Nonlinear Problems with General Constraints

* We now need to deal with inequality constraints
« We can’t convert all inequality constraints to equality constraints
« We still have inequalities with the slacks and surpluses

« S0, we will look at a more general problem:

ProblemNLP: ProblemNLP:
maxormin f(x;,X,,...X,) maxor min f (x)
subject to OR subject to

0, (%,%,... %) < b g(x)<b

0, (X, %5s... %) <,

: (vector form)
0., (X, %5,... X ) <D

* Here, we convert all equalities to a pair of inequalities
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The Karush-Kuhn-Tucker Conditions

* These are necessary and sufficient conditions for an
optimal solution
* Published by Kuhn and Tucker in 1951

» Subsequently discovered that Karush had derived the conditions in
his Master’s thesis in 1939

 Winston disenfranchises Karush, but I'm asserting his contribution
« Consequently, we’ll call these the KKT conditions

* Necessary versus sufficient

* Necessary: have to meet these conditions, but meeting the
conditions is not enough

 Sufficient: if you meet these conditions, you've got it
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KKT Necessary Conditions

e Warning: these are written differently in different texts
* Winston does a good job, we’ll stick with him
* He also covers the variations

o If Problem NLP is a maximization, then the necessary
conditions for a feasible x* to be optimal are:
Of (x*) _Z/]i 0g (x*) =0 +<——— (vector form, n equations,

n unknowns)

A b =g, (x*)] = Ofor alli
A = Ofor alli

e If NLP Is a minimization, then:

) + ZAi Hg () =0 —nu (vector form)

Alb-g (>i*)] = Ofor all i

A = Ofor all
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Example

* Try this one:

mMin z=2x, +2XX, + X, —10x, —10x,

subject to
X’ +X, <5
3% +X,<6

* Necessary conditions:

Df‘(x) 4x, +2X, =10 24, % + S)EL: 0
2% +2X, —10H24,x, + A, £ O
/]1()(12 + Xz2 B ):O
/]2(3)(1"')(2 _6):0

Z/‘i g, (x*)
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How Might We Solve This?

* Assume one of the constraints isn’t binding
 Try it with the second constraint
e This means that A, =0
e It also means the first constraint is binding

 This reduces the equations to:

4x, +2x,-10+2A,x, =0

2% +2%,—10+2A X, =0

)(12 + X22 — 5

A =0
 After much tedious algebra: x;, =1, x,=2, A, =1
* How do we know if this is optimal?
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KKT Sufficient Conditions

* These are Winston’s Theorem 11 and 11’ (p. 674)

o If Problem NLP is a maximization, and f is concave, and all the
g’s are convex, and x* satisfies the necessary conditions, x* is
optimal

o If Problem NLP is a minimization, and f is convex, and all the
g’s are convex, and x* satisfies the necessary conditions, x* is
optimal

« Example objective function:

- =[5 4]

* Determinants of principal minors are 4, 4, 16-4 =12, all >0
* Objective function is convex
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Example Sufficient Conditions

 Testing the first constraint:

B

 Principal minors here are all > 0, so it's convex
e Third constraint is linear, so it IS convex and concave

e Result: the point is optimal
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Does Any of This Look Familiar?

e Suppose we have a typical LP (and its dual):

ProblemLP: maxcx ProblemLPD : min wb

subject to subject to
Ax < b (w) WA-U 2 c(x)
-x<0(u) w,u=0

o Let’s write the KKT necessary conditions for this:

c—-wA+u=0 DUAL FEASIBILITY
w(b— Ax) =0
ux=20
w,u=0

} COMPLEMENTARY SLACKNESS
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Moral(s)

« KKT necessary conditions are identical to LP
optimality conditions

e Since an LP has a linear objective and constraints, it
meets the sufficient conditions as well

e Consequently, LP is just a subset of NLP

* The multipliers in the KKT conditions (and Lagrangian
methods) correspond to dual variables in LP

* Most NLP solution techniques exploit dual variables In
some way
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A Couple More Warnings About MPL

 MPL dislikes parenthetical expressions with variables
« Example of an equation MPL refuses to parse:

maxz=./S(S—x)(S—x,)(S-x,)

» To get around this first recognize maximizing this is equivalent:
maxz'=S(S-x)(S-x,)(S-x,)

e Since S is a positive constant, we can get rid the first one:
maxz"=(S-x)(S-x,)(S-x,)

 Finally, multiply out all the terms:
maxz'= S’ — S°X, — S°X, = S°X, + XX, + KX, + KX, + X X, X,

OR 541 Spring 2007
Lesson 13-1 p. 10



Final Proviso

* Note that the previous argument applied to objectives

 For constraints, you must be much more careful about
determining equivalent forms

* In general, MPL forces you to multiply out nonlinear
terms

 Other algebraic modeling language are NOT this
restrictive
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MPL/CONOPT Is Useful, Though

* Here’s the MPL code for the example:

OPTI ONS
MODELTYPE=nonl | near ;

VARI ABLES
x1, Xx2;

MODEL
mn z = 2*(x1"2) +2*x1*x2+x2"2- 10x1- 10x2

SUBJECT TO
x1r2 + x2"2 < 5;
3*x1 + x2 < 6;

END

* In this case, CONOPT gets the optimal answer directly
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Quadratic Programming

* One group of nonlinear optimizations Iis straightforward
to solve and has useful applications
» Quadratic objective function
 Linear constraints
« Can be solved by simplex method (with some modifications)

* The general model:

. 1
min z:cx+§xHx

subject to
AX<hb
x=0

 H must be positive semidefinite (negative semidefinite for a
max problem)
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Markowitz Mean-Variance Model

* This is a popular portfolio model
 Have a collection of investments
 Know their average historical return
» Also know the variance and covariance of their returns
* Objective is to minimize some combination of risk and return

» General model
e Indices: i,j = possible investments

 Data:
« BUDGET = amount to invest
« RETURN = desired average return at end of time horizon
« RET, = average return of investment i
« COV; = covariance of return for asset i and |

e Variables: x; = amount to invest in asset |
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Mean/Variance Model (cont’d)

e Formulation: min z=» COV;* x* X,
]

subject to
> x =BUDGET

Y RET, *x = RETURN

X 2 Ofor alli

e SOme comments:
* This minimizes variance for a specified return

A variance-covariance matrix is always positive-semidefinite,
so you don’t need to worry about that

* Note that this minimizes variance in both directions (upside and
downside)
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Example

* From Markowitz (1959)
e 3 stocks: ATT, GMC, USX

» Average returns are 8.9%, 21.4%, and 23.5% respectively
* Desired return: 15%
e Covariance matrix:

ATT GMC USX
ATT 0.01081]| 0.01241| 0.01308
GMC 0.01241]| 0.05839| 0.05543
USX 0.01308| 0.05543| 0.09423

* Let’s see what happens with various settings of
desired return
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Results

e Chart below shows the trade between return and
variation:

0.03 ~
0.025

0.02 ~

Variance

0.015 -

0.01 ~

0.005
5 7 9 11 13 15 17 19

Required Return (%)
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Results (cont'd)

* Here’s how the mix changes:
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Constrained Regression

* This is another application of quadratic programming

* In a normal linear regression problem:

 You have a set of responses (Y;'s) and a set of | predictors
(X;'s) for each Y,
* You speculate the relationship is of the form:

Y, = B Xig+ BXy+-+ B X, +€

* However, you have to estimate the S8s (e, is random error)

* The classical statistical approach is to minimize the
sum of the squared differences:

minz = Z(Y' - bOXi0 B blxil IR bnxin)2
- ZYiz _ 22\(i X;b, + Z X; Xib.b,
[ ij

ijk
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Constrained Regression (cont'd)

* Note the b’s are the variables: X’s and Y’'s are data

* Note also that it's equivalent to minimize:
minz=-2 Y Xb + 2 X Xbjb,
ij ijk
e SO why bother?
 All spreadsheets and statistical packages do regression

* The problem itself is an unconstrained quadratic optimization
* We can solve it directly by differentiation

e This issue Is that sometimes there may be constraints
on the b’s - for example:
« Some must be nonnegative
e Some mustadd to 1
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Example

» Consider the following table:

Observation Xi0 Xil Xi2 Yi
1 1 2 6 8
2 1 3 9 14
3 1 5 7 12
4 1 7 8 17
5 1 8 10 18

* \We think the model is:

Y, = L Xio t B Xt B X, + €
 Classical regression solves this and gets:

e b,=-1.175
- b, =0.875
b,=1.325
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Now, Add a Constraint

e Suppose that the b’s must add to > 1.5
e Can’t use classical regression anymore
 However, we can just add a constraint to a quadratic

optimization: . __ =2> Y X.b, +>" X, X, b.b,
]

ijk

subject to
> b 215
* In this case, the answer changes to:
e b, =-0.641
* b, =0.891

. b,=1.251
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Solving Quadratic Programs in MPL

* Most LP solvers (like CPLEX) will solve quadratic

programs

* Here’s the code for the Markowitz problem:

| NDEX
i

(att, gnt, usx);
o=

=1;
OPTI ONS
nmodel t ype = quadrati c;

DATA
RETURN = 1. 20;
RET[i] := (1.089,1.214,1.235);
COV[i,j] := (0.01081,0.01241, 0. 01308,
0.01241, 0. 05839, 0. 05543,

0. 01308, 0. 05543, 0. 09423) ;

VARI ABLES
x[i];

MODEL
M N vari ance =
SUMii, jo COVL, jI*x[i]*x[i=]]);
SUBJECT TO

budget con:
SUMi: x[i]) = 1;

retcon:
SUMi: RET[i]*x[i]) > RETURN

END
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