Introduction to Revised Simplex

* Modern simplex does NOT use tableaus
* Would require n x (m+1) storage - most of which would be 0’s

* The tableau updates all the columns with each pivot; do we
need them all?

* Researchers in the early 1950’s realized that tableaus were
inefficient
e To introduce you to how simplex really works, it is
necessary to show simplex in a matrix format

* In this section (and in duality), I'll use Winston’s
notation, but not his general approach
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Simplex In Matrix Form

 Using notation in Winston (6.2):
* bv subscript - basic variables
* nbv subscript - nonbasic variables
¢ = vector of objective function coefficients
* A = matrix of constraint coefficients
« B = submatrix of A; contains columns associated with basics
N = submatrix of A; contains columns associated with nonbasics
* b = vector containing the RHS of the constraints

* SO, the basic problem in standard form is:
MaX Z = CX
subject to
AX=Db,x=0
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The Problem at Any Particular Stage

e Assume we have a BFS, x,,,. Then the problem can be

written as: max z, subject to

Z- vax - Cnbvxnbv =0

Ax=Bx, +Nx,, =b
X=0

* First, how do we determine the value of x,, and z?

Bva + I\Ixnbv b
Bx, +0=D why?
X, =B, z=¢,B™b

* Note all we needed to know was which variables were
In the BFS, and the original problem data
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Computing Reduced Costs

« Compute the reduced costs by writing the objective
function in terms of the nonbasics:

Bva nbv = b
va - 1b B 1|\Ixnbv
substitute:

Z- vaxbv - Cnbvxnbv 0

Z_va( 1b B 1Nanv) n Vv nbv =0

Z_va ( nbv va 3 =0
dz

= ~Cov + G, B
-(original profit/unit - cost/unit to produce) = -re duced cost
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Computing the Column; Ratio Test

e Suppose X, has the best reduced cost. How do we
generate its current column (y,) for the ratio test?
Bva + Nanv = b
X,, + B*Nx,, =B™b
now, N is just [a(l)‘ ] a ]so
y, =B7a,
* The current right hand side is B-'b, so we have
everything we need; the pivot row, r, is

-1
minM: Y20
' yrk
S0, the basic variable in row r leaves, and x, enters.

Again, all we needed was B!
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Summary: the Revised Simplex Algorithm

1. Put problem in standard form
2. Find initial BFS

3. Compute reduced costs: .
- Cnbv + vaB N

4. If all reduced costs nonnegative, STOP; LP is optimal.
Otherwise, choose Xx,, a variable with a negative reduced
cost, to enter

5. Compute the column: y, =Bla,

6. Ify, <=0, STOP: LP is unbounded. Otherwise, find r, the
pivot row, via the ratio test:
B, .
mn~——--"-=r:y, =20
' yrk

7. Update B, B-1, and B-1b. Go to 3. OR 541 Spring 2007
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Relationship to Tableau

* YOu say, “this is new, foreign, and disturbing. It doesn’t
look like tableau simplex at all.”

 But, take a look at an initial tableau for the problem:
max cx, st AXx <= b, x >= 0, with slack vector s:

Z C 0 0
S A | b

o | claim: here’s what's in there after a few pivots:

z | cB*A-c | c,B7 ¢, B™b
X B™A B~ B™b
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Further Insights

e If we shuffled the columns of the tableau into basics

and nonbasics, it would look like this:

Z va B—l N - Cnbv

0

c,,B™b

va B -1 N

B™b

e And this, in expanded form, is just revised simplex
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Efficiency & Product Form of the Inverse

» SO revised simplex is simple, right?
« Had terrible computational performance in early codes

* “One could have started an iteration, gone to lunch, and
returned before [the iteration] finished” (William Orchard-Hays)

 What's the problem?

« Consider the issue of updating the RHS
« At any iteration, the values of the basics are given by B-'b
 But, suppose B is a 10,000 x 10,000 matrix
 How much work is it to compute the inverse?

* On the other hand, what does it take to update it in the
tableau? We’re only substituting one column; why is
this so tough?
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An Example of RHS Updating

e Suppose the pivot column and current RHS are as
below, and the pivot is in the 3rd row:

2 9
~1/...] 2

@) 14

* The row operations are to add 1/2 of row 3 to row 2,
subtract row 3 from row 1, and divide row 3 by 2 :
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Extension to Matrix Multiplication

* The following matrix operation does the same thing:

_10_/2_
01——%

00 7

* In general, the row ops for a pivot can be expressed as:

Y1

yrk

Y _

yrk _

1 ...

