Networks

* People have been thinking about network problems for
a long time

» Koenigsberg Bridge problem (Euler, 1736)

The Konigsherg Bridge Problem

e Can you cross all 7 bridges exactly once on a walk?
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Types of Network Flow Problems (Winston)

e Transportation problem (Hitchcock, 1941)
» Given a set of sources, destinations
« Have source capacities, destination demands
« Know shipping cost/unit for each source-destination pair
* Minimize total cost of meeting demands at destinations

* Assignment Problem

» Restricted transportation problem

» Each source can supply 1 object

» Each destination demands 1 object
e Transshipment Problem

» Transportation problem with intermediate (transshipment) points
» Generalizes both transportation and assignment problem
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Other Network Models in Winston

» Shortest path problem (Dijkstral959)
 Find the shortest route between an origin and a destination
 Algorithms range simple “greedy” algorithm to very complex
» Special case of the transshipment problem

 Maximum flow problem
« Maximize flows from a single source to a single destination
 Important dual result: finds the minimum “cut” in a network

e Minimum spanning tree
* Objective is to connect all nodes in a network
« Want to minimize the total length of the connections

* Project management (PERT-CPM)
* Find time to complete a linked set of tasks
e Is actually a “longest path” problem
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Some Network Models Not in Winston

e Circulation problem
* Transshipment problem with no source or demand nodes
« Example: airline routing schedules

» Generalized flow problem
« Some of the material flowing on the network is lost in transmission
« Example: electrical power transmission, water distribution

e Multicommodity flow problem
* More than one type of material is flowing on the network
 Different materials consume network capacity, but may have
different transmission costs
* Network interdiction problem
e Bad guys are moving on a network; good guys try to stop them
» Each side has to choose what paths to use or interdict
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Network Models Not in Winston (cont’d)

* Network reliability problem
* Find the maximum reliability set of routes in network
* In certain cases, can be recast as an MCNFP

* Network models with “side constraints”

» Knapsack problem: optimize the “goodness” of a set of objects that
must fit into a finite-sized “knapsack”

» Traveling Salesman Problem: find the minimum-cost tour among a
set of destinations, but only visit each destination once

 VVarious vehicle routing problems

* Network optimization literature is gigantic
e Seminal text is Ahuja, Magnanti, and Orlin (1993); 846 pages!
« Huge number of applications
* Inspiration for much of the research into algorithmic efficiency
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Concentration in This Course

* | will emphasize the transshipment problem

e Otherwise known as the minimum-cost network flow
problem (MCNFP)

e Reasons:

» Transportation, assignment, max flow, shortest path problems are
all cases of MCNFP

» All commercial software implements a modified simplex method
based on MCNFP

* To exploit this capability, you have to formulate in terms of MCNFP

» Specialized transportation and assignment problem algorithms are
largely unnecessary (e.g., stepping-stone and Hungarian methods)
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Network Jargon

* To model a problem as a network, we need some
terminology

* A graph G consists of:
* A set of nodes (N)
* A set of arcs (A), which connect the nodes
* S0, G = (N,A) specifies the “topology” of the network

» Graph characteristics
 Leti,j be indices for the nodes
* Then the pair (i,j) identifies an arc
» This notation allows us to define things such as:
* Unit transportation costs on an arc (Cy)

 Supplies at each source node (S))
« Demands at each demand node (D))
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From Network to Optimization Model

» Consider the transshipment network below:

(_6’5)

(-4.2)

(11,8) _

* What does all this mean?
 Numbers in circles are node labels
 Numbers next to nodes are supplies (>0) and demands (<0)
 Numbers on arcs are (cost/unit to ship, max flow on arc)

e Assume we want to minimize total cost
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Optimization Model (Winston format)

* Let x;; be the flow on arc (i,j)
e Then, the model is:

min z =11x,, + 10X, +13X,; — 4X,, + 11X, — 6X,; + 13X,

subject to
X, + Xia = 6 (nodelbalance)
=Xy, F Xy F Xy, + X =2 (node2 balance)
—= X3 — X = X,z = -4 (node 3 balance)
= Xy + X, — X,  =-3(node4 balance)
— X5 + X, =-1(node5balance)
dl x; =0

