An Example (based on the Phillips article)

e Suppose you're the hapless MBA, and you haven't
been fired

* You decide to use IP to find the best N-product
solution, for N = 21 to 56

 Lety; be O if you don’t produce product i, 1 if you do
 Let M, be the maximum of product i you could produce

X < M,y, foralli
Z y, =N
e Suppose there’s a minimum production quantity L; for

each product you opt to produce. What constraints
Implement that?

OR 541 Spring 2007
Lesson 10-1, p. 1

Price Breaks/Quantity Discounts

o A typical situation:
 The first N, items cost $D apiece
» The next N, items cost, say $0.8D apiece
* The next N, items cost, say, $0.6D apiece

* With no constraints, an optimization will try to buy the
cheapest ones first

e S0, how do we implement these conditions?
e Let X4, X,, X5 be the number bought at each price

e Lety,, Yy, be binary X
&szm£7ﬁ
1

*
X, <N, *y,

X
wS}ﬁf&SNJyz

OR 541 Spring 2007
Lesson 10-1, p. 2

A Slightly Different Scheme

» Suppose instead the price break is as follows:
e Buy up to N, items: cost $D apiece
» Buy up to N, items: cost, say $0.8D apiece
« Buy up to N, items: cost, say, $0.6D apiece

 This defines a cost curve for the items
 Let X4, X,, X3 be the number bought
e Lety,, VY, Y5 be binary; the constraints are:

X <N *y

X, SN, Y, % 2N "y,
Xg S N3 ™Y, X2 N, ™y,
Yity,ty;=1

OR 541 Spring 2007
Lesson 10-1, p. 3

Modeling Piecewise Linear Functions

e SUppose you have some variable x that has a “piece-
wise linear” cost function:

f(x)

Ul U2 U3
X

* This appears to be a forbidding thing to model

OR 541 Spring 2007
Lesson 10-1, p. 4

But, We Can Handle It

* Replace every occurrence of the variable x in the
model with:

Ulyl T U2y2 +U3y3 +"'+Unyn

* Replace every occurrence of f(x) within the model
with:

Viyi + VLY, +Voy, +.. .+ VY,

» Add the constraints
Vit Yot Yst...ty, =1

O<y <1foralli

OR 541 Spring 2007
Lesson 10-1, p. 5

Handling the Adjacency Condition

* Note that for this to work:

* The y’s give the weight on the ith and i+1st point (they are
NOT binary!)

« At most two y’s can be nonzero, and they must be adjacent

* \Winston shows how to do this with a bunch more
constraints (p. 482)

e That is NOT what we're going to do

o Instead, tell your solver that these variables are type
“S0OS2”

* The solver will automatically enforce the adjacency
condition

OR 541 Spring 2007
Lesson 10-1, p. 6

OK, So What i1s an SOS Variable?

» SOS stands for “special ordered set”
* There are two general types

» SOS type 1: a set of variables for which at most 1 may be
nonzero

» SOS type 2: a set of variables for which at most 2 may be
nonzero; the two must be adjacent

« SOS variable processing is a special procedure inside
the simplex algorithm

» Generally much more efficient to use SOS

e Warning: not all solvers implement SOS variables, nor
are the definitions standard!

OR 541 Spring 2007
Lesson 10-1, p. 7

If You're Stuck Without SOS Variables

* The following set of constraints will enforce the
adjacency condition:

Yis W

Y, sW, W,
Y3 S W, + W,

yn—l < W - + Wn—l
A SW

Zwl

w, {0} for alli

OR 541 Spring 2007
Lesson 10-1, p. 8

Example: A Mining Problem (Williams, 1985)

* A company has 4 mines it can operate for the next 5
years
» They can operate at most 3 mines a year
* They pay a yearly royalty every year a mine is open
* Once the mine is closed, it's closed permanently

e Each mine, if operating, has a max production each
year, and a known “ore quality”

* There are yearly targets for overall ore guality, which is
a weighted average of the quality of the outputs from
the mines

* The selling price/ton of ore is known
* What mines should the company operate, and when?

OR 541 Spring 2007
Lesson 10-1, p. 9

Example: A Mining Problem (Williams, 1985)

* A company has 4 mines it can operate for the next 5
years
» They can operate at most 3 mines a year
* They pay a yearly royalty every year a mine is open
* Once the mine is closed, it's closed permanently

e Each mine, if operating, has a max production each
year, and a known “ore quality”

* There are yearly targets for overall ore guality, which is
a weighted average of the quality of the outputs from
the mines

* The selling price/ton of ore is known
* What mines should the company operate, and when?

OR 541 Spring 2007
Lesson 10-2p. 1

Mining Problem (cont’'d)

* Indicies
* | = mine {1-4}
* t = year {1-5}
e Data
« ROYALTY, = yearly royalty paid if mine i is open
« PROD; = limit on yearly production in mine i
* QUAL,; = quality of mine i ore
* PRICE, = selling price of blended ore
« D, = discount rate in year t (1, 0.9, 0.81, ...)
 RQUAL, = required quality of blended ore in year t

e Variables?

