Simple Bounds in the Dual

« Many problems have simple bounds on primal variables
 How do these show up in the dual?
» Also, what if we have simple bounds on the dual variables?
 Consider the following “elastic” LP:
max z=C,X+C,S, —C,S,
subject to
AX+s —sS, =D
| <x<u
s,S, 20

* In this LP, every constraint is really a “goal”
* Objective function has rewards and penalties for deviations
« The auxiliary variables are slacks (s,) and surpluses (s,)
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The Dual of the Elastic LP

* The primal bounds end up in the dual objective, and
the primal rewards/penalties become dual bounds

min y = w,b+w,u—w,l
subject to
W, A+W, =W, = C
C,<W, <G,
wW,,w, =0

* This is a useful model when:

e It is unclear what the RHS should be
e It is unclear if the RHS can even be achieved (FOOTSTOMP)
* You can estimate the feasible range of the shadow prices
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Adding Constraints to an LP

e Suppose | have the following integer program:
min z = 3x, +4x,
subject to
33X +X,=24,0r 3, +X,—-5 =4
X, +2X%, 24, 0r X, +2X,—-s,=4
X, X, 2 0 and integer, s;,S, 20

| employ the “prayer method” (solve as an LP and
hope the answer’s integral) and get:

*X, = 4/5, x, = 8/5
 Now what?
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Adding a “Cut”

* | will now do something very strange; | add the
following constraint to the model:

1 +g >§ or 1.2 + =3 >0
5Sl 5%‘5’ 5Sl 5SZ > 5’%‘

* This is called a “Gomory dual fractional cut”
« What exactly is getting cut?
« WWe will touch on this more in the IP part of the course

* Now, do we want to solve the problem all over again?
 Seems like we could do some sort of “restart”

 However, adding this constraint will make the problem
infeasible
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Graphical Depiction of the Cut
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Adding the Constraint to the Tableau

* Here’s the LP tableau at optimality (via LINDO):

Row Z X1 X2 sl | s2. | RHS BV note —
0 1 0 0 |[(-2/5)|(-955)| 445 z since
1 1 0 s as | | e
2 0 1 15 | 35 | 85 | x2 oroblem
* Here's the new tableau with the constraint, slack s:
Row X1 X2 sl s2 s3 RHS BV
0 0 0 | -2/5 | -9/5 0 | 445 | =z
1 1 0 | -2,5 | 15 0 45 | x1
2 0 1 1/5 | -3/5 0 85 | x2
3 0 0 | -1/5 | -2/5 1 | -35 | s3

* |s this primal feasible? Dual feasible?

OR 541 Spring 2007
Lesson 6-1, p. 6



Introduction to Dual Simplex

 The tableau is dual feasible

» Adding a row to the dual is the same as adding a column to the
primal

« Can you make the primal infeasible by adding more v ariables?

 Leads to an alternative scheme, called dual simplex

 Discovered by C. E. Lemke in 1954 (Lemke was George Dantzig’'s
first doctoral student)

o Iterates among dual feasible solutions in a primal tableau

» Improvements in dual simplex are responsible in dramatic
Improvements in LP solve times in the 1990’s

* More importantly, a key method for adding constraints in integer
programming
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Pivoting in Dual Simplex

* This method is a “transpose” of primal simplex
* The pivot row is the most negative RHS
* WWe only pivot on columns with negative coefficients

* The ratio test is computed using the objective function row;
take the ratio with the smallest absolute value

e Example:
Row y4 x1 X2 st | s2- | s3 RHS BV
0 1 0 0 |[(-25)(-95) o | 445 z
1 1 0 | 25| 5’| 0 45 | x1
2 0 1 35| 0 85 | x2
3 0 0 |[(-a5)(-25) 1 | (35 ) s3
/{\/ v\ "
ratio = 2 ratio = 9/2
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Dual Simplex Termination

« Dual simplex finishes when the tableau is primal feasible
* Recall that we started, and stay, dual feasible
« If both primal and dual are feasible, then where are we?