Xio S 1 X3 S4, X5 £5, %y €2, X5 £8, X5 S5, X <9
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Some Key Points

« FLOW MUST BALANCE!
 For pure supply nodes, flow out must equal supply
* For pure demand nodes, flow in must equal demand
 For transshipment nodes, flow out must equal flow in
* Note the example has nodes that demand and transship

* What do we do if supply is unequal to demand?
e Create dummy node to absorb (ship) excess supply (demand)
 Create costs that make sense in the model

* Arc costs can be negative
« Can also force flow on arcs by putting in lower bounds

e Signh conventions
* Flow out is positive
* Flow in is negative
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Optimization Model (Algebraic format)

* Indices
*I,] =nodes {1,2,3,4,5}
e Subsets
 ARCS(i,j) = connections between nodes

* Data
* C; = cost per unitto ship on arc ]
*L;= lower bound on flow on arc i,
* U; = upper bound on flow on arc i,]
 SD; = supply or demand at node |

e Variables
* x; =flowon arci,]
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Algebraic Format (cont’'d)

* S0, the general MCNFP is:

mnz= ) C,*x
i JOARCS(i,])
FLOW

subject to / IN

{ Zx”}—{ iji} = 3D, for all nodes i
iOARCS(i, ) OARCS(j i)

FLOW L, <X, <U; for all ARC(i, |)
ouT

 One MPL program can represent any MCNFP!
e S0, are we done yet?
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Answer Is NO

* The trick with networks is to translate the problem into
a network structure

« Many things that don’t appear to be networks are
» See Winston, pp. 366-368 on the inventory problem
* Many, many other models can be represented by a network

« S0, the challenge is to:
* Determine if the problem can be represented by a network
* If so, come up with the nodes, arcs, costs, and capacities
* Why do we want to do this?

» Speed:. network codes are much faster than normal LP simplex

e Integrality: if a problem can be represented by an MCNFP, it
will have integral answers (if the supplies, demands and
bounds are integer)
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Common MCNFP Models - Transportation

 Transportation problem
e This is an MCNFP with no transshipment nodes
* Nodes are divided into two disjoint sets, SOURCES and SINKS

e S0, the formulation becomes:

mnz= ) C,*x

i,jOARCS(i,j)
subject to
> x; = SUPPLY; for al nodes i 0 SOURCES

jOARCS(i, j)
Y x; = DEMAND; for all nodes j 0 SINKS

iDARCS(i, )

0< x; <U; foral ARCS(i, j)

* Winston shows a special algorithm for this, but it’s
unnecessary
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Common MCNFP Models - Assignment

A very simple model (too simple to be of much use)
* We are matching demands to supplies
« Each demand (supply) node demands (supplies) 1 unit

 Number of supply and demand nodes are equal

*So, this model is:  |minz= Y'C *x
i,i0ARCS(i, })

subject to

> x; =1 forall nodes i 0 SOURCES
jOARCS(i, )

Y x; =1forall nodes j 0 IINKS
iDARCS(i, j)

x; 0{0,1} for all ARCS(i, j)

* Again, Winston shows a special (Hungarian) algorithm
for this - it's not needed
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Common MCNFP Problems - Max Flow

 This is useful, but is a twist on the MCNFP formulation
* We are maximizing flow from a single source (s) to a single

destination (d)

* This flow, however, is a variable, v

* This model is:

max z=V
subject to
v fori=s
> % [=| D.x;|=40 foralnodesi#si#d
JOARCS(i, ) jOARCS(j i) —-v for i =d
O<x; <U; foral ARCS(l, ))

* Note here that we have to include a “return arc” from d
to s to ensure the flow balances
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Shortest (Longest) Path Problem

