
An Example (based on the Phillips article)

• Suppose you’re the hapless MBA, and you haven’t
been fired

• You decide to use IP to find the best N-product
solution, for N = 21 to 56
• Let y i be 0 if you don’t produce product i, 1 if you do
• Let Mi be the maximum of product i you could produce

OR 541 Fall 2009
Lesson 10-1, p. 1

• Let Mi be the maximum of product i you could produce

• Suppose there’s a minimum production quantity L i for
each product you opt to produce. What constraints
implement that?

Ny

iyMx

i
i

i

=

≤

∑

 allfor 11

Price Breaks/Quantity Discounts

• A typical situation:
• The first N1 items cost $D apiece
• The next N2 items cost, say $0.8D apiece
• The next N3 items cost, say, $0.6D apiece

• With no constraints, an optimization will try to buy the
cheapest ones first

OR 541 Fall 2009
Lesson 10-1, p. 2

cheapest ones first
• So, how do we implement these conditions?

• Let x1, x2, x3 be the number bought at each price
• Let y1, y2 be binary

233
2

2
2

122

1

1
111

* ,

*

 ,

yNxN
xy

yNx

N
xyNx

≤≤

≤

≤≤

A Slightly Different Scheme

• Suppose instead the price break is as follows:
• Buy up to N1 items: cost $D apiece
• Buy up to N2 items: cost, say $0.8D apiece
• Buy up to N3 items: cost, say, $0.6D apiece

• This defines a cost curve for the items
• Let x1, x2, x3 be the number bought

OR 541 Fall 2009
Lesson 10-1, p. 3

• Let x1, x2, x3 be the number bought
• Let y1, y2, y3 be binary; the constraints are:

1

* , *

* , *

 *

321

323333

212222

111

≤++
≥≤
≥≤

≤

yyy

yNxyNx

yNxyNx

yNx

Modeling Piecewise Linear Functions

• Suppose you have some variable x that has a “piece-
wise linear” cost function:

V2

V3

f(x)

OR 541 Fall 2009
Lesson 10-1, p. 4

• This appears to be a forbidding thing to model

U1 U2 U3

V1

V2

x

But, We Can Handle It

• Replace every occurrence of the variable x in the
model with:

• Replace every occurrence of f(x) within the model
with:

nn yUyUyUyU ++++ K332211

OR 541 Fall 2009
Lesson 10-1, p. 5

with:

• Add the constraints

nn yVyVyVyV ++++ K332211

iy

yyyy

i

n

 allfor 10

1 321

≤≤

=++++ K

Handling the Adjacency Condition

• Note that for this to work:
• The y’s give the weight on the ith and i+1st point (they are

NOT binary!)
• At most two y’s can be nonzero, and they must be adjacent

• Winston shows how to do this with a bunch more
constraints (p. 482)

OR 541 Fall 2009
Lesson 10-1, p. 6

constraints (p. 482)
• That is NOT what we’re going to do
• Instead, tell your solver that these variables are type
“SOS2”

• The solver will automatically enforce the adjacency
condition

OK, So What is an SOS Variable?

• SOS stands for “special ordered set”
• There are two general types
• SOS type 1: a set of variables for which at most 1 may be

nonzero
• SOS type 2: a set of variables for which at most 2 may be

nonzero; the two must be adjacent

OR 541 Fall 2009
Lesson 10-1, p. 7

• SOS variable processing is a special procedure inside
the simplex algorithm

• Generally much more efficient to use SOS
• Warning: not all solvers implement SOS variables, nor
are the definitions standard!

If You’re Stuck Without SOS Variables

• The following set of constraints will enforce the
adjacency condition:

wwy

wwy

wy

323

212

11

+≤
+≤

≤

OR 541 Fall 2009
Lesson 10-1, p. 8

{ } iw

w

wy

wwy

wwy

i

i
i

nn

nnn

 allfor 1,0

1
1

121

323

∈

=

≤
+≤

+≤

∑

−

−−−

M

Example: A Mining Problem (Williams, 1985)

• A company has 4 mines it can operate for the next 5
years
• They can operate at most 3 mines a year
• They pay a yearly royalty every year a mine is open
• Once the mine is closed, it’s closed permanently

• Each mine, if operating, has a max production each

OR 541 Fall 2009
Lesson 10-1, p. 9

• Each mine, if operating, has a max production each
year, and a known “ore quality”

• There are yearly targets for overall ore quality, which is
a weighted average of the quality of the outputs from
the mines

• The selling price/ton of ore is known
• What mines should the company operate, and when?

