Intro to Nonlinear Optimization

« We now relax the proportionality and additivity
assumptions of LP

* What are the challenges of nonlinear programs (NLP’s)?
» Objectives and constraints can use any function:

max f (x)

subject to G(X) means a matrix
G/(X)<h of constraints
G,(X) =b,

* Feasible region is not guaranteed to be convex
e Optima may not occur at extreme points

 May be many “local” optima; may not be possible to determine
the “global” optimum

* No general-purpose algorithm suits all problems
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Example: Nonlinear Warehouse Location

* Warehouse location
e Suppose we want to locate a set of warehouses
e Let i = warehouses, | = markets
e Data:
 C, = capacity of warehouse |
* R, = demand in market
* (a;, b)) location of market | in (x,y) coordinates
» Variables
* (X;, ¥;) = location of warehouse

* d; = distance from warehouse i to market |
* w; = units shipped from warehouse i to market |
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Warehouse Location Formulation

e One formulation is:

min z = ZW *d;

subject to
Zw C for dl i (capacity constraints)

Z ; 2 R for al j (demand constraints)

=\/(>g —a ) +(y —b ) forali, (distanceconstraints)
w; =0 forali,)

* The objective function and the distance constraints are
nonlinear
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Min Cost Network Congestion Problem

* Here’s something that looks like a MCNFP, but with a
nonlinear twist:

minz= Y [ s j

i,jOARCS(i,]) Uij — X

subject to

{ Z&}{ ZX“} D for all nodes i

JOARCS(i, ) iOARCS(j i)

0< x, <U; foral ARCS(i, j)

* What does the nonlinear objective function do?

OR 541 Spring 2007
Lesson 12-1p. 4



Attacking a Nonlinear Problem

» S0, nonlinear problems can be nasty

* Need to consider:

» The form of the objective function; how pathological is it?

* The form of the feasible region; in particular, is it convex? If not,
then you’ll have to search local optima

« Some modeling advice

* In general, life is easier if you can restrict the nonlinearity of the
problem to the objective function

» Spreadsheet solvers allow you to define arbitrary nonlinear

problems, and they do give solutions - but BE CAREFUL OF
THE SOLUTION!

* There is no “one size fits all” approach to NLPs; various
heuristics (simulated annealing, genetic algorithms) sound
cool, but they still heuristics
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Convex Sets and Convex Functions

e Recall that a set S Is convex If:

e X, and x, are elements of S, then (1-c)x, + cXx, Is also in S, for
O<=c<=1

 Knowing whether the feasible region is convex helps analyze a
nonlinear problem

* Another important part of nonlinear optimization are
convex functions

* A function f is convex on a convex set S If, for any x,
and x, in S:

f(ox, +[1-clx) < cf (x)+1-c]f (x,)

 Note that x, and x, can be either scalars or vectors
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Convexity, Concavity

* A function is concave if the reverse inequality holds:
f (Cxl + [1_ C] Xz) 2 cf (Xl) + [1_ C]f (Xz)

« Winston (p. 631) shows the difference in 2-d;
essentially, a function f is concave if -f iIs convex

* Why do we care about this?

« BECAUSE:

« If the feasible region of a maximization NLP is convex and the
objective function is concave, any local optimum is also the
global optimum (Theorem 1, p. 632)

« If the feasible region of a minimization NLP is convex and the
objective function is convex, any local optimum is also the
global optimum (Theorem 1’, p. 632)
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Proving a Function is Convex/Concave

 For functions of a single variable, we use calculus:
o If f’(x) >= 0 for all x in a convex set S, f is convex
o If f’(X) <=0 for all x in a convex set S, f is concave

« For multivariate functions f(X), this is a bit more difficult

e There are some rules:

* (1) A linear combination of convex (concave) functions is
convex (concave):
9(X) = ZC. f;(X)

* (2) If f is a concave function and > 0 on S, then the following
function is convex: _
g(Xx) = }/f (X)

 (3) If f is a nondecreasing, univariate convex function, and h is
a convex function, then the following is convex:

g(X) = f [h(X)] OR 541 Spring 2007
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Proving Concavity/Convexity; Hessians

* Rules (cont’d)

o If f is a convex multivariate function, then the following, where A is
a matrix and b a vector, is also convex:

g(X) = f[AX +b]

e [f f has continuous second derivatives on S, and its Hessian matrix
IS positive semidefinite for all points in S, then f is convex

e [f f has continuous second derivatives on S, and its Hessian matrix
IS negative semidefinite for all points in S, then f is concave

e S0:
 What's a Hessian (if it's not a German mercenary)?
 What's it mean to be positive or negative semidefinite?
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Hessian Matrices

e If the function has continuous second derivatives on S,
we can analyze a thing called the “Hessian”

* This is the multivariate analog of a second derivative;
the Hessian H(x) of a function f(x, X,, ... X,,) IS:

0°f(x) °f(x)  0*f(x)