N

Yrk
1
y'rk

A

yrk

0

multipliers for a
pivot in row_ r go in

column_r of this

matrix
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Elementary Matrices; Product Form of the
Inverse

* These matrices are called elementary matrices
» \We can store them economically for each pivot
 Just need the nonzero multipliers and the pivot row

* If E; Is the elementary matrix for the jth pivot, then:

-1 -1
Bi"=Ej4Ej,B,

* S0, we don't recompute B! at every step; we use the
sequence of pivots to generate any column we need!

* The exploitation of this “product form” of the inverse
(due to Alex Orden in 1953) was probably the most
crucial part of making simplex computable
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Revised Simplex with Product Form Inverse

1. Put problem in standard form

2.
3.

. Compute the column:

Find initial BFS and initial Bt (will be | in many cases)
Compute reduced costs for iteration |:

w=c,E E _,---EBy"; reducedcosts=-c,, +wN

. If all reduced costs nonnegative, STOP; LP is optimal. Otherwise,

choose X,, a variable with a negative reduced cost, to enter

Yo =B B Ech;lak

Ify, <=0, STOP: LP is unbounded. Otherwise, find r, the pivot row,

via the ratio test: b
mn—:y, 20
' yrk

. Store E; and update RHS: b:=Eb Goto 3.
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Example

max X, +2X, — X,
subject to

X, +X, +X,<4

- X +2X, —2X, <6

—

max X, +2X, = X,

subject to

X +X, +X;+s5 =4

- X +2X, —2X;+S, =6

2X, + X, <5 2X, + X, +S,=5
Xy %oy X3 20 X153 %o, X3 20
Iteration 1:

va :{SL’SZ’SS}’ anv :{Xl’XZ’XS}

z=0,B=B* =|

_[4
b= H,cbv =[0,0,0]
6

—

w=¢, B =0
- Cnbv +WN =
~[12,-1]+[0,0,0

X, enters; y, = a,

-1-2]]

1
2
1
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Example (cont’'d)

min

% =3=> s exits E, =

1—%0_

o ¥ o
A 0 -1

lteration 2:

va = {Sl’ XZ’ %}’ anv = {Xl’ SZ’ X3}
va = [0’2’0] ’ Cnbv = [1’0’_1]

z=c,b=6
W= va El = [0’110]

1
- ¢, + WN = -[1,0,-1] +[0,1,0] [{— 1
2

=[-2,3-1] = x, enters

1
0

-2
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Example (cont’'d)

| 2

y1=E1a1:E1[—zl = —5% ;bz[%];minratiois%;slexits
N

73 00 %
E,=| % 1 0|;b:=Eb=|107

73 01 s

lteration 3:

va = {Xl’ X2’ 83}’ anv = {Sl’ SZ’ X3} ’va = [1’2’0] ! Cnbv = [O’O’_l]
z=c,b = 2%

w=c, E,E, = [%,%,0]
10 1
~c,,, +WN =-[0,0,-1] + [% %,o] D[O 1 —2]

0O 0 O
= [% : % : %] = no favorablereduced cost; solutionisoptimal
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What Happens in Modern LP Codes

e YOUu may notice that, after many iterations, we start
maintaining lots of elementary matrices

* To solve this, simplex codes do periodic “reinversions”
to build a new B-1

* Then, they start all over again

e Other detalls:

* Most LP codes use a different factorization (LU) to store the
pivots (won't cover this here, but it will be in your next LP course)

» Basis reinversion also helps control roundoff errors

e LP codes also pay a lot of attention to the order of rows and

columns in B-%; goal is to keep the stored matrices and vectors
sparse
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Final Tricks with Elementary Matrices

* Premultiplication:

e Suppose E is an elementary matrix with a “nonidentity” column g in
the rth position, and c is a row vector. Then:

CE = [Cl’CZ’”"Cr—l’Cg’Crl’”"Cm]

e The result is equal to c, except the rth element is cg (dot product)

