzero
• SOS type 2: a set of variables for which at most 2 may be 

nonzero; the two must be adjacent
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• SOS variable processing is a special procedure inside 
the simplex algorithm

• Generally much more efficient to use SOS
• Warning: not all solvers implement SOS variables, nor 
are the definitions standard!



If You’re Stuck Without SOS Variables

• The following set of constraints will enforce the 
adjacency condition:
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Example: A Mining Problem (Williams, 1985)

• A company has 4 mines it can operate for the next 5 
years
• They can operate at most 3 mines a year
• They pay a yearly royalty every year a mine is open
• Once the mine is closed, it’s closed permanently

• Each mine, if operating, has a max production each 
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• Each mine, if operating, has a max production each 
year, and a known “ore quality”

• There are yearly targets for overall ore quality, which is 
a weighted average of the quality of the outputs from 
the mines

• The selling price/ton of ore is known
• What mines should the company operate, and when?



Example: A Mining Problem (Williams, 1985)

• A company has 4 mines it can operate for the next 5 
years
• They can operate at most 3 mines a year
• They pay a yearly royalty every year a mine is open
• Once the mine is closed, it’s closed permanently

• Each mine, if operating, has a max production each 
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• Each mine, if operating, has a max production each 
year, and a known “ore quality”

• There are yearly targets for overall ore quality, which is 
a weighted average of the quality of the outputs from 
the mines

• The selling price/ton of ore is known
• What mines should the company operate, and when?



Mining Problem (cont’d)

• Indicies
• i = mine {1-4}
• t = year {1-5}

• Data
• ROYALTY i = yearly royalty paid if mine i is open
• PRODi = limit on yearly production in mine i
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• PRODi = limit on yearly production in mine i
• QUAL i = quality of mine i ore
• PRICEi = selling price of blended ore
• Dt = discount rate in year t (1, 0.9, 0.81, …)
• RQUAL t = required quality of blended ore in year t

• Variables?



Mine Decisions

• Each year, we have to decide whether to keep a mine 
open, and if so, whether to produce

• So:
• o it = 1 if mine i is open in year t, 0 otherwise
• p it = 1 if mine i produces in year t, 0 otherwise
• x it = amount of ore produced by mine i in year t
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• x it = amount of ore produced by mine i in year t

• Objective
•
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Enforcing Opening, Closing, and Production

• If a mine’s closed, it can’t produce:

• Once a mine’s closed, it stays closed:
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• Limit production of open mines:
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Finally, the Quality Requirements

• Blending constraints:

• Linearize:
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• Nonnegativity and binary variable constraints:
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Covers, Partitions, Packs

• These are very common types of IP’s
• General description of a cover:

• Have some set of objects S = {1,2,3, … N}
• Also have a collection of subsets of S, e.g., 

• s1 = {1,2}
• s2 = {1,3,5}
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• s2 = {1,3,5}
• s3 = {2,6}

• Each subset has a cost associated with it (Ci)

• Objective is to “cover” S with some collection of the 
subsets at minimum cost
• Each element of S must be in one or more of the chosen 

subsets
• Want to choose the minimum-cost collection of subsets



Winston Ex. 5, p. 486-487
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General Form

• The standard cover problem is:
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• Data:
• A ij = 1 if subset i covers object j, 0 otherwise
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Partitions, Packs

• Partition: each object can only be covered by 1 subset
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• Pack: each subset has value Vi, and we want to 
maximize the value of the subsets “packed” in:

ix

jxA

xVz

i

i
iij

i
ii

 allfor  {0,1}  

 allfor  1*

subject to

*max

∈

≤

=

∑

∑



Pack Example (Winston p. 555, #21

• Indicies
• d = districts { 1-8}

• Data
• POPd = population of district d in 1000’s
• Ad,d’ = 1 if ambulance in d can respond to d’ in time

• Variables, Objective and Constraints
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• Variables, Objective and Constraints
• xd = 1 if ambulance assigned to d, 0 otherwise
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Another Pack Example (from  Schrage)

• A financial firm wants to package a set of mortgages
• They want to maximize the number of packages
• Each package must be worth at least $1M

• Mortgage values:

A B C D E F G H I
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• There are 270 packages that are worth more than $1M 
that contain 4 or less mortgages

• So:
• Let i = package #, j = mortgage
• A ij = 1 if mortgage j is in package i, 0 otherwise

Value (1000's) 910 870 810 640 550 250 120 95 55



Mortgage Packing (cont’d)

• The problem is then:
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• Note that in these types of problems, you usually have 
to generate the subsets
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MPL Code for Mortgage Packing

• The following MPL code does the mortgage packing 
problem, including generating the subsets

INDEX

m  := (A,B,C,D,E,F,G,H,I,D1,D2);
m1 := m;
m2 := m;
m3 := m; Aliases of m

dummies
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m3 := m; 
m4 := m;