* Row operations are exactly the same in dual simplex

* Once you pick a pivot element, you get a 1 there, and 0’s in the
rest of the column

» Here’s the tableau after the pivot:

Row Z x1 X2 sl s2 s3 RHS BV
0] 1 0] 0] 0] -1 2 10 Z
1 1 0] 0 1 -2 2 x1
2 0] 1 0 -1 1 1 X2
3 0] 0] 1 2 -5 3 sl

o It's optimal, and integer
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Dual Simplex as a Solution Method

« Consider the starting tableau for the same problem:

Row Z X1 X2 sl S2 RHS BV
0 1 -3 -4 0 0 0 z
1 3 1 -1 0 4 x1
2 1 2 0 -1 4 X2
 We can’t do primal simplex; no BFS, need Phase |
Row Z X1 X2 sl S2 RHS BV
0 1 -3 -4 0 0 0 Z
1 -3 -1 1 0 -4 x1
2 -1 -2 0 1 -4 X2

* This equivalent tableau, however, is dual feasible; we
can do dual simplex immediately
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The Pivots

Row Z x1 X2 sl S2 RHS BV
0 1 | 3| -4 0 0 0 7
1 (3 )] 1 0 4 s1
2 | -2 0 1 4 s2

Row Z x1 X2 sl S2 RHS BV
0 1 0 -3 1 0 4 7
1 1 | 43 | -13 0 43 | x1
2 0 |[(-53)] -1/3 1 8/3 | s2

N

Row Z x1 X2 sl S2 RHS BV
0 1 0 0 215 | -9/5 | 44/5 7
1 1 0 2/5 | 15 | 45 x1
2 0 1 1/5 | -3/5 | 8/5 X2
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Comprehensive Example

* This is a small problem

* Intended to show the entire process
e Initial problem statement
* First formulations
e First solutions
» Reformulations and modifications
« Subsequent solutions
e Sensitivity analysis
 Typical stumbling blocks
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The Situation

A group of investors wants to start a small passenger
airline operation

* The area they’re targeting is currently only served by
Inconvenient hub-and-spoke routes

* They believe they can compete and not get crushed in a price
war; specialize in charters

* They have a route structure and can lease various aircraft
* The need to schedule their routes

e They call you in to assist
» After some conversation, you believe you can model the problem
* You're sent off to gather relevant data
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Initial Information

* You meet with others involved in the new company
* Most are irritated an outsider has been brought in
« Cooperation is grudging; management has to threaten one group
(the market forecasters) to get them to talk to you
e Here’s the initial information
» The airline wants to cover 5 routes
* They have a forecast for demand on each route
* They have leased 4 different aircraft types

» Tentative operating costs ($/ac/route) are available for each
aircraft type

* The pax capacity of each aircraft is known
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What's the Objective and the Constraints?

e Minimize overall cost?
* Only costs we have are operating (marginal) costs
« Company claims to have fixed costs in hand, so you don’t have
to worry about them
» Other questions you might ask

» Does it matter whether we have multiple aircraft types? (no, all
lease, with contract maintenance)

» Can we get different aircraft configurations? (No)

 Are there limits on the number of aircraft available (No, they don’t
think so)

* Does all demand have to be met? (Yes)

e Is there a maximum operating cost? (No ... but they hadn’t
considered this yet)
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Your Initial Formulation

e Determine the aircraft mix that:
* Minimizes total operating cost, and
» Covers all demand

 Management agrees
* Indicies:

 a: aircraft types
* . routes

e Data

« DEMAND, = passengers flying route r per month (100’s)
« COST,, = $1K/month to operate aircraft type a on route r
« CAP_ = maximum monthly capacity of aircraft type a (100’s)
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Formulation, cont'd