Example: A Mining Problem (Williams, 1985)

• A company has 4 mines it can operate for the next 5
years
• They can operate at most 3 mines a year
• They pay a yearly royalty every year a mine is open
• Once the mine is closed, it’s closed permanently

• Each mine, if operating, has a max production each

OR 541 Fall 2009
Lesson 10-2 p. 1

• Each mine, if operating, has a max production each
year, and a known “ore quality”

• There are yearly targets for overall ore quality, which is
a weighted average of the quality of the outputs from
the mines

• The selling price/ton of ore is known
• What mines should the company operate, and when?

Mining Problem (cont’d)

• Indicies
• i = mine {1-4}
• t = year {1-5}

• Data
• ROYALTY i = yearly royalty paid if mine i is open
• PRODi = limit on yearly production in mine i

OR 541 Fall 2009
Lesson 10-2 p. 2

• PRODi = limit on yearly production in mine i
• QUAL i = quality of mine i ore
• PRICEi = selling price of blended ore
• Dt = discount rate in year t (1, 0.9, 0.81, …)
• RQUAL t = required quality of blended ore in year t

• Variables?

Mine Decisions

• Each year, we have to decide whether to keep a mine
open, and if so, whether to produce

• So:
• o it = 1 if mine i is open in year t, 0 otherwise
• p it = 1 if mine i produces in year t, 0 otherwise
• x it = amount of ore produced by mine i in year t

OR 541 Fall 2009
Lesson 10-2 p. 3

• x it = amount of ore produced by mine i in year t

• Objective
•

∑∑ −=
it

itit
it

itt oROYALTYDxPRICEDz **** max

Enforcing Opening, Closing, and Production

• If a mine’s closed, it can’t produce:

• Once a mine’s closed, it stays closed:

tiop itit , allfor ≤

5, allfor 1, <≥ + tioo tiit

OR 541 Fall 2009
Lesson 10-2 p. 4

• Limit production of open mines:

5, allfor 1, <≥ + tioo tiit

tixpPROD

tp

ititi

i
it

, allfor *

 allfor 3

≥

≤∑

Finally, the Quality Requirements

• Blending constraints:

• Linearize:

tRQUAL
x

xQUAL

t

i
it

i
iti

 allfor
*

=
∑

∑

OR 541 Fall 2009
Lesson 10-2 p. 5

• Nonnegativity and binary variable constraints:

txRQUALxQUAL
i

itt
i

iti allfor ** ∑∑ =

tipo

tix

itit

it

, allfor }1,0{,

, allfor 0

∈
≥

Covers, Partitions, Packs

• These are very common types of IP’s
• General description of a cover:

• Have some set of objects S = {1,2,3, … N}
• Also have a collection of subsets of S, e.g.,

• s1 = {1,2}
• s2 = {1,3,5}

OR 541 Fall 2009
Lesson 10-2 p. 6

• s2 = {1,3,5}
• s3 = {2,6}

• Each subset has a cost associated with it (Ci)

• Objective is to “cover” S with some collection of the
subsets at minimum cost
• Each element of S must be in one or more of the chosen

subsets
• Want to choose the minimum-cost collection of subsets

Winston Ex. 5, p. 486-487

xxx
xx

xxx
xx

xcxcxcxcxcxcz

1
1
1
1

min

543

43

621

21

665544332211

≥++
≥+
≥++
≥+

+++++=

OR 541 Fall 2009
Lesson 10-2 p. 7

ix

xxx
xxx

xxx

i allfor }1,0{

1
1
1

652

654

543

∈
≥++
≥++
≥++

= subset; each constraint is an object

General Form

• The standard cover problem is:

jxA

xCz

i
iij

i
ii

 allfor 1*

subject to

*min

≥

=

∑

∑

OR 541 Fall 2009
Lesson 10-2 p. 8

• Data:
• A ij = 1 if subset i covers object j, 0 otherwise

{ } ixi

i

 allfor 1,0∈

Partitions, Packs

• Partition: each object can only be covered by 1 subset

ix

jxA

xCz

i

i
iij

i
ii

 allfor {0,1}

 allfor 1*

subject to

*min

∈

=

=

∑

∑

OR 541 Fall 2009
Lesson 10-2 p. 9

• Pack: each subset has value Vi, and we want to
maximize the value of the subsets “packed” in:

ix

jxA

xVz

i

i
iij

i
ii

 allfor {0,1}

 allfor 1*

subject to

*max

∈

≤

=

∑

∑

Pack Example (Winston p. 555, #21

• Indicies
• d = districts { 1-8}

• Data
• POPd = population of district d in 1000’s
• Ad,d’ = 1 if ambulance in d can respond to d’ in time

• Variables, Objective and Constraints

OR 541 Fall 2009
Lesson 10-2 p. 10

• Variables, Objective and Constraints
• xd = 1 if ambulance assigned to d, 0 otherwise

dx

x

d'xA

xPOPAz

d

d
d

d
ddd

dd
dddd

 allfor }1,0{

2

 allfor 1*
subject to

**max

',

',
',

∈

=

≤

=

∑

∑

∑

Another Pack Example (from Schrage)

• A financial firm wants to package a set of mortgages
• They want to maximize the number of packages
• Each package must be worth at least $1M

• Mortgage values:

A B C D E F G H I

OR 541 Fall 2009
Lesson 10-2 p. 11

• There are 270 packages that are worth more than $1M
that contain 4 or less mortgages

• So:
• Let i = package #, j = mortgage
• A ij = 1 if mortgage j is in package i, 0 otherwise

Value (1000's) 910 870 810 640 550 250 120 95 55

Mortgage Packing (cont’d)

• The problem is then:

jxA

xz
i

i

 allfor 1*

subject to

max

≤

=

∑

∑

OR 541 Fall 2009
Lesson 10-2 p. 12

• Note that in these types of problems, you usually have
to generate the subsets

ix

jxA

i

i
iij

 allfor {0,1}

 allfor 1*

∈

≤∑

MPL Code for Mortgage Packing

• The following MPL code does the mortgage packing
problem, including generating the subsets

INDEX

m := (A,B,C,D,E,F,G,H,I,D1,D2);
m1 := m;
m2 := m;
m3 := m; Aliases of m

dummies

OR 541 Fall 2009
Lesson 10-2 p. 13

m3 := m;
m4 := m;

DATA

V1[m1] := (910,870,810,640,550,250,120,95,55,0,0);
V2[m2] := (910,870,810,640,550,250,120,95,55,0,0);
V3[m3] := (910,870,810,640,550,250,120,95,55,0,0);
V4[m4] := (910,870,810,640,550,250,120,95,55,0,0);

BINARY VARIABLES

x[m1,m2,m3,m4] WHERE ((m1<m2) and (m2<m3) and (m3<m4) and
(V1[m1]+V2[m2]+V3[m3]+V4[m4] >= 1000));

MPL Code (cont’d)

MODEL

max npack = sum(m1,m2,m3,m4: x[m1,m2,m3,m4]);

SUBJECT TO

OR 541 Fall 2009
Lesson 10-2 p. 14

packcon[m] WHERE ((m <> "D1") and (m <> "D2")):

sum(m1=m,m2,m3,m4: x[m1,m2,m3,m4]) +

sum(m1,m2=m,m3,m4: x[m1,m2,m3,m4]) +

sum(m1,m2,m3=m,m4: x[m1,m2,m3,m4]) +

sum(m1,m2,m3,m4=m: x[m1,m2,m3,m4]) <= 1;

END

“Natural” Integer Solutions

• When solving integer or mixed-integer problems, first
look at the “LP relaxation”
• Allow integer variables to be fractional
• Allow binary variables to be fractional, with bounds of 0 to 1

• If you solve the LP and get integral answers:
• Quit! Answer is optimal

OR 541 Fall 2009
Lesson 10-3, p. 1

• Quit! Answer is optimal
• Why can’t it get any better?

• We know some LP’s will have integral solutions
• If the LP is a network model
• If the “A” matrix (all constraint coefficients) is “totally

unimodular,” and the constraint RHS’s are integer

• But what if the LP relaxation has fractions?

