Max — Min Problems

* These types of problems have become common
recently in military and security circles

» General characteristics
* Two opposed sides
* One side is attempting to use a system
* The other side is trying to thwart use of that system

e System user has to commit to a course of action, then
opposition reacts

» Each side has limited resources
» Each side knows the other’s capabilities

* This is a Stackelberg (leader-follower) game
o Literature refers to these as attacker-defender models

OR 541 Spring 2007
Lesson 9-1, p. 1

Example: Roadblock Delay Model

» Consider the modified shortest path model below:

maxmin z= Z(Cij +D, Y, J* X,

y X i,jJARCS(, j)
subject to
[1i=s]
{ Z)gj}{ iji}:m,i#sandi#d&
jOARCS(i,) jOARCS(j i) “1i=d |

0< x; <1 forall ARCS(, j)
Z Y < MAXCHECKPOINTS

i, JOARCS(i, j)

y; 0{0,3} for all ARCS(, j)

* What situation is being modeled? What are the D;'s?

OR 541 Spring 2007
Lesson 9-1, p. 2

Problems (and the Solution)

 \We don’t know how to maximize one set of variables
while minimizing another

* The objective function is nonlinear

 What to do?

* Note that if we fixed the y’s, we'd have a typical shortest path
formulation

» SO, let’s do that, and write the dual of the problem:

maxz=u, —u,
subject to
u -u <C +D;y, foralli, j0ARCS(, j)

u. unrestricedfor alli

OR 541 Spring 2007
Lesson 9-1, p. 3

Now We Have Something We Can Solve

* The dual problem is linear in the y’s
e The dual problem is also a maximization
* S0, we can solve a single optimization:

maxz=u, — U
subject to

u,—u <C +Dyy,; foralli,] 0ARCS(,))
u. unrestricedfor all i

Y y; < MAXCHECKPOINTS

i,j0ARCS(,)

y; 0{01} for alli, j 0 ARCS(i, j)

OR 541 Spring 2007
Lesson 9-1, p. 4

Application: Changi Naval Base, Singapore

Intelligence service gets word of a
possible terrorist attack against a
ship in port at Changi Where should the

checkpoints be set?

~ __~« Ship needs 2
. hours to get
~ away to safe
distance

OR 541 Spring 2007
From “How to Attack a Linear Program,” Jerry Brown, Matt Carlyle, Terry Harrison, Javier Lesson 9-1, p. 5
Salmeron, and Kevin Wood, Naval Postgraduate School , copyright 2003

When Does This Trick Work?

* You need the following structure in your model:

 Variables associated with both sides only appear in the objective
function

* These variables appear in a multiplicative form

* One side can be modeled using continuous variables (so you can
form its dual)

* Methodology is available to iterate between
optimizations

* Necessary when both sides require integral variables

 Mechanics of passing solutions between optimizations (and
avoiding cycling) can be complicated

e YOou can also exploit network structure ...

OR 541 Spring 2007
Lesson 9-1, p. 6

Project Delay Model

* One side has a project, another wants to delay it
* Try augmenting the easy (dual) CPM formulation:

maxmin z=u, — U,
y u D;: delay if
: opposition
SUbJeCt to attacks task i
u —u 2C +Dy, foralli, j0ARCS(, j) DC;: resource
required to
> DCy, <DT attack task |
' _ _ DT: total
u. unrestricedfor all i resources
_ available
y, 0{ 03} foralli

* NO go: mixes u’s and y’s in the constraints

OR 541 Spring 2007
Lesson 9-1, p. 7

Try the Primal Form of CPM ...

* I’'m maximizing both sides, but the objective is nonlinear

maxmaxz= Y (C +D,y)*x,
y X i, iJARCS(i,j)
subject to

{ Z“H zx,.iHo,ifs’LﬁLd}

jOARCS(i,) jOARCS(j i) - 1,i =d
O< x;, <1 forall ARCS(l,])
> DCy, <DT

yli 0{0,2 foralli

e Am | stuck?