» Postmultiplication:
« Same as before, but now a is a column vector. Then:

Ea=| 0 |+a0

L m OR 541 Spring 2007
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Duality

 Our standard problem (call it P) is:

P: max z =cx
subject to
Ax<Db

x=0

e Suppose we use the same A, b, c data and
“transpose” the problem:

D: miny=wb
subject to
WA= C

w20

* The related problem D is called the “dual” of the
“primal” problem P
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Functional Relationship between Primal, Dual

* These problems share parameters, but use them
differently

e One interpretation:

* Primal: determine mix of products (x’s) to maximize profit (c)
for given availability of resources (b)

» Dual: determine prices (w’s) to minimize the total paid for
resources (b) with a particular profit potential (c)

* Economic theory would assert that these two problems
should have some sort of equilibrium solution

e SO what are the relationships?
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Weak Duality

» Suppose X; is a feasible solution for P, and w; is a
feasible solution for D. Then:

(Axf sbj (Wfof <w.b

= CX; S W, AX, <w;b
w, A=cC waxfzcxf) f P :

= CX; S Wb
e S0, any feasible solution for P has an objective

function value <= any feasible solution for D

 This property is called weak duality (and we just
proved it)
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Strong Duality

o If there’s a weak case, is there a strong one? Suppose

X" is optimal for P. Then:

* _ * _ _1

¢, B'N-c,, =0
l

 Assume that D can reach this value. If so:

Z =c,X =¢,B'b=y
=w =¢,B™
* |s w* feasible for D? Check:

w A>C ?
w[B N|z[c, ¢yl

w =¢,B™,s0

c,B7[B NJz[c, c,?
[va va B_lN [va Cnbv] ?

— IV |

Answer is yes;
last equation is
primal optimality
condition
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Implications

* Weak duality says for any set of feasible solutions for
P and D, the objective function of P <= the objective
function of D

« Strong duality says that at optimality, the objective
function values are equal (provided both P and D are
feasible)

e Furthermore, there is a strong relationship between
resource use and prices (more on that in a moment)

» Consequently, it is worth studying the solution of the
dual to learn more about the solution of the primal
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Writing the Dual of a General LP

* Here’s the rule for writing the dual of an LP with
variables and constraints in various forms:

P: max z=cx
subject to

AX<b

AX=Db,

AX =D,

x=0

(W)
(W)
(W;)

—

D:

min y =w,b, + w,b, +w,b,
subject to
WA +W,A, + WA, 2 C
w, =0
w, <0
W, unrestricted

(X)

* Note the correspondences between types of
constraints and bounds of variables

 Good habit: write names of dual variables next to

constraints
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Example Dual Formulations

e Have to think hard to write duals of “real” problems

« Remember - a constraint in the primal is a variable in
the dual, and vice versa

e Example: product blending

e Indices
e p = products {1,2}
» f = factories {1,2,3}
e Data
« PROFIT, = $ profit per unit of p sold
« CAP; = capacity required per unit of p built at f
« TOTCAP; = total capacity available at f
 Variables
* num,, = units of p to produce
« totprofit = total profit
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Dual of Product Mix Problem

p. max totprofit => PROFIT, Cnum,
p

subject to

Y CAP, * num, < TOT, forall f (price, )
p

num, = Oforal p

D: min totcost = ) TOT, Oprice,
f
subject to

Y CAP, * price, = PROFIT, foral p (num,)
f

price; = 0forall f

OR 541 Spring 2007
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A Harder Example: Product Blending, p. 93,
#14

e Indicies
* g = gasolines {r,p}
| = inputs {ref, fcg, iso, pos, mtb, but}
e Data
« AVAIL; = daily availability of input i in liters
* RON; = octane of input i
* RVP, = RVP rating of input i
« A70, = ASTM volatility of i at 70C
« A130, = ASTM volatility of i at 130C
* RONRQ), = required octane of gas g
* RVPRQ, = required RVP rating of gas g
* AT0RQ, = ASTM volatility of g at 70C required
* A130RQ, = ASTM volatility of g at 130C required
* DEMAND, = daily minimum demand for gas g
* PRICE, = selling price/liter of gas g

e« FCGLIM = limit on proportion of FCG in each gas g OR 541 Spring 2007
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Blending Dual (cont’d)