 Variables
» aca,, = # of aircraft a assigned to route r per day

* Objective and Constraints
min z= ) COST,, Caca,

subject to
Y CAP, * aca, = DEMAND, forallr

aca, =0 forall ar
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MPL Code

INDEX
a:=(acl, ac2, ac3, ac4); { aircraft types }
r:=(rl,r2,r3,r4,r5); {routes}

DATA
COSTla,r] :=(18,21,18,16,10, { cost of aircraf t a on route r, $1k/month }
0,15,16,14,9,
0,10,0,9,6,
17,16,17,15,10); { NOTE: 0 cost means can't fly tha t route! }
CAP[a,r] :=(16,15,28,23,81, { capacity of air craft a on route r, 100’s/month }
0,10,14,15,57,
0,5,0,7,29,
9,11,22,17,55); {NOTE: O capacity means can't fly that route! }
DEMANDI[r] :=(253,120,180,80,600); { demand per m onth (100's) on route r }
DECISION VARIABLES
acala,r]; {number of aircraft a flying on route r}

MODEL
MIN totexpcost = SUM(a,r: COST[a,r]*acala,r]);

SUBJECT TO
demreq[r]: { demand constraints }

SUM(a: CAPJa,r]*acala,r]) > DEMANDIr] ;
END
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Initial Solution

e Initial solution: use nothing but aircraft type 1
e Optimal cost: $698K/month

» Assignment data:
* VARIABLE acala,r] :

a I

Activity  Reduced Cost

acl r5

15.8125
8.0000
6.4286
3.4783
7.4074

0.0000
0.0000
0.0000
0.0000
0.0000

« What do you think the optimal integer solution is? Why?

« Change MPL code as follows to see:
 INTEGER VARIABLES

. acala,r];

{ number of aircraft a flying on route r}
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Integer Solution and First Revisions

* The best integer solution is NOT to use all AC 1.
e Optimal cost: $720K/month
 Aircraft assignments:

a r Activity Reduced Cost
acl rl 16.0000 18.0000
acl r2 8.0000 0.0000
acl r3 6.0000 18.0000
acl r4 2.0000 -4.2941
acl r5 6.0000 -2.7895
ac2 r3 1.0000 16.0000
ac2 r5 2.0000 0.0000
ac4 r4 2.0000 0.0000

* You present this to management
* They say “we forgot; we can’t get that many of AC 1”
o It turns out there’s limits on availability of all the aircraft types
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Model Adjustments

* Data
« AVAIL, = number of aircraft a available

* New Model

min z= ) COST,, Caca,

subject to
> CAP, * aca, = DEMAND, forallr

> aca, < AVAIL, forala

aca, =0 foralar
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First Model Death

e Here’s the MPL changes:

AVAIL[a] :=(10,19,25,15); { aircraft availabil ity }

acavail[a]: { aircraft availability }
SUM(r: acala,r]) < AVAIL[a];

* You run the model, and MPL says “integer infeasible”

 What happened?
* Change it back to an LP, see if it solves; it’s still infeasible

 Now what?

« Solve a different problem
* Minimize the unmet demand, given the aircraft availability
« See if you can figure out what combinations are causing trouble
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The Next Model - Where Are We Short?

e Here’s the new formulation; minimize unmet demand

min z= ") unmet,
r

subject to
> (CAP, * aca, ) +un EMAND, for all r

) aca, < AVAIL, fordl a

aca, =0 foralar
unmet, =0 forallr

Is this right? Why?
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The Answers

 LP results - close, but can’t satisfy Route 1

VARIABLE unmet][r] : CONSTRAINT acavail[a] :
r Activity Reduced Cost a Slack  Shadow Price
ri 9.7476 0.0000 acl 0.0000 -16.0000
r2 0.0000 0.4273 ac2 0.0000 -5.7273
r3 0.0000 0.5909 ac3 0.0000 -2.8636
r4 0.0000 0.6182 ac4 0.0000 -9.0000

S 0.0000 0.9013 e

« Which aircraft type do we probably want more of?
* Note that the integer answer is somewhat worse:

VARIABLE unmet][r] :

r Activity Reduced Cost

rl 12.0000 0.0000

r2 0.0000 0.0000

r3 0.0000 0.2857

r4 3.0000 0.0000

r5 0.0000 0.7586 OR 541 Spring 2007
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Negotiations with the Customer

« Marketing group is upset; claims answer is wrong
* They show the following table:

Aircraft Capacity
Route AC1 AC 2 AC 3 AC 4 Max
1 16 0 0 9 295
2 15 10 5 11 630
3 28 14 0 22 876
4 23 15 7 17 945
5 81 57 29 55 3443
AC Avall 10 19 25 15

* How would you argue your way out of this?
 But, suppose you win
 Management says, “get with marketing and figure this out”
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Adding a Bumping Cost

* Marketing says, “we can bump people at a price”
» Data: BPCOST, = $K lost per 100 passengers bumped on route r
 Variable: bumped, = passengers bumped on route r (100’s)

 New model:
min z= > COST,, Uaca, +» BPCOST, * bumped,

subject to
> CAP, * aca,, +bumped, = DEMAND, for all r

) aca, < AVAIL, forall a

aca, =0 forall a,r ;bumped. =0 forallr
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The New Solution

e LP solution: z = $999K/month

VARIABLE bumped]r] : CONSTRAINT acavail[a] :
r Activity Reduced Cost a Slack  Shadow Price
ri 0.0000 1.3016 acl 0.0000 -169.1746
r2 0.0000 6.4000 ac2 0.0000 -51.0000
r3 0.0000 2.2143 ac3 0.0000 -23.0000
r4 0.0000 2.6667 ac4 0.0000 -88.2857
r5 98.7143 0.0000 -

* Integer solution: z = $1012K/month

VARIABLE bumped]r] : CONSTRAINT acavail[a] :
r Activity Reduced Cost a Slack  Shadow Price
ri 3.0000 0.0000 acl 0.0000 -190.0000
r2 0.0000 6.4000 ac2 0.0000 -51.0000
r3 0.0000 2.2143 ac3 0.0000 -23.0000
r4 0.0000 2.4286 ac4 0.0000 -88.2857
r5 78.0000 0.0000 -
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The Management Responds

» Leadership doesn’t like the answer
» Almost all the bumping occurs in route 5
« Wants the risk of bumping spread out more evenly across routes
 Now what?

e First, check for multiple optima in the solution
 May be an alternative that is cost optimal, but spreads out bumps
» But, there are none in the LP solution
* This means that spreading out bumping will cost more

* Note, however, that this is based on expected demand
* Marketing says forecasts probably good to within 5%
 Implies that total costs have about 5% accuracy as well
 This is how we will try to spread out bumping
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New Model to Spread Out Bumping

 Previous objective function now becomes a constraint
* We add a new variable, maxbump

e Here’s the new model.

~ min z = maxbump

subject to
NOTE < ZCOSI-ar Dacaar + Z BPCOSI_r * bumpedr <1.05* Zoriginal

~ maxbump = bumped, for all r
Y CAP, * aca,, +bumped, = DEMAND, for all r

) aca, < AVAIL, fordla

aca, =0 foral a,r;bumped, =0 foralr
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And, What Happens?

 This solution does indeed spread out bumping:

VARIABLE bumped][t] :

r Activity Reduced Cost
rl 3.9969 0.0000
r2 3.8324 0.0000
r3 3.9969 0.0000
r4 3.9969 0.0000
r5 3.9969 0.0000

* This does not really make things equitable
 Demand differs on each route
 Management wants an equal chance of bumping on each route
* Need to recast maxbump as a proportion of route demand
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Bumping As a Proportion

 This solution has the optimal maxbump at 2.01%

VARIABLE bumped][] :

 New bumping results:

r Activity Reduced Cost
ri 5.0832 0.0000
r2 2.4110 0.0000
r3 3.6165 0.0000
r4 1.6073 0.0000
r5 12.0551 0.0000

* Here’s how it varies by total cost:

18 +

16 -

[y
SN
1

Max Bumping %

[ERN
N
1

[uny
o
!

o N B (o] (o]
! ! ! !