OR 541 Spring 2007
Lesson 9-1, p. 8

The Trick

* Create additional arcs, which the attacker controls

maxmaxz= » (C+D)x;+ >.Cx

y X i, iDARCS(i,) i, jJARCS(i,)
subject to
1,i=s
{ DX +x'”}{ DX, +x'ji} =:0,i #sandi #d
iDARCS(i}) iDARCS(j i) -1,i=d

What do these x;; <y, forall ARCS(, j)
constraints do? X; <1-vy, for all ARCS(l, j)

0< x;<1,0<x; <1 forall ARCS(, j)
Y DCy, < DT

0< x; £1,0< X, <1 forall ARCS(i, j)
y, 0{0,3} for alli

OR 541 Spring 2007
Lesson 9-1, p. 9

Can We Allow the Other Side to Crash Jobs?

» Change the (one-sided) project crashing model a bit
to minimize total project time, with a constraint on
added resources

min z=u, — U, cr,: amount to
subject to expedite task i

. . CC;: resource
u, -y, =G —cr foralli, j 0 ARCS(l, |) (>qj)

per unit time to

Z:CCi [er, <CT (V) expedite task i
| CT: total
u. unrestricedfor all | resources

available

O<cr,<C —MIN, foralli (qi)

* \We need to form the dual of this model

OR 541 Spring 2007
Lesson 9-1, p. 10

Dual of Project Crashing Model

maxz= Y Cx,+> (MIN,-C)q -CT ¥

X,q,V

i, jOARCS(i,|) i
subject to
r l,i=s |
{ Z&,}{ ZX“}: Oizsandizd: (u)
jOARCS(i, }) JOARCS(j i) \ -1,i=d |
3 x, —~CC, V-q <0 foralli (cr)

jOARCS(i,)

0< x; <1 forall ARCS(i, j)
g =0 foralli,v=0

OR 541 Spring 2007
Lesson 9-1, p. 11

Now, Use the Same Trick ...

maxz= > (C+D)x;+ Y Cx +> (MIN,-C)q-CT

i,jOARCS(i, j) i,j0ARCS(i, j) i
subject to
B] 1l,i=s
DX X |- DX+ X |=10,i Zsandi #d
| jOARCS(i,j) 1 JOARCS(j i) -1,i=d

D % +x; |-CC -q <0 foralli
| jDARCS(L)
X, <y, forall ARCS(,)

x, <1-y, forall ARCS(i, j)
0<x, <1,0<x; <1forall ARCS(,)

Y DCy, <DT
0<x;<1,0< x; <1 forall ARCS(i, j)

q=0foralli,v=0
y, 0{0,3} for alli

OR 541 Spring 2007
Lesson 9-1, p. 12

Morals ...

* We can solve a very important set of two-sided models
using elementary LP theory

» A wide range of such models can be solved as a
single optimization

* YOou have to be able to form the dual of one of the
sides to do this

* You have to know which constraints in this dual
correspond to the variables of that side (why?)

OR 541 Spring 2007
Lesson 9-1, p. 13

Review of Forming Duals

 Let’s do a simple version of the project crashing
problem G

o

* Assume we can crash the jobs s, 1, and 2
o Let’s write down the problem in standard form ...

min z=u, — U
subject to
u -u +cr, >C foralli, j 0 ARCS(,) (x)

-2 .CC; [er, > -CT (v)

u unrestricedfor all i
—cr 2 MIN, -C, foralli (q)

OR 541 Spring 2007
Lesson 9-2, p. 1

Write the Problem in Tableau Form

* This is an exercise you can do in a spreadsheet

e Remember that each row will become a variable in the

dual, and each column will become a constraint

dual vars
X(s,1)
X(s,2)
x(1,d)
x(2,d)
a(s)
a(1)
a(2)
v

I—

IN—

N

N

cr(s)

>=C(s)

>= C(s)

>=C(1)

N =] =] (=)

>=C(2)

>= MIN(S) - C(S)

>= MIN(L) - C(1)