* This can also be represented by an MCNFP

» Costs are arc lengths
* Flow 1 unit from the origin s to the destination d
e Minimize (maximize) the sum of the arcs used

e Formulation:

min (or max) z= Y G, * X,
i iOARCS(i,})
subject to

1,i=s
{ Z)gjl{ iji}: 0,i Zzsandi #d
jOARCS(i,j) jOARCS(j i) —]_,i =d

0< x; <1 forall ARCS(i, j)

 NOTE: lots of simple algorithms (e.g., Dijkstra)
available for this problem
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Converting a Problem to a Network

 Many hard problems become easy if you can convert
them to a network
« Example: open-pit mining problem
* An open pit mine can be represented as a set of blocks

» Each block i has a net profit w; if you choose to extract it
 But, you have to remove the blocks above it to get to it

* This problem is called a “maximum weight closure”
* The graph is a set of nodes with weights
* The arcs show dependencies among nodes
* A closure is a set of nodes with no outgoing arcs
* The objective is to find the closure with maximum weight
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Example Closure Problem

@&M

Number in parentheses Example: A, B, and
Is payoff for choosing E is a closure, with
that node total weight = 10
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Converting a Closure to a Max Flow Problem

 Add two new nodes, s and t

e Connect all nodes with positive payoffs with arcs from
node s

« Connect all nodes with negative payoffs arcs to node t

» Make the upper bound on all new arcs the absolute
value of the weight of the node

* Make the upper bound on the original arcs infinite
e Solve a maximum flow problem with this network
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The Maximum Weight Closure as a Max Flow

Upper bound on
flow for all new
arcs is the absolute
value of the node
they connect to
(except for T to S)
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Getting the Answer

Objective function
value: 60

Flows shown on
diagram

But what nodes are
in the closure? And
what’s the weight?
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Aside: the Max-Flow Min-Cut Theorem

* In a maximum flow problem, the optimal flow is equal to

the capacity of the minimum “cut”
e A cut is a set of arcs that divides the network into two sets of
nodes, one containing the source (S) and the other the sink (T)
« Call these sets of nodes N, and N,
« Each arc in the cut set has one endpoint in N; and another in N,

e Consequences:
« Solving the max flow problem also gives the minimal set of arcs
that can “disconnect” the network

» The arcs in the cut will all be at their upper bounds
» A large network can have many cutsets
* May have to resort to a separate algorithm to find them all
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Finding the Min Cut in the Closure Problem

Marked arcs are at
their upper bounds

Note that the sum
of those bounds is
the max flow
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Delete the Arcs in the Min Cut

Now we see the
partition of the
nodes ...

Which partition is
the maximum
weight closure?
And what is its
weight?
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Some Final Notes

* We can solve the max weight closure problem directly:

max z= ) WX

subject to
x < x; foralli,]JARCY(, J)
x 0{01} foralli

e People convert it to a network because:

* There are special max flow algorithms available that do not
require expensive LP solvers

o It's relatively easy to code these algorithms and they run quickly
* However, you must do added work to find the solution

e See http://128.32.125.151/riot/index.html (the Remote
Interactive Optimization Testbed) website for a demo
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The Critical Path Method (CPM)

» Recent evolution of project scheduling
* Methodology depended on who was in charge
o After WW I, the Gantt (bar) chart became a popular method
» But, bar charts had limited ability to depict complex
relationships
« DuPont and Remington Rand Univac developed a new
method in the late 1950’s
» Approach was to depict the project as a network

« Aim was provide a means to investigate tradeoffs in project
cost and duration

e Came to be known as CPM
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CPM Formulation

 CPM is essentially a longest-path problem (and can be
depicted as an MCNFP)

e Consider the following example (from Schrage):

Activity Job # Time Hredecessors
Dig basement A 3 none
Pour foundation B 4 A
Pour basement floor C 2 B
Install floor joists D 3 B
Install Walls E 5 B
Install rafters F 3 C,E
Install flooring G 4 D
Rough interior H 6 G
Install roof I 7 F
Finish interior J 5 I,H
Landscape K 2 C,E
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Network Representation (Activity-on-Arc, or AOA)

* Nodes represent precedences

» Arcs represent activities and completion times
 Project time is the longest path from 1 to 9

* What's the critical path?