 Variables
* inpg; = liters of input i used to make gas g (all >=0)
» totgross = total gross from gas sales

p.  max totgross=)» PRICE, *inp,

subject to Z:il’lpgi < Ag\{/Al L forali
g NOW WHAT?
> inp,; = DEMAND, forall g

NP, .o < FGCLIM * > inp; forall g

Y RON; *inp; = RONRQ, * > inp, forall g

> RVPR *inp,; = RVPRQ, * > inp, foralg

> AT70 *inp; = ATORQ, * > inp, forall g

Z A130 *inp, = A130RQ, * > inp; forall g 51 o 200
| [ Lesson 5-2, p. 10



Disentangling the Dual

o 1st step: rewrite the constraints in P in standard form
for a min problem

- Y inpy =2 —AVAIL,; foralli
g

Y inp,; = DEMAND, forall g

FGCLIM * ) inpy -inp,..,- 20 forall g
3" (RON, -~ RONRQ, )*inp, =0 foral g

3 (RVP - RVPRQ, )*inp, =0 forall g

(
Z(A?Oi ~ ATORQ, )* inp, = 0 forall g
(

>

inp, >0 forall g,

A130, - A130RQ, )* inp, = 0 forall g
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Disentangling the Dual (cont’d)

» Second step: assign dual variable names for each
constraint, and determine their bounds

->inp, = —AVAIL, foralli(wl =0)
g
3 inp, = DEMAND, forall g (w2, = 0)
FGCLIM * Zinpgi -inpy. oy 20 foralg (WBg >0)

3" (RON, - RIONRQg)* inp, 20 foralg (w4, =0)

2

(RVR - RVPRQ, )*inp, =0 foral g (w5, unrestricted)
ZI:(A7Oi - A7ORQg)* inp, =0 fordlg (w6g > O)
(

>

inp, =0 forall g,

A130, - A130RQ, )*inp, >0 forallg (w7, >0)
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Disentangling the Dual (cont’d)

 Third step: write the objective function of D using the
dual variables and RHS of P

D:  miny=Y(- AVAIL, *w1 )+ (DEMAND, * w2, )
i g

* Note that the RHS’s of all the other constraints are O;
the associated dual variables DO NOT appear in the
objective
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Disentangling the Dual (cont’d)

 Fourth step: write a constraint for every variable in the
objective function of P
* D will have g X i constraints, each with a RHS of PRICE,
« What do these constraints look like?

 Hint: transpose the coefficients from each columnin P
to a constraint row in D

1% w2, +

FGCLIM * w3, +

(RON; -~ RONRQ, )* w4, +
(RVR - RVPRQ, )* w5, +

(A70, - A7TORQ, )* w6, +
(A130, - A130RQ, )* W7, < PRICE, forall g,i <>"fcg"
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Handling the Exception

* We need different dual constraints when i1 = “fcg”
because the coefficients in the FGC constraint are
different:

—1*wl, +

1% w2, +

(FGCLIM —1)* w3,_ +

(RON, - RONRQ, )* w4, +

(RVP - RVPRQ, )* w5, +
(A70, - A7ORQ, )* w6, +

(A130, - A130RQ, )* W7, < PRICE, forall g,i ="fcg"

g

Q «Q© o «Q «
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Complementary Slackness

* Go back to the “standard” primal and dual problems:

P: max z=cx D: miny=wb
subject to subject to

Ax<b WA= C

x=0 w=0

 Strong duality says the following:

Z =cX =wb=y
 But, feasibility in P and D stipulates the following:

AxX <D s o, kL
W*ZOJDWAX <wb=y
wA2cC
X =20

j:>W*AX* >cX =27

OR 541 Spring 2007
Lesson 5-3,p. 1



Complementary Slackness Theorem

* The only way to get the strong duality result (equality) is:
* For each of the n constraints in P, either

(A} = OR W =0
* For each of m constraints in D, either
(WA) =c, OR x =0

* This result is called “complementary slackness,” and has
a simple economic interpretation

o If you don’t use all of the ith resource, how much would you pay
for more? 0!