DATA

V1[m1] := (910,870,810,640,550,250,120,95,55,0,0);
V2[m2] := (910,870,810,640,550,250,120,95,55,0,0);
V3[m3] := (910,870,810,640,550,250,120,95,55,0,0);
V4[m4] := (910,870,810,640,550,250,120,95,55,0,0);

BINARY VARIABLES

x[m1,m2,m3,m4] WHERE ( (m1<m2) and (m2<m3) and (m3<m4) and
(V1[m1]+V2[m2]+V3[m3]+V4[m4] >= 1000) );



MPL Code (cont’d)

MODEL

max npack = sum(m1,m2,m3,m4: x[m1,m2,m3,m4]);

SUBJECT TO
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packcon[m] WHERE ( (m <> "D1") and (m <> "D2") ):

sum( m1=m,m2,m3,m4: x[m1,m2,m3,m4]) + 

sum( m1,m2=m,m3,m4: x[m1,m2,m3,m4]) + 

sum( m1,m2,m3=m,m4: x[m1,m2,m3,m4]) + 

sum( m1,m2,m3,m4=m: x[m1,m2,m3,m4])  <= 1;

END



“Natural” Integer Solutions

• When solving integer or mixed-integer problems, first 
look at the “LP relaxation”
• Allow integer variables to be fractional
• Allow binary variables to be fractional, with bounds of 0 to 1

• If you solve the LP and get integral answers:
• Quit! Answer is optimal
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• Quit! Answer is optimal
• Why can’t it get any better?

• We know some LP’s will have integral solutions
• If the LP is a network model
• If the “A” matrix (all constraint coefficients) is “totally 

unimodular,” and the constraint RHS’s are integer

• But what if the LP relaxation has fractions?



Solving MIPs via Branch-and-Bound

• Introduced by Land and Doig (1960)
• Ideas

• Solve LP relaxation of problem
• Choose a fractional variable, say x1, with value x1* 
• Create two new LP’s:
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Branch-and-Bound (cont’d)

• Adding these restrictions and resolving (via dual 
simplex) is very quick

• Leads to a “tree” of solutions:
• Each branch tightens upper bound
• Each branch adds a constraint
• Each branch (hopefully) eliminates

 *1x  *1x

*1x
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• Each branch (hopefully) eliminates
a fractional variable

• Some issues:
• What do you branch on?
• How do explore the tree?
• How do you know when

you’re done?

*2x

 *2x  *2x



Node Selection

• Commercial codes have lots of clever tricks
• Look at the objective function coefficients/reduced costs of the 

fractional variables
• Look at “degree of fractionation” (where .5 is the most fractional)

• Branch priorities 
• Supplied by users
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• Supplied by users
• Tells code which variables to branch on first
• Example: y1 = build a factory, y11 … y1n produce products at that 

factory
• Which variable should you branch on first?
• NOTE: MPL doesn’t appear to support this, although CPLEX 

does



Branch-and-Bound: Probing

• Commercial codes look at the “implications” of a branch
• Suppose we have the following constraints:
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• Suppose we solve the relaxation, and x2 = 0.5
• What happens if we set x2 = 0?
• What happens if we set x2 = 1?
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Branch-and-Bound: Tree Traversal

• Tradeoff here is feasibility versus optimality
• Winston’s “last-in-first-out”

• Actually is “depth-first-search”
• Technique is to dive as deep into the tree as necessary to get 

an integer feasible solution
• Idea is to get integer feasible first, then search for improvement
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• Idea is to get integer feasible first, then search for improvement
• Getting an integer feasible solution provides a lower bound, 

may cut off large parts of the tree later

• See Winston, figures 10-17, pp. 512-517



More Traversal

• If you already have a feasible solution, you may want 
to traverse the tree differently
• Winston calls this “jumptracking”
• Actually is “breadth-first search”
• Instead of diving into the tree, you solve each node resulting 

from each branch
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• Regardless of the traversal, note what happens at 
each node:
• Problem is either infeasible, integer feasible, or “tightened”
• First two cases: node is “fathomed” and no more search is 

necessary



Branch-and-Bound: Stopping Criteria

• Winston gives the impression you stop when 
everything is fathomed

• Not so - would be deadly for many big problems
• To prove integer optimality, you need to fathom every node
• Untenable for a big MIP

• Need to set an “integrality gap” (usually 0.01 - 0.05)
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• Need to set an “integrality gap” (usually 0.01 - 0.05)
• For a max problem, we have an upper bound at any stage of 

branch and bound
• An integer feasible solution gives a lower bound
• The integrality gap is usually defined as:

boundlower

boundlowerboundupper
gap
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Prudence in Solving a Big MIP

• Set an iteration limit
• Most solvers let you limit the number of iterations
• Allows you to avoid long, useless runs

• Set a solve time limit (for same reasons as above)
• Set a loose integrality gap to start (say, 0.20)
• If you have an existing solution:
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• If you have an existing solution:
• Compare it to the LP relaxation; use it to give advice on an 

integrality gap
• Use the objective function value as a “cutoff” parameter; solver 

won’t explore branches worse than the cutoff

• Use branch priorities


