SYLLABUS SYST 221 201 – Systems Modeling Laboratory (13053) Spring 2008

- Instructor: Dr. Harold Camp Phone: (703) 585-7745 (with voice mail) E-mail: hcamp@gmu.edu Office Hours: Tuesdays at 6 PM and Thursdays at 3:30 PM in Student Union (by Radio Station). Others by appointment (see email and Phone Number) SYST 221 Systems Modeling Laboratory (1:0:3) Corequisite: SYST 220. Course Description: Introduction to computer modeling using an engineering modeling environment such as MATLAB. Simulation and numerical solution of continuous dynamic systems. Discretization of continuous time systems. Use of built-in functions and construction of macros. Graphical presentation of results. Solution to systems of linear equations, numerical integration and differentiation, interpolation and curve fitting, solution of ordinary differential equations. 1. Same as for SYST 220 Text: 2. Mathlab with Simulink, Release 14 with service pack 05 or later (available in GMU Bookstore) 3. University of Texas On-Line MATLAB Tutorial (link to be provided in class) Grades: 20% - Group Project: • Define the Project & Modeling Plan Build the Model and Execute Parametric Study • Interpret and Present Results •
 - 40 % Laboratory Reports (Groups)
 - 15 % Mid Term Exam
 - 25 % Final Exam

Group Project:

The Group Project is one focal point of student effort within this course. The majority of effort toward the group projects will be expended outside of class, with class time being reserved for reporting on activities. Each group of four students will select a complex system (second order ordinary differential equation), define a problem to be solved regarding that system, create a mathematical model of the system, build a simulation of the system, and solve the defined problem using parametric analysis. Additional criteria and guidance for these activities will be given in class. Each group will present their project to the class.

Examinations:

Examinations are comprehensive over the work performed during the course and the course lecture material. Examinations will be open book and open notes since the examinations will test you on the application of principles learned. You will be expected to interpret the material of the course, not to repeat it via rote memory. Examinations are intended to enhance the student's laboratory experience and challenge the student to correctly apply the course material.

Laboratories:

Students are assigned to groups. Laboratories may be worked by the group or individually. Please turn in only one Laboratory Report with all the names of the individuals who contributed to the report. Caution: one who relies on the group and does not learn for him/herself probably does not perform well on the examinations.

CLASS SCHEDULE – Updated on 15 January 2008

Week 1	24 January	 Lecture: Introduction to Solving Dynamic Systems Laboratory 1: Parachute I
Week 2	31 January	 Introduction to MATLAB Laboratory 2: Parachute II Groups: Form and Organize Groups
Week 3	7 February	 Lecture: Displaying, Labeling, and Interpreting Results Laboratory 3: Parachute III, Parametric Analysis
Week 4	14 February	 Lecture: Numerical Integration and Differentiation Laboratory 4: Ballistic Trajectory
Week 5	21 February	 Lecture: Interpolation and Curve Fitting Laboratory 5: Determination of Accuracy of Numerical Integration
Week 6	28 February	 Lecture: Systems of Linear Equations. Laboratory 6: Solve 3 X 3 Systems of Equations
Week 7	6 March	Mid-Term Exam
Week 8	13 March	Spring Break
Week 9	20 March	 Lecture: Solution of Ordinary Differential Equations Laboratory 7: Mechanical Spring and Dashpot System Groups: Turn in Project Definition
Week 10	27 March	 Lecture: Simulation and Numerical Solution of Continuous Dynamic Systems Laboratory 8: Electronic System, Band Pass Filter
Week 11	3 April	 Lecture: Discrete Systems and Discretization Laboratory 9: Population Model Groups: Turn In Modeling Plan
Week 12	10 April	 Lecture: Descretization Laboratory 10: Descretization of Mechanical System
Week 13	17 April	 Lecture: Discrete Control Systems Laboratory 11: Proportional Control Groups: Turn In Parametric Study Plan
Week 14	24 April	 Lecture: Curve Fitting Laboratory 12: Curve Fitting
Week 15	30 April	 Lecture: Review for Final Exam Group 1 Presentation Group 2 Presentation Group 3 Presentation Group 4 Presentation
Week 16	1 May	 Lecture: Review for Final Exam Group 5 Presentation Group 6 Presentation Group 7 Presentation Group 8 Presentation
Week 17	8 May	Final Examination

Note: Weekly minutes of group activities to be emailed to <u>hcamp@gmu.edu</u>. Format will be discussed in class.