OR 541 Spring 2007
Lesson 10-2 p. 2

Mine Decisions

e Each year, we have to decide whether to keep a mine
open, and if so, whether to produce
e SO:
e 0, = 1if mineiis open in year t, O otherwise
* p;, = 1 if mine i produces in year t, O otherwise
* X;; = amount of ore produced by mine i in year t

* Objective

maxz=)» D, * PRICE* x, =) D, * ROYALTY* o,
it it

OR 541 Spring 2007
Lesson 10-2p. 3

Enforcing Opening, Closing, and Production

o If a mine’s closed, it can’t produce:

p, <o, foralli,t

* Once a mine’s closed, it stays closed:

0, =0, foralli,t <5
e Limit production of open mines:
> p, < 3forallt

PROD * p, = x, foralli,t

OR 541 Spring 2007
Lesson 10-2 p. 4

Finally, the Quality Requirements

 Blending constraints:

S QUAL *x,
| = RQUAL, forallt

>,

e L inearize:

D> QUAL * x, = RQUAL * > x, forallt

« Nonnegativity and binary variable constraints:

x. = 0 foralli,t
0., p, {01} for alli,t

OR 541 Spring 2007
Lesson 10-2 p. 5

Covers, Partitions, Packs

* These are very common types of IP’s

* General description of a cover:
 Have some set of objects S ={1,2,3, ... N}
» Also have a collection of subsets of S, e.g.,
« s1={1,2}
e s2={1,3,5}
« s3={2,6}
« Each subset has a cost associated with it (C.)
* Objective is to “cover” S with some collection of the
subsets at minimum cost

 Each element of S must be in one or more of the chosen
subsets

e \Want to choose the minimum-cost collection of subsets

OR 541 Spring 2007
Lesson 10-2 p. 6

Winston Ex. 5, p. 486-487

mnz= cx+ CX+ CX+ CX*+ GXt CX

X + X, >1
X H | X+ X, | 21
X + X, >1]

X+ | X, + X >]

XoH | Xt | % | 21

X, + Xt | % | 21

x. [J{O1} for all

= subset; each constraint is an object

OR 541 Spring 2007
Lesson 10-2 p. 7

General Form

* The standard cover problem is:
minz=>» C * X
subject to
> A *x =1forall |
x 0{0a} foralli

e Data:
* A; = 1if subset i covers object j, O otherwise

OR 541 Spring 2007
Lesson 10-2 p. 8

Partitions, Packs

o Partition: each object can only be covered by 1 subset
minz=> C * x
subject to
D> A *x =1forall j
x [1{0,1} for all i
» Pack: each subset has value V;, and we want to
maximize the value of the subsets “packed” in:
maxz= > V,* X
subject to
D> A *x <1forall |
x [1{0,1} for all i

OR 541 Spring 2007
Lesson 10-2 p. 9

Pack Example (Winston p. 555, #21

e Indicies
e d = districts { 1-8}
e Data

* POP, = population of district d in 1000’s
* Ayg = 1if ambulance in d can respond to d’ in time

 Variables, Objective and Constraints
* X4 = 1 if ambulance assigned to d, O otherwise

maxz=>) A, 4* POR * x,
d,d

subject tb
D Aug* Xy < Iforalld

d
Y x4 =2
d

x, {01} foralld

OR 541 Spring 2007
Lesson 10-2 p. 10

Another Pack Example (from Schrage)

o A financial firm wants to package a set of mortgages
* They want to maximize the number of packages
« Each package must be worth at least $1M

* Mortgage values:

A B C D E F G H

Value (1000's)| 910 | 870 | 810 | 640 | 550 | 250 | 120 | 95

* There are 270 packages that are worth more than $1M
that contain 4 or less mortgages

e S0:
» Let | = package #, | = mortgage
* A;=11if mortgage | is in package I, O otherwise

OR 541 Spring 2007
Lesson 10-2 p. 11

Mortgage Packing (cont’d)

* The problem is then:

maxz= > x
subject to

D> A *x <lforall j
x. [1{0,1} for all |

* Note that in these types of problems, you usually have
to generate the subsets

OR 541 Spring 2007
Lesson 10-2 p. 12

MPL Code for Mortgage Packing

* The following MPL code does the mortgage packing
problem, including generating the subsets

| NDEX dummies
m = (ABCDEFGHI,D1 D2);
m :=m
n :=m :
M8 = m } Aliases of m
m = m

DATA
Vi m] := (910, 870, 810, 640, 550, 250, 120, 95, 55, 0, 0);
V2[2] := (910, 870, 810, 640, 550, 250, 120, 95, 55, 0, 0);
V3[n8] := (910, 870, 810, 640, 550, 250, 120, 95, 55, 0, 0);
valm4] = (910, 870, 810, 640, 550, 250, 120, 95, 55, 0, 0);

Bl NARY VARI ABLES

x[ml, n2, nB, M] WHERE ((nmil<nR) and (n2<nB) and (nB<mi) and
(VL[ml] +V2[n2] +V3[nB] +V4[n4] >= 1000));

OR 541 Spring 2007
Lesson 10-2 p. 13

MPL Code (cont’d)