>= MIN(2) - C(2)

o|o|o|o|o|o|o|o|~|N

o] (=] [=] [=] [=] [=] FiN N [N 7

C
olo|o|o|o|k|o|r|ote

C
ol|o|o|o|k|ol+(olos

C
(=l (=] (o] (o]] L (=] (=] L] /oy

Olo|o

-CC(s)

>= CT

OR 541 Spring 2007
Lesson 9-2, p. 2

Write the Transpose to Form the Dual

e Again, you can cut and paste the transpose of the

matrix in the spreadsheet

dual vars
U(s)
u(1)
U(2)
u(d)
cr(s)
cr(1)
cr(2)

z X(s,1) X(s,2) X(1,d) X(2,d) q(s) q(1) q(2) v

1 C(s) C(s) c(l) C(2) | MIN(s) - C(s)[MIN(L) - C(D)|MIN() - C(2) CT

0 -1 -1 0 0 0 0 0 0 =il
0 1 0 1 0 0 0 0 0 =0
0 0 1 0 1 0 0 0 0 =0
0 0 0 1 1 0 0 0 0 =1
0 1 1 0 0 -1 0 0 -CC(s) <=0
0 0 0 1 0 0 1 0 -CC(1) <=0
0 0 0 0 1 0 0 1 -CC(2) <=0

» Does this match the dual formulation?
e If not, what doesn’t match?

OR 541 Spring 2007
Lesson 9-2, p. 3

Making the Formulation Match

* The network flow constraints are all equalities

o If you multiply them each by -1, you get the dual

formulation back

Z x(s.1) X(s,2) x(1,d) x(2,d) q(s) q(1) q(2) v
dual vars 1 C(s) C(s) C(1) C(2) |MIN(s) - C(s)|MIN(1) - C(1)[MIN(2) - C(2) -CT
u(s) 0 1 1 0 0 0 0 0 0 =1
u(1) 0 -1 0 1 0 0 0 0 0 =0
U(2) 0 0 -1 0 1 0 0 0 0 =0
u(d) 0 0 0 -1 -1 0 0 0 0 =-1
cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <=0
cr(1) 0 0 0 1 0 0 -1 0 -CC(1) <=0
cr(2) 0 0 0 0 1 0 0 -1 -CC(2) <=0

* This preserves the network convention that flow out is

positive

OR 541 Spring 2007
Lesson 9-2, p. 4

Another Useful Model - Network Interdiction

* Two players:

* The network user wants to maximize flow through a
capacitated network

* The network interdictor wants to reduce flow by interdicting
arcs in the same network
» The interdictor can interdict a limited number of arcs

* Rules of the game
 Both players know the network and the arc capacities
e The interdictor chooses which arcs to interdict
o All interdictions are completely successful

 The user observes the interdictions and then maximizes flow
on the remaining network

OR 541 Spring 2007
Lesson 9-2, p. 5

The Model (sparing the derivation)

minz= > U;b

i jOARCS(,)

subject to
w, —w, +h, +y, >0 for all ARCS(j, j) —(d,s)
w, —wW,+b, =1

Ry<r

y;»0; 0{01} foralli,) O ARCS(, J)
w {01} for alli

U;: upper bound
for flow on arc

d (s): source
(destination) node

R: interdiction
consumption
parameters

r: interdiction
resources available

w, b: dual variables
for network user

OR 541 Spring 2007
Lesson 9-2, p. 6

Example: Winston p. 472, #2

500 (500)

400 (250)

OPTIMAL
FLOWS IN
RED

300 (300)

400 (400)

200 (100)

350 (350)

150 (150)

Dummy arc:
set capacity
at large #

(like 10000)

OR 541 Spring 2007
Lesson 9-2, p. 7

Solution with New Model, 1 Arc Interdicted

OPTIMAL
FLOWS IN
RED

300 (0)

500 (200)
THIS ARC IS

INTERDICTED

250 (200)
400 (150) 350 (350)

150 (150)

