Consider This Set Covering Problem

mnz= 2x, +X, +5X; +2X, +X +X
subjectto x;, +X, +X, +X >1
X + X, >1
X, + X, >1
Xg +X, =21
X, +Xg +X, =1
x. [1{O.1} for all i

| claim | can solve this by inspection

OR 541 Spring 2007
Lesson 11-1,p. 1

Now | Start Throwing Things Away ...

minz= 2x +X, +5x, +2X, +X +X

subject to Mt ——— —

X * X =1
X, +X, >1

X, +X, 21
M

x. [1{01} for all i

minz= 2x +X,
subject to

x. [1{01} for all i

Answer: x;=1,x,=1,Xxs=1,2=4

The first and last
constraints are
redundant — why?

X3 can be setto O -
why?

OR 541 Spring 2007
Lesson 11-1, p. 2

Presolve and Node Reductions

« An important feature of commercial codes is presolve
» Looks at problem structure, particularly binary variables
» Uses various techniques to reduce the problem
« Can be applied at any node in a branch-and-bound tree

* These technigues are responsible for much recent
Improvement in MIP codes

 Following is a (partial) set of rules for cover (>=) and
partition (=) problems
* Note: can covert a pack to a partition by adding slack variables
* Then, use the rules for a partition
» These rules assume the C/’s are all > 0

OR 541 Spring 2007
Lesson 11-1, p. 3

Reduction Rules

* (1) (cover, partition): If all A;’s are O in row I, the
problem’s infeasible
cover O 000 OO
partition O 0 0 0 O O

IV

1
1

* (2)(cover, partition) If row I has 1 nonzero A;; (say, Ay),
then set x;, = 1, delete column k, and delete all rows r

with Ark =1) partition
: /
0/0 1/1/0 1 dz1=1
0[O0 0/1/0 O 0O=1=1
0/1 1/1/0 1 0=1=1
= \

cover OR 541 Spring 2007
k Lesson 11-1,p. 4

More Reduction Rules

o (2a) (partition) In addition to the row deletions in (2),
delete every column where A, = A, =1,] <>k, for

every row r deleted l
: Variable for this
O 0111101 O0=1 column =1,
O 0OlOllL IO Ol 0O=1 forces all
O 11l 21112 0l 11 0=1 others to 0

* (3) (cover, partition) If A,; >= A;; for all | for rows r and
|, delete row r

(r)[1
(i) O

110001
11 0000O0

Yet More Reduction Rules

e (3a) (partition) As in (3), but also delete all columns
with A, =1and A, =0

(1)
(i

or

==

==

o\ 0o

o0

or

One of these
variables will
be = 1, forces
all othersto O

|

* (4) (cover,partition) If S Is a set of columns, and

> A = A foralli,

j0S

kOS,and) C,<C,

i0S

then, delete column k

OR 541 Spring 2007
Lesson 11-1, p. 6

Last of the Reductions

e Reduction (4) :

obj
rowl

row 2
row 3

CQOFIN
oOr oIk~
OOOIN
oOR Rk
] L
o Rr|KP

* Reduction (4a) (cover) as in (4), but with condition

> A > A foralli

i0S

OR 541 Spring 2007
Lesson 11-1,p. 7

Example: Winston p. 477, ex. 5 (cover)

rowl

row 2

row s

row4

rowb
row 6

O ook

alele]le)l

O oOoFrHOO

ORRFRPHOO

el alle leolle)

R PFPOoOIORFO

Rule 3: Delete row 2
(covered by row 1)

Rule 3: Delete row 4
(covered by row 3)

OR 541 Spring 2007
Lesson 11-1, p. 8

Example (cont’'d)

* No more reductions, but can you solve the problem?

X,=1,x,=1

rowl

row 3

rowb
row 6

1

= O

oo

or

N

e

OR 541 Spring 2007
Lesson 11-1, p. 9

Strong Versus Weak Formulations

* An example from my past:
» Job was associated with an airlift analysis
 Had 100 possible onload locations in the U.S.