Solving MIPs via Branch-and-Bound

• Introduced by Land and Doig (1960)
• Ideas

• Solve LP relaxation of problem
• Choose a fractional variable, say x1, with value x1*
• Create two new LP’s:

OR 541 Fall 2009
Lesson 10-3, p. 2

 
0

*

subject to

max

11

≥
≤
≤

=

x

xx

bAx

cxz

 
0

*

subject to

max

11

≥
≥
≤

=

x

xx

bAx

cxz

Branch-and-Bound (cont’d)

• Adding these restrictions and resolving (via dual
simplex) is very quick

• Leads to a “tree” of solutions:
• Each branch tightens upper bound
• Each branch adds a constraint
• Each branch (hopefully) eliminates

 *1x  *1x

*1x

OR 541 Fall 2009
Lesson 10-3, p. 3

• Each branch (hopefully) eliminates
a fractional variable

• Some issues:
• What do you branch on?
• How do explore the tree?
• How do you know when

you’re done?

*2x

 *2x  *2x

Node Selection

• Commercial codes have lots of clever tricks
• Look at the objective function coefficients/reduced costs of the

fractional variables
• Look at “degree of fractionation” (where .5 is the most fractional)

• Branch priorities
• Supplied by users

OR 541 Fall 2009
Lesson 10-3, p. 4

• Supplied by users
• Tells code which variables to branch on first
• Example: y1 = build a factory, y11 … y1n produce products at that

factory
• Which variable should you branch on first?
• NOTE: MPL doesn’t appear to support this, although CPLEX

does

Branch-and-Bound: Probing

• Commercial codes look at the “implications” of a branch
• Suppose we have the following constraints:

xxxx
xxx

xxx

1
1
1

421

321

≤+++
≤++
≤++

OR 541 Fall 2009
Lesson 10-3, p. 5

• Suppose we solve the relaxation, and x2 = 0.5
• What happens if we set x2 = 0?
• What happens if we set x2 = 1?

ix

xxxx

i allfor }1,0{

15432

∈
≤+++

Branch-and-Bound: Tree Traversal

• Tradeoff here is feasibility versus optimality
• Winston’s “last-in-first-out”

• Actually is “depth-first-search”
• Technique is to dive as deep into the tree as necessary to get

an integer feasible solution
• Idea is to get integer feasible first, then search for improvement

OR 541 Fall 2009
Lesson 10-3, p. 6

• Idea is to get integer feasible first, then search for improvement
• Getting an integer feasible solution provides a lower bound,

may cut off large parts of the tree later

• See Winston, figures 10-17, pp. 512-517

More Traversal

• If you already have a feasible solution, you may want
to traverse the tree differently
• Winston calls this “jumptracking”
• Actually is “breadth-first search”
• Instead of diving into the tree, you solve each node resulting

from each branch

OR 541 Fall 2009
Lesson 10-3, p. 7

• Regardless of the traversal, note what happens at
each node:
• Problem is either infeasible, integer feasible, or “tightened”
• First two cases: node is “fathomed” and no more search is

necessary

Branch-and-Bound: Stopping Criteria

• Winston gives the impression you stop when
everything is fathomed

• Not so - would be deadly for many big problems
• To prove integer optimality, you need to fathom every node
• Untenable for a big MIP

• Need to set an “integrality gap” (usually 0.01 - 0.05)

OR 541 Fall 2009
Lesson 10-3, p. 8

• Need to set an “integrality gap” (usually 0.01 - 0.05)
• For a max problem, we have an upper bound at any stage of

branch and bound
• An integer feasible solution gives a lower bound
• The integrality gap is usually defined as:

boundlower

boundlowerboundupper
gap

−=

Prudence in Solving a Big MIP

• Set an iteration limit
• Most solvers let you limit the number of iterations
• Allows you to avoid long, useless runs

• Set a solve time limit (for same reasons as above)
• Set a loose integrality gap to start (say, 0.20)
• If you have an existing solution:

OR 541 Fall 2009
Lesson 10-3, p. 9

• If you have an existing solution:
• Compare it to the LP relaxation; use it to give advice on an

integrality gap
• Use the objective function value as a “cutoff” parameter; solver

won’t explore branches worse than the cutoff

• Use branch priorities