Rysr = >y, <1

I, JHARCS(I, |
J (J) OR 541 Spring 2007
Lesson 9-2, p. 8

Other Notes About This Model

* Interpreting the solution
 The y’s that are 1 give the arcs that are interdicted
» The objective function gives the resulting max flow
* The b’s that are 1 give the min-cut arcs in the remaining
(uninterdicted) network
e SOme interesting extensions

« Suppose interdicting each arc has a an interdiction cost; then,
you could let the interdiction be subject to a budget constraint

 To make an arc “uninterdictable” just bound the corresponding
y variable to be equal to O

OR 541 Spring 2007
Lesson 9-2, p. 9

A General Attacker — Defender Model

e Suppose vy represents the defender, and x the attacker

* The attacker can take away certain of the defender’s
resources, but he is limited by his own resources

* The resulting model (in matrix-vector notation) is:

C: attacker’s
consumption
parameters

d: attacker’s
available resources

maxmin z =cy
X y

subject to
Ay =D
Fy<U (1-X)
Cx<sd
x=20,y=0

c: defender’s cost vector

A: consumption parameters for
unattackable resources

b: available unattackable
resources

F: consumption parameters for
attackable resources

U: available attackable resources
= diag(u)

OR 541 Spring 2007
Lesson 9-2, p. 10

Switching Problem to “Cost Attack”

* As before, we can’'t handle x’s and y’s in the

constraints

* Instead, we penalize y’s use of resources that x
attacks by attaching penalties in the objective

P: matrix containing
penalties for using
attacked resources

maxmin z =cy
X y

subject to
Ay=b (v)
Fy<u (W)
Cx<d
x=20,y=0

—

X' PFy)

Proportion of y’'s
attackable resources
taken away by attacker

OR 541 Spring 2007
Lesson 9-2, p. 11

Converting to a Single Optimization

 As before, take the dual of the inner problem to form a
single maximization:

max=b'v+uw

X,V,W

subject to
A'v+F'w=c+F'Px
Cx<d
x=20,v=0,w<0

OR 541 Spring 2007
Lesson 9-2, p. 12

Parting Notes

o If you build a model like this:
* You have to choose which side will be represented by the dual
* You must be careful about choosing penalties; should be as small
as possible, otherwise results may be unreasonable
» This is growth area in optimization modeling

 Some useful articles:

* Brown, Carlyle, Salmeron, and Wood, “Defending Critical
Infrastructure”

* Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K., 2005, “ A
Two-Sided Optimization for Theater Ballistic Missile Defense,”
Operations Research,53, pp. 263-275

» Available at http://www.nps.navy.mil/orfacpag/resumePages/papers/
browngpa.htm

OR 541 Spring 2007
Lesson 9-2, p. 13

Integer Programming

* Time to drop the divisibility assumption of LP

* Most obvious reason
« Many resources or decisions restricted to integral values
* Rounding an LP answer often infeasible or suboptimal

 Less obvious (but maybe more important) reason
* Integer variables can implement logical conditions (if-then, one
of many, etc.)
 Allows the model to make complex decisions

* Another reason
* Integer variables can be used to approximate nonlinear
functions
» Often employed for things like quantity discounts

OR 541 Spring 2007
Lesson 9-3, p. 1

These Capabilities Come at a Price

* Integer programming much more difficult
« \We’'re searching a “lattice” of points, not a continuous space

 Many problems contain a combinatorially explosive number of
possible solutions

« Example: “NOSWOT” problem from MIPLIB
» 128 total variables - 75 binary {0,1}, 25 integer
« CPLEX 6.0: did not solve after running for several days

« CPLEX 6.5: solved in 6.2 hours, but required solving
26,521,191 LP’s in a branch-and-cut tree

 And what became of NOSWOT?

« CPLEX guys declared war, examined core problem

» Added 8 additional constraints; problem now solves in 16
seconds

OR 541 Spring 2007
Lesson 9-3, p. 2

Morals of Integer Programming

o It is very, very difficult to beat an experienced human
scheduler

e If you have an existing heuristic way to get a solution,
you should start with that

* Problems that look innocuous can be very tough or
Impossible

« Add any constraints or exploit any problem structure
you can

* Read both Woolsey articles!