* Needed to reduce locations to 10-20; all cargo from other
locations would go to one of the chosen “hubs”

« Wanted to minimize total tonnage*distance to move cargo to
hubs

 Known as a “k-median” problem
* First used a heuristic on the problem

* Was learning GAMS at the time, so | set it up as an
Integer program

OR 541 Spring 2007
Lesson 11-2p. 1

The First K-Median Formulation

e Indicies
* I,j = locations
e Data
« STONS, = short tons to be moved from location i
* DIST;; = distance between i and |
* MAXHUBS = maximum number of hubs
 NUM = total number of locations

e VVariables

e assign; = 1 if location i assigned to hub j, O otherwise
* choose, = 1 if location | chosen as a hub, O otherwise

OR 541 Spring 2007
Lesson 11-2 p. 2

The First Model

» Objective and constraints:

min z=) DIST; * STONS * assign,
! What do these

subject to / constraints do?

D assign, =1forall i
j

What does this

> choose; < MAXHUBS < constraint do?
j

) assign; < NUM * choose, forall j « What do these
i

constraints do?
assign; {01} forallij

choose; {01} for all

OR 541 Spring 2007
Lesson 11-2p. 3

No Luck

e Tried to solve this in OSL

o Still didn’t meet integrality gap requirements after 100,000
iterations

* Ran for several hours
* NO progress
« Went back to heuristic, wondered what | did wrong

» Asked an optimization professor a year later at a
meeting
» He sent back an answer the next day

» His change allowed OSL to solve the problem in about 10
seconds

 What was it?

OR 541 Spring 2007
Lesson 11-2p. 4

A Stronger Formulation

* All he suggested was the following:
min z=)" DIST; * STONS, * assign,

i

subject to

> assign; =1forall i
j

> choose, < MAXHUBS
]

assign; < choosg, for alli, |

assign, U{01} for alli,]
choose; {01} for all

* Note that this increased the number of constraints by
100 x 100 - 100 = 9900

 How could it be so much faster?

OR 541 Spring 2007
Lesson 11-2p. 5

With MIPs, More Constraints Are Better

* The first formulation
encouraged
“fractionation” of the
binary variables

 The second cuts off
many possible
fractional solutions

« Want to get as close to
the “integer hull” as
possible

OR 541 Spring 2007
Lesson 11-2p. 6

Another Strengthening Example

* From the mining example:

o,=0,,foralli,t<5

1,t+1
e.g.,
0,20,
02 2 0|3

* A stronger set of constraints:
0,20, foralli,t<5t'>t

eg.,
01 2 OIZ

0. 205
0120,

0120|5

1
0,203

OR 541 Spring 2007
Lesson 11-2p. 7

Cuts

e See Winston, Sec. 9-8

e Note that branching requires solving two LPs
* One for the integer floor of the branching variable
* One for the integer ceiling of the branching variable

* An alternative approach is called a cut

 The idea here is to “cut off” the fractional solution, but don’t cut
off any feasible integer solutions

 The aim is to generate constraints that form the integer hull of
the feasible region

» Such constraints are called facets

OR 541 Spring 2007
Lesson 11-2p. 8

From the Dual Simplex Lesson (6-1)

» Recall this was the optimal (fractionated) tableau:

Row Z x1 X2 sl S2 RHS BV
0 1 0 0 2/5 9/5 44/5 Z
1 1 0 -2/5 1/5 4/5 X1
2 0 1 1/5 -3/5 8/5 X2

e Row 2 can be written as:

8

L +1s_ 3,8
? 5Sl 5Sz 5

* In Lesson 6-1, | used this row (called a source row) to
generate a mysterious constraint; how did | do that?

OR 541 Spring 2007
Lesson 11-2p. 9

Generating a Gomory Cut

* We rewrite this constraint by recognizing that any
fraction can be written as

x=|x]+f,0<f<1
» S0, applying this to Row 2, we get:

O Y
? 5 5 5

* Now, group the integral terms on the left and the
fractional terms on the right:

1 2 3
%*08 -5 "1= o8 oSt

- _J/
~

Part we would like to get rid of

OR 541 Spring 2007
Lesson 11-2 p. 10

Some Arguments

 For integer feasibility:
* The left-hand side must be integer
» Therefore, the right-hand side must be integer
e s, and s, mustbe >=0
* S0, what'’s the biggest the right-hand side can be and
still be feasible?

e Result: we add the cut:

—}q—g%+§saor
5" 5" b5
120,623
5" 5 5

e |s this cool, or what?