MODEL
max npack = sum(mil, n2, n8, n4: x[nmil, n2, nB, m4]);
SUBJECT TO
packcon[m WHERE ((m <> "D1") and (m<> "D2")):
sum(ml=m n2, N8, nd: x[nil, n2, nB8, mM]) +
sum(ml, n2=m nB, md: x[nil, n2, nB, M]) +
sum(nml, n2, nB=m md: x[ml, n2, n8, m]) +

sum(nml, n2, nB, Md=m x[nml, n2, nB, mM]) <= 1;

END

OR 541 Spring 2007
Lesson 10-2 p. 14

“Natural” Integer Solutions

* When solving integer or mixed-integer problems, first
look at the “LP relaxation”
 Allow integer variables to be fractional
 Allow binary variables to be fractional, with bounds of O to 1

* If you solve the LP and get integral answers:
 Quit! Answer is optimal
 Why can't it get any better?

* We know some LP’s will have integral solutions

e If the LP is a network model

o If the “A” matrix (all constraint coefficients) is “totally
unimodular,” and the constraint RHS’s are integer

e But what Iif the LP relaxation has fractions?

OR 541 Spring 2007
Lesson 10-3, p. 1

Solving MIPs via Branch-and-Bound

e Introduced by Land and Doig (1960)

e |deas
» Solve LP relaxation of problem
» Choose a fractional variable, say x,, with value x*
e Create two new LP’s:

maxz = Cx maxz = Cx
subject to subject to
AxX<Db AxX<Db

X <% X 2| %*|
x=0 x=0

OR 541 Spring 2007
Lesson 10-3, p. 2

Branch-and-Bound (cont’d)

» Adding these restrictions and resolving (via dual
simplex) is very quick

e Leads to a “tree” of solutions: X, *
« Each branch tightens upper bound /\
 Each branch adds a constraint
' [% * %]

« Each branch (hopefully) eliminates
a fractional variable

e SOmMe ISSuUes: Xz‘*/
« What do you branch on?
« How do explore the tree? /\
« How do you know when [%,* | %, *]
you're done?

OR 541 Spring 2007
Lesson 10-3, p. 3

Node Selection

e Commercial codes have lots of clever tricks

» Look at the objective function coefficients/reduced costs of the
fractional variables

» Look at “degree of fractionation” (where .5 is the most fractional)

* Branch priorities
o Supplied by users
» Tells code which variables to branch on first

« Example: y, = build a factory, y,, ... Y;, produce products at that
factory

* Which variable should you branch on first?

* NOTE: MPL doesn’t appear to support this, although CPLEX
does

OR 541 Spring 2007
Lesson 10-3, p. 4

Branch-and-Bound: Probing

« Commercial codes look at the “implications” of a branch
* Suppose we have the following constraints:

X+ X+ X <1
X+ X, + X, <1
X+ X+ X+ X <1

x. [1{01} for all I

» Suppose we solve the relaxation, and x, = 0.5
« What happens if we set x, = 0?
« What happens if we set x, =17

OR 541 Spring 2007
Lesson 10-3, p. 5

Branch-and-Bound: Tree Traversal

» Tradeoff here is feasibility versus optimality
e Winston’s “last-in-first-out”
 Actually is “depth-first-search”

e Technique is to dive as deep into the tree as necessary to get
an integer feasible solution

* Idea is to get integer feasible first, then search for improvement

» Getting an integer feasible solution provides a lower bound,
may cut off large parts of the tree later

e See Winston, figures 10-17, pp. 512-517

OR 541 Spring 2007
Lesson 10-3, p. 6

More Traversal

e If you already have a feasible solution, you may want
to traverse the tree differently
» Winston calls this “jumptracking”
 Actually is “breadth-first search”
* Instead of diving into the tree, you solve each node resulting
from each branch
» Regardless of the traversal, note what happens at
each node:
* Problem is either infeasible, integer feasible, or “tightened”

e First two cases: node is “fathomed” and no more search is
necessary

OR 541 Spring 2007
Lesson 10-3, p. 7

Branch-and-Bound: Stopping Criteria

 Winston gives the impression you stop when
everything is fathomed

* Not so - would be deadly for many big problems
* To prove integer optimality, you need to fathom every node
« Untenable for a big MIP

* Need to set an “integrality gap” (usually 0.01 - 0.05)

* For a max problem, we have an upper bound at any stage of
branch and bound

* An integer feasible solution gives a lower bound
* The integrality gap is usually defined as:

_ upperbound-lower bound
lower bound

gap

OR 541 Spring 2007
Lesson 10-3, p. 8

Prudence in Solving a Big MIP

e Set an iteration limit
* Most solvers let you limit the number of iterations
 Allows you to avoid long, useless runs

« Set a solve time limit (for same reasons as above)
» Set a loose integrality gap to start (say, 0.20)

e If you have an existing solution:
« Compare it to the LP relaxation; use it to give advice on an
integrality gap
» Use the objective function value as a “cutoff’ parameter; solver
won'’t explore branches worse than the cutoff

» Use branch priorities

OR 541 Spring 2007
Lesson 10-3, p. 9