OR 541 Spring 2007
Lesson 9-3, p. 3

Restricting Variables to Integral Values

 For variables restricted to integral values, just declare
them as “integer”

e We’'ll deal with how this works later

o If your problem has no logical conditions, rounding
often works
« Such problems are said to have a feasible “interior”
 Early IP literature filled with rounding schemes
e Some still used on enormous problems

OR 541 Spring 2007
Lesson 9-3, p. 4

Using Binary Variables for Logical
Conditions

e Suppose vy1, y2, and y3 are binary {0,1} variables

* Let 1 represent true (or “on”), O be false (or “off”)

* The following table gives a logical expression and the
appropriate constraint:

ySSyl
*y3=ylandy2 C—) <y
Y22y, ty, -1

ySZyl
ey3=ylory2 [C—> vy, 2y,
Ya= YV, Y,

 if yl, then y2 |:> Y, <Y,

OR 541 Spring 2007
Lesson 9-3, p. 5

Fixed Charge Formulations

 Typical situation: have to pay a fixed cost before
producing or consuming something
« Example: have to build a factory before making a car
* If cars made = 0, you don’t need the factory
o If cars made > 0, you need the factory (but just one!)

e How to do this:
« Assume X is the variable that depends on some fixed condition
e Let y be a binary {0,1} variable, with 0 = off, 1 = on
* Let U be the upper bound on x
* The following constraint forces x to 0 unless y is 1 (on)

Uy = X

OR 541 Spring 2007
Lesson 9-3, p. 6

Either-Or Conditions

» Used in situations where one of two constraints apply,
depending on a decision variable

« Example: saving for your kid’s future
 y = 0 send kid to vocational school, at cost U,
» y =1 send kid to Harvard, at cost U,
* X, = amount saved for vocational school
* X;, = amount saved for Harvard
» The following enforces this condition:

U,[L-y)<x,
U,y <X,

OR 541 Spring 2007
Lesson 9-3, p. 7

Generalizing the Either-Or Conditions

« We may have situations where we want to choose
among constraints

 Example: y = 1 means overthrow despot of oll rich country; y =
0 means don’t overthrow him

« Constraints on military expenditures and oil availability may or
may not apply, depending on the value of y

» Choosing among two constraints:
o y = 1 “turns off” constraint 1
« y = 0 “turns off” constraint 2

Za'ilxi <b :Zailxi —-b <M,y
or
Zaizxi < bz :Zaizxi _bz < Mz(l_ Y)

OR 541 Spring 2007
Lesson 9-3, p. 8

Choosing K out of N Constraints

* You can extend this to the “K out of N” case:
» Define y, ... yy as binary variables
» The following ensures that only N-K constraints will hold:

Zailxi <b = Za11Xi —-b <My,

ZaiNXi SbN :ZaiNXi _bN < MyVYy

ZYiSK

y, 0{03} for all

OR 541 Spring 2007
Lesson 9-3, p. 9

Functions or Variables with N Possible Values

e Sometimes a function or variable can only take on a
set of values
« Example: raw materials available only in certain lot sizes

* Only certain combinations of waist size and sleeve length
available

eLet D, ... Dy be the values the function can take on;
then:

2.a;x; =2 Dy,
] [
ZYi =1

y. 0{02} for all

OR 541 Spring 2007
Lesson 9-3, p. 10

If-Then Conditions

o If the first condition applies, then so must the second
e Example from Winston:
f(xX)>0=9g(x)=0
* This is logically equivalent to an either-or condition:
f(x)<0 OR g(x)=0 ORBOTH
« S0, If G, Is a lower bound on g(x), F, Is an upper

bound on f(x), and y is binary, the following constraints
Implement the condition:

g(x) =G *y
f(X)<F,*(1-y)
yo{oz}

OR 541 Spring 2007
Lesson 9-3, p. 11