OR 541 Spring 2007
Lesson 11-2 p. 11

More Info on Cuts

 Cutting plane algorithms had a bad reputation early
 Algorithms only added one cut at a time
« Had very slow convergence

* Have recently become very popular
* No reason to add cuts one at a time
e Can add a cut for virtually any fractional row

« Can combine with branch-and-bound (branch on one variable,
generate cuts for others)

e Easy to implement, run very quickly
 Bixby article shows that installing these cuts in CPLEX
gives tremendous improvements

OR 541 Spring 2007
Lesson 11-2 p. 12

A (Very) Quick Tour of CPLEX MIP Switches

e For a small MIP or one known to be easy, you can
stick with the defaults

e For anything else, you should always set the
following:

e Time limit (p. 95): CPLEX has a huge default (100,000,000
hours, a bit longer than I'd walit)

* MIP strategy (p. 98): choose depth-first to emphasize
feasibility, others to search for better solutions

« Upper cutoff/lower cutoff (p. 106): if you have a solution, set
these to avoid unproductive parts of the b-b tree

* Relative/absolute gap (p. 106): a good starting relative gap is
0.10; absolute gap depends on the problem

OR 541 Spring 2007
Lesson 11-2 p. 13

CPLEX Switches You Can Play With

* Bound strengthening, coefficient reduction (p. 90)
» These are more aggressive prereduce options

* You should consider them if you have lots of binary variables
and “chains” of relationships

* MIP probing (p. 99)

» Explores implications of binary settings at every node
* Time consuming, but may crack the problem early

 Variable selection (p. 99)
« Strong branching is “probing lite” - can be very helpful

 Maximum infeasibility branching is useful if you have feasible
solutions and want to get faster improvement

OR 541 Spring 2007
Lesson 11-2 p. 14

CPLEX Cuts

« CPLEX can employ 9 different types of cuts
« Some are easy (like Gomory fractional cuts)
« Some involve substantial math (disjunctive cuts)
* Not easy to figure out a priori which will work

e Some general advice
« CPLEX is fairly intelligent on when to apply cuts

o If you're really having trouble, go aggressive on everything
(kitchen sink approach)

 Bixby’s article gives good statistics on general performance of
cuts on a large suite of MIPs

 Clique cuts good for partition problems; cover cuts good for
covers

 Implied bound cuts good for problems with lots of general
Integer variables

OR 541 Spring 2007
Lesson 11-2 p. 15

Conclusion

* Be prepared for a lot of work with a big MIP
« Exploit as much problem structure as you can
» Use strong formulations; when in doubt, add more constraints
» Help the solver with cutoff values and branch priorities
 First get a feasible answer , then work from there

* Once you're feasible, work on improvement
 Throw more switches to drive down the integrality gap

* Recognize that some problems have “loose” LP formulations
and require very long b-b solves to tighten the gap

* Pay close attention to the structure of the interim feasible
solutions

« Add more constraints if you see opportunities (like the
NOSWOT problem)

OR 541 Spring 2007
Lesson 11-2 p. 16

Constraint-Satisfaction Problems (CSPs)

« Sometimes we just want to find a feasible solution

e Map-coloring problem:
* assign colors to maps so no adjacent countries have the same
color
 Stable marriage problem
« Have a group of N men, and a group of N women
« Each woman has rated the men 1-N, as have each of the men
« Assign men to the women so that if Man A prefers Man B’s
wife, Man B’s wife prefers her husband to Man A
e Scene labeling
* Recognize 3-D objects by assigning lines in 2-D drawings

OR 541 Spring 2007
Lesson 11-3p. 1

The Idea of Constraint Programming

 Basic algorithm
* You have a set of variables, each with a finite domain

* You have a set of constraints that determine allowable settings
on combinations of variables

» Successive applications of those constraints reduce the
domains of the variables

« Stop when you come up with variable settings that satisfy all
constraints
« Several commercial products, such as ILOG’s OPL,
provide a language for constraint programming

OR 541 Spring 2007
Lesson 11-3 p. 2

Integer Programming for CSPs

* In some cases, we can write integer programs to solve
CSPs

e Consider SuDoKu

* Problems consist of a 9 x 9 grid

e Have to assign numbers 1-9 so that each row, column, and the
9 3 x 3 subgrids contains each number exactly once

 How do you solve these manually?

« Chances are, you use your own version of constraint
programming

OR 541 Spring 2007
Lesson 11-3p. 3

The Challenge

* Formulate an integer
program in MPL to solve
the SuDoKu problem
shown to the right

» Furthermore, SuDoKu
puzzles are advertised
to have a single solution

» Does this one have a
single solution? Modify
your formulation to find
out

OR 541 Spring 2007
Lesson 11-3p. 4