* If you do use all of the ith resource, how much would you pay for
one more unit? w,!
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Shadow Prices

* This is why we care about the dual solution

» The optimal dual values give sensitivity information about the
primal constraints

e Similarly, the optimal primal variables give sensitivity
information about the dual constraints
e Some asides on shadow prices

* Note from the text that the reduced cost for a slack (surplus)
variable does give the value (negative value) of the dual
variable; why does this make sense?

» Winston has all sorts of discussion about tricky ways to find
shadow prices; just compute them viaw = c,, B!

Dual — Primal
Variable y — Cb B ‘b — Z Variable

Values V Values
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Warnings on Shadow Prices

* These are estimates of objective function changes at a
point
* These estimates only apply to changes in a single

right-hand-side; they are not additive across multiple
changes

* They are good indications of the relative importance of
resources, and are good indicators for further analysis

* Degeneracy makes shadow prices meaningless

o If a slack variable is 0 and basic, the shadow price of the
associated constraint can be 0 or large

* The situation is ambiguous, and cannot be resolved unless you
change some parameters and run the LP again

OR 541 Spring 2007
Lesson 5-3, p. 4



Objective Function and RHS Ranging

* Most LP solvers give “range” information on objective
function and RHS coefficients

» Objective function range

 For each ¢, gives range c, <= ¢' <= ¢, for which the basic
variables do not change (either the basics or their values)

« Get new objective function value by multiplying the change in the
cost coefficient by the value of the variable (which is O if
nonbasic)

« RHS range
 For each b, gives range b, <= bl <= b, for which the optimal
solution will not change

* Have to compute x = B-'b to get new x’s; however, can get new
objective function quickly using shadow prices
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Example: Stochastic Cop Problem

* Here’s some of the MPL/CPLEX output:

VARI ABLE cop[t] :

t Activity Reduced Cost
al2 4. 0000 0. 0000
a6 0. 0000 0. 0000
pl2 7. 0000 0. 0000
p6 8. 0000 0. 0000

VARI ABLE cop[t] :

t Coef fi ci ent Lower Range Upper Range
al2 48. 0000 45. 0000 48. 0000
a6 48. 0000 48. 0000 1E+020
pl2 48. 0000 45. 0000 48. 0000
p6 48. 0000 48. 0000 51. 0000

* Changing p6 to 51 increases objective by 8*(51-48) = 24

 How about changing these coefficients: al2 = 47, a6 =
49, p12 =47, p6 =51? (should give z=1185-4 -7 + 24

= 1198)
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Moral: Only Valid for One Change at a Time

» Note changes in variable values; objective change
NOT as predicted (z = 1190)

VARI ABLE cop[t] :

t Activity Reduced Cost
al2 8. 0000( 4) 0. 0000
a6 0. 0000( 0) 6. 0000
pl2 11. 0000( 7) 0. 0000
p6 4.0000( 8) 0. 0000

VARI ABLE cop[t] :

t Coeffici ent Lower Range Upper Range
alz 47.0000 31. 0000 49. 0000
a6 49. 0000 43. 0000 1E+020
pl2 47. 0000 45. 0000 49. 0000
p6 51. 0000 49. 0000 53. 0000
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Problems with Sensitivity Analysis

» Most of this theory was developed when it was time-
consuming and expensive to rerun an LP

e This is no longer the case

 LP sensitivity analysis only applies to changes in a
single parameter
« Again, ranges given in solution outputs are NOT additive

* There is no way to assess interactions among parameter
changes

* The sensitivities, particularly in large problems, are
only valid over a uselessly small region

e If you want sensitivity analysis, run the #@%"&!! LP
again!
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Other Uses for Dual Values

* These are the foundation for so-called “decomposition
methods”
e Column generation
» Dantzig-Wolfe and Benders’ decomposition

 Duality theory is also crucial in nonlinear optimization

* Theory also applies to linear problems

« We will talk more about this in the nonlinear optimization part of
the course
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Final Notes on Primal-Dual Relationships

» Suppose you have an optimal solution

* Change the cost parameters (c)
« Can this affect primal feasibility? NO
« Can this affect dual feasibility? YES

* Change the RHS (b)

» Can this affect primal feasibility? YES
» Can this affect dual feasibility? NO

« “Screw-up” relationships
* Primal infeasible = dual unbounded or infeasible
* Primal unbounded = dual infeasible
* Moral: if one is screwed up, so is the other
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