0% 0%X 0%, X,
*f(x) 9°f(x)  9*f(X)
H() = ox,x, ) 0X,X_

°f(x) *f(x)  9*f(X)
0%, X OX.% 0%,
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Positive and Negative Semidefiniteness

e A Hessian matrix is positive semidefinite if, for any x*
InasetsS:

xH (x*)x < Ofor al xJE" (theset of n-dimreal vectors)

e A Hessian matrix is negative semidefinite if, if, for any
X* in asetS:

xH (x*)x = Ofor al x O E" (theset of n-dimreal vectors)

» S0, semidefiniteness determines whether the function
IS convex or concave

« NOTE: since f is concave If -f Is convex, | will only talk
about convexity from now on
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Testing for Positive Semidefiniteness

e Exclusionary rules: suppose H is an n-dimensional
Hessian matrix with elements h;. Then:
o If any diagonal element is < 0, H isn’t positive semidefinite
» |If a diagonal element h; = 0, then row i and column | must also
be 0, or else H is not positive semidefinite
* Principal minors:

A “principal minor” of an n x n matrix is the i X i matrix you get
from deleting n-i rows and columns of H

« If the determinants of all principal minors of H are all >= 0, then
H Is positive semidefinite

 Now we have some tests; let’s try some examples
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Examples of Convexity/Concavity Testing

 First example:

f (X %) = 2% +6%, = 2% = 3%, +4%,X,

HO) = [—44 _46}

e This matrix has 3 principal minors; the entire matrix,
and the two diagonal elements

* The determinants of the principal minors are -4, -6,
and (-4 x-6)-(4x4)=38

* It's not positive semidefinite; however, - H is!
Therefore, it's negative semidefinite, and the function’s
concave
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Another Example

e Here’s where a function is positive semidefinite only in
a particular region:

f(Xl,Xz):Xf+2X§
6x, O
H(x):{())(l 4}

e The determinants of the principal minors are 6x,, 4,
and 24x,

 This function is positive semidefinite, and convex, only
if x,>=0
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Some Miscellanea About Definiteness

 If His an n x n matrix:
» The “characteristic equation” of H is \H — Al ‘ =0

 The A\’'s are called the “eigenvalues” of H
o If they are all >= 0, H is positive semidefinite; if they are all <=
0, H is negative semidefinite
* This is another way to test, if you can compute the
eigenvalues easily

A couple of good references:
 Linear Algebra and Its Applications (Gilbert Strang)
 Calculus (K. G. Binmore; this is very good, and unique, book)

OR 541 Spring 2007
Lesson 12-2p. 1



Multivariate Unconstrained Optimization

e This is Sec. 12-5 of Winston
* The basic problem is to:

max or min f(x,X%,,...X,)
subject to (X, X,,... X, )OR"

* We're assuming that f has continuous first and second
partial derivatives

e For an univariate function, we know candidate critical
points occur where f'(x) =0

* The same argument applies to multivariate functions
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Gradients

* The gradient of a function f is a vector of the first
partial derivatives:

of of afj

O f(X,%,...X )= —,—, -, —
(0% %,) (0)(1 ox,  OX

* We're looking for points where the gradient vector is O
e Example:

F(X,%)= )(13 - 3)(1)(22 + Xz4

0 f (X, %,) = (3)(12 - 3x,°,—6X,X, + 4x23)
Set 3x,° —3x,° =0

Set — 6x,%, +4%,” =0
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Critical Points

* When we look at these equations, we find that:
* Either x, = X, or X, = -X,, (first equation)
* Either x, = 0 or x,? = 1.5x, (second equation)
» So the 3 possible points are (0,0), (1.5,1.5), and (1.5,-1.5)
* Think about the above ... do you see the argument?

* Now we have to test these points using the Hessian

_| 6% - 6X%,
H(X)_[—ze — 6X, +12x22}
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Rules for Testing with a Hessian

* Here’s a slightly different summary of Winston
e Suppose x* Is a critical point

o If the determinant of H(x*) =0 , the test is inconclusive
(useless)

o If the determinant of H(x*) > 0 , and all the principal minors are
> (0, then x* is a local minimum

e If the determinant of H(x*) <0 , the signs of the “even”
principal minors are > 0, and the signs of the “odd” principal
minors are < 0, then x* is a local maximum

o If the determinant of H(x*) <> 0 and the other tests fail, x* is a
“saddle point”
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Testing the Points in the Example

At (0,0):
e H(x) =0
e The test is useless
* At (1.5, 1.5):
e The determinant of the entire matrixis 81 >0
* The diagonal elements are 9 and 27, both > 0
e This point is a local minimum
o At (1.5, -1.5):
* As before, the determinate of the entire matrix is 81 >0

* The diagonals are 9 and 27, both > 0
 This point is also a local minimum
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The Function

In 3-D

o
«©
—
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W 30-35
025-30
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A 2-D Slice
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What Happens If We Try This in MPL?