—&—F

3(A) 4 (B)

2 (K)
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A Better Representation: Activity on Node (AON)

* Here is the same problem with the nodes as activities

 This representation is far superior to AOA
« AOA frequently requires dummy arcs to depict precedences
e Minimizing the number of dummy arcs is a difficult problem
* We will not use AOA representations in this course
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CPM as a Longest Path Problem

 Just maximize the shortest path formulation:

2.Ci*x

i,j0ARCS(i,])
subject to

MmaX Z =

1,i=s

0< x; <1 foral ARCS(i, j)

{ Zx”}—{ iji}: 0,i #sandi #d
jOARCS(i,j) jOARCS(j,i) —1,i =d

la

 However, we will work (for now) with the dual of this

problem

* The indicies i, | (with start s and finish d) now represent jobs
» The variable u; is the start time for each job

* Let C; be the completion time of job i
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Dual Formulation

» Here's what the dual looks like:

minz=u, —u
subject to

u, —u =C fordli, j0ARCI(, j)
u. unrestricted for all |

S

* The dual is not a network!
 The total time is the difference between u, and u
» The rest of the constraints enforce precedences, completion times
» The dual is easier to formulate (and extend) than the MCNFP

» This formulation does let us get at what the original researchers
wanted to investigate, though ...
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Project Crashing

» Addresses trades between expenditures, completion time

e Assume that:
 You know the cost per unit time to “crash” a job (CC))
* You know the minimum job completion time (MIN;)
 TOT is the total desired project time

e Formulation, where cr; is the amount a job is crashed:

minz=>Y CC, *cr

subject to

us —u, < TOT

u, 2y +C —cr fordli, j 0 ARCS(i, j)
u. unrestricted for all i

O<cr, <C —MIN,
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Just-In-Time Scheduling

* In this model, some jobs must start within a certain
amount of time of other jobs

* Let S;; be the max length of time between the start of
job 1 and the start of job |

 How do we modify the formulation to handle this?

min z=u, — U,

subject to

u, —u, =C fordli, | 0 ARCS(i, J)
u, <u + 3 forali, jwith§, =0
u. unrestricted for all |
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Another Twist

e Suppose instead we penalize the time difference
between the completion of job | and the start of job |

e Let:
* P, be the late penalty per unit time
 TOT be the total desired project time

 The following formulation minimizes these penalties:

min z = Z(uj -u —Ci)* P

i,JOARCS(i,)) !
subject to
u, —u, <TOT
u, —u =C fordli, j 0 ARCS(i, j)
u. unrestricted for all i
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How Do You Find the Critical Path?

* Suppose you solve the T Shadow
example problem in MPL ]| Slack  pee

. A 0 1
» You get task start times, but - -
don’t know which ones are B | C 3 0
critical B |D -2 0
. B| E 0 1
* The key is to look at the dual cTF 5 5
values of the constraints, C | K| -13 0
which represent the arcs D |G 0 0
. E| F 0 1
e Any arc with a nonzero dual E T K | 13 5
value is on the critical path = 0 1
G | H 0 0
H | J 0 0
EE 0 1
J | d 0 1
K | d 0 0
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MPL Code

TITLE
CPM; { Schrage CPM example; MPL must be }
{ in case sensitive mode! } { note 0 (dummy) duration times for s and d }
INDEX dur[i] := (0,3,4,2,3,5,3,4,6,7,5,2,0);
node :=(s,AB,C,D,E,F,G,H,1,J,K,d);
[ = node;
j := node; VARIABLES
DATA u[node];
{ prec is used to define precedence arcs } MODEL
precli,j] := min span = u["d"] - u["s"];
[s.AL SUBJECT TO
AB,1,
B.C.1,B,D1, BE,]1, precedenceli,j] where prec]i,j]>0:
CF1, CK]1,
D,G.1, u[node:=j] - u[node:=i] > durli];
E,F1, EK,1,
F.1,1 END
G,H,1,
H,J,1,
1,J,1,
J,d,1,
K,d,1];
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