—

$999K

$1009K

$1019K $1029K
Expected Total Cost

$1039K

$1049K OR 541 Spring 2007
Lesson 6-2, p. 20



Demand Scrutiny

 However, this whole exercise causes scrutiny of
demand forecast

 Management to marketing: “Where the #$%"@&!! did
this come from?”

» Marketing digs through the files, comes up with the
following spreadsheet data
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The Original Demand Data

* Here’s where the expected demand was derived from:

DEMAND

LIKELIHOOD

Demand State

Route 1 2 3 4 5
1 200 220 250 270 300
2 50 150
3 140 160 180 200 220
4 10 50 80 100 340
5 580 600 620

Demand State

Route 1 2 3 4 5
1 0.2 0.05 0.35 0.2 0.2
2 0.3 0.7
3 0.1 0.2 0.4 0.2 0.1
4 0.2 0.2 0.3 0.2 0.1
5 0.1 0.8 0.1

e | ooks like it's time for a recourse model
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Extracting Scenarios

* Note that this data is by route
e The joint distribution of demand is unclear

e Seems reasonable, though, that if demand is high on one route, it
IS probably also high on another

 \We decide to use 6 scenarios:

scenario
sl S2 s3 s4 S5 S6
probability 0.2 0.2 0.2 0.2 0.1 0.1
route 1 200 243 250 270 300 300
route 2 50 100 150 150 150 150
route 3 150 170 180 190 200 220
route 4 10 50 80 90 100 340
route 5 590 600 600 600 600 620
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The New Scenario Model

» Go back to minimizing cost, but add:
e Index s = scenario
» Data SPROB, = probability of scenario s
* Add s index to demand data and bumping variables

* New model
min z=) COST, Uaca, + > SPROB,* BPCOST, * bumped,,

subject to
) CAP, * aca, +bumped,, 2 DEMAND foralr,s

) aca, < AVAIL, forala

aca, =0 forall a,r;bumped,. >0 forallr,s
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As You Would Expect ...

* This answer is nowhere near as rosy
 Total expected cost: $1562K
e Operating cost: $887K
« Bumping cost: $678K

* One route/scenario combo has 26,000 pax/month unmet
demand

e Conversation ensues

 First question: what if the route data is all independent?

e Second question: If the 6-scenario model is valid, what's the
minimum number of aircraft needed to ensure a less than 10%
chance of bumping on any route?
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Assume the Route Demands are Independent

e Model mods:
 Index d = demand state (1-5)
« Data DPROB,, = probability of demand state d on route r
« Data DDEM, 4, = demand on route r in demand state d

* Variable bumped,,; = number bumped from route r in demand
state d

 New Model

min z=) COST,, Uaca, +» DPROB,* BPCOST, * bumped,,
a,r rd

subject to
Y CAP, * aca, +bumped,, = DDEM , forallr,d

) aca, < AVAIL, forala

aca, =0 forall a,r;bumped,, 20 forallr,d
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Answer to the Independent Demand Case

 Total expected cost: $1566K
« $883K operating cost
« $683K bumping cost
* Bumping statistics similar to scenario case
* Integer answer: $1580K (very similar)

e Interesting result: total expected cost is slightly higher
than the scenario case

OR 541 Spring 2007
Lesson 6-2, p. 27



Homework

* Answer the second question

 Formulate and solve in MPL the case that minimizes the number
of aircraft required to get less than 10% bumping for any route
and scenario

* Turn in separate formulation (written out, NOT MPL code)
* Provide MPL code for new model

 Also, investigate sensitivity of the solution for the range 5-15%
* Changes in total costs
» Changes in optimal fleet mixes

* | have provided MPL code for the first question; work from there
* Also:
e p. 335: 2a
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