* Here’s the MPL code for this problem
* Note there’s no constraints
e The “OPTIONS” statement tells MPL it's nonlinear

| NDEX
I = 1..2;

OPTI ONS
Model Type=nonl i near;

FREE VARI ABLES
x[i];

MODEL
mnz = x[1]7"3 - 3*x[1]*(x[2]"2) + Xx[2]"4;

END

« CONOPT reports the point (0,0) isthe min ;s sping 2007
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Now, Add Some Constraints

 Let’s look around for more critical points; add

SUBJECT TO
x[1] > 0.1;
x[2] > 0.1,

* Now CONOPT says the minis (1.5, 1.5)

* Try for the third critical point:
SUBJECT TO

x[1] > 0.1;
x[2] < -0.1;

« CONOPT says the minis (1.5, -1.5)
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Last Experiment

« What happens for:

SUBJECT TO
x[1] < -0.1;
x[2] < O;

« CONOPT reports problem is unbounded
 Why didn’t it tell us this for the unconstrained case?

 Looking at the function, setting x, = 0 allows x,3to go to
positive or negative infinity
* Is the solver screwed up?
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Moral(s)

 This Is the overarching lesson with nonlinear optimization
« If the objective or constraints are nonconvex, you will get local
optima
* You should figure this out before you start
* You have to have some way of finding multiple local optima;
putting in bounds as in the example is a cheap, fast way
« Commercial nonlinear solvers generally work as follows:
» They find an initial feasible point

* They solve a local linear approximation of the problem to find an
improving direction and a “step size”

» They step along the improving direction, maintaining feasibility
» They then repeat the procedure until they find a local optimum
* The responsibility to check the solution is YOURS
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Nonlinear Problems w/ Equality Constraints

* We now begin to introduce constraints to nonlinear
problems

e The general form is:

max or min f(x,X%,,...X,)

subject to
0,(X, %5, %) =y

0. (X, Xp,--- %) =,

0. (X,%,...X.)=hb_
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From Calculus: Lagrange Multipliers

 Consider the following problem:
. max z=4xy

subject to
2 2

X_+y_:1

9 16

 Translation: find the largest rectangle that can be inscribed in an
ellipse with major and minor axes of 4 and 3, respectively

* Way back in calculus, we formed the following function:

X2 y2
L(X,y,A) =4xy-A| Z—+2L -
(X,y,4) =4xy (9 16 ]

* The new function is the Langrangean, and the new
variable is a Lagrange multiplier OR 541 Spring 2007
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Some Arguments

* We now maximize the (unconstrained) Lagrangean
function:

X2 y2
max z=L(X,y,A) =4xy —A| — +— -
(X, y,4) =4xy (9 16 J

e What is this, and why does it work?

e Some functional arguments:

* The term we have added to the objective is essentially a
penalty term

« Any solution that does not have points on the ellipse penalizes
the objective (depending on what the Lagrange multiplier value
IS)

» Does this look similar to complementary slackness?
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Lagrange’s Theorem

* Here’s what makes this go:
 Let functions f and g have continuous first partial derivatives

* Also, let f have an extremum at the point (X,*, X,*, ... , X,*) on
the constraint function g(x,, X,, ... , X,) =C

o If g (X*, X,*, ..., X,;*) <> 0, then there is a real number, A, such
that:

f ()%*’X*,...,Xn*):/]Dg(&*,x*,---,Xn*)

 This theorem says that the objective function and
constraint gradients are parallel at the optimal point

» Consequently, the constraint is tangent to the objective
at the point
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The Method of Langrange Multipliers

» Convert the problem to an unconstrained one
 Form the Lagrangean function

« Each equality constraint requires a separate Lagrange
multiplier

 Find the critical points of the Lagrangean
» Take the partial derivative with respect to each variable
» Set the resulting equations to 0; solve for critical points

 Test each critical point to determine the optimum
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Back to the Example

* The Lagrangean function was:

X2 y2
L(x,y,A)=4xy-A| =—+2 -1
(X,y,4) =4xy (9 16 j

* The partials (set equal to O) are:

oL X
— =4y-21—=18y-x1 =0
0X Y 9 Y
a—L:4x—2/lL:32x—y/]:O
oy 16

2 2
0L - X Y 11=16x +9y? -144=0

A 9
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The Finale

| won’'t show the algebra here, but you would:
» Solve for A in the first equation

» Substitute that into the second equation, so you are left with an
equationinx and y

» Substitute that into the third equation, eliminate x, solve fory
 Solve for x; don’t bother to compute A

 This only has one critical point

 When we evaluate this in the original f, we get the area = 24
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So What Happens if Algebra Doesn’t Work?

* It may not be possible to solve the equations
algebraically
e There are various numerical techniques available
« Covering them is beyond the scope of this course

* If you only have one Lagrange multiplier, you can just do some
sort of line search (like bisection)

 What does MPL do with this?

 First try: CONOPT says “locally infeasible”

« Second try: change the constraint to <=; CONOPT says
optimum is (0,0)

e Third try: add the constraints x > 1 and y > 1, CONOPT finds
the optimum

« MORAL.: use constraints to help find a starting point!
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