MPL Modeling System

Release 4.2

MPL Modeling System
Release 4.2

Maximal Software, Inc.
2111 Wilson Boulevard
Suite 700

Arlington, VA 22201

Tel: (703) 522-7900

Fax: (703) 522-7902

Email: info@maximal software.com
Web: www.maximal software.com

Copyright O 1988-2002, Maximal Software, Inc., All rights reserved.
CPLEX dialog box items: Copyright O 1989-2002, CPLEX Optimization, Inc.
XPRESS dialog box items: Copyright 0 1984-2002, Dash Optimization, Ltd.

No part of this document may be reproduced, stored in aretrieval system, trandlated, or
transmitted by any means, electronic, mechanical, or otherwise, without the prior written
permission of Maximal Software, Inc.

Printed in USA 2002 - MUMPLW/021

The information in this document is subject to change without notice and does not represent a
commitment by Maximal Software, Inc.

MaximalO, MPLO, and Turbo-Simplex are trademarks of Maximal Software, Inc.
Microsoft®, and Windows® are registered trademarks of Microsoft Corporation.
Linux®is a registered trademark of Linus Torvalds.

CPLEX® is aregistered trademark of ILOG

XPRESSO isatrademark of Dash Optimization, Ltd.

IBM® is aregistered trademark of International Business Machines Corp.

XAO isatrademark of Sunset Software Technology.

Frontlined isatrademark of Frontline Systems, Inc.

Lindo® is a registered trademark of Lindo Systems, Inc.

PREFACE

Welcome to the MPL Modeling System, a full-featured modeling system for optimization running
under Windows and Motif. Never before has an optimization modeling system software offered
such advanced features, yet been so easy to use.

Maximal’s philosophy has produced a unique product that has both speed and efficiency. The
user interface is particularly friendly and natural to use; our goal was to make the input form
resemble, as closely as possible, how you would write out a problem on paper. Making the
formulation of optimization models both straightforward and easy. MPL is equaly at homein a
university setting asit isin the business world.

This manual is intended for the owner of the MPL Modeling System package. It includes
reference information for people experienced in developing optimization models and help for
those just learning about it.

Contents at a Glance

PART I GETTING STARTED 1
Chapter 1 INtrOOUCTION.c.civiieereriesie ettt 3
Chapter 2 Getting Started With MPL ..o 9

PART Il USING THE MPL MODELING SYSTEM 13
Chapter 3 RUNNING MPL ..ottt s 15
Chapter 4 DesCription Of MENUS.........coeieieiririerieiriesie et 35

PART Il THE MPL MODELING LANGUAGE 141
Chapter 5 Language OVEIVIEWccceevveiireeeierie e eeeee e eee e ae e s eneeneas 143
Chapter 6 Defining Sets ANd INJEXES.......oceeeevieceeeeeese e 155
Chapter 7 DataFor The MOdEL.........ccoooeiiiieeee e 167
Chapter 8 Formulating The MOGEcciiiiiieneee e 177
Chapter 9 Building FOrMUIBScoiiiieiieneeeeeee e 195
Chapter 10 Advanced Indexing TEChNIQUES.........ccccccruerierieiererierieee e 209
Chapter 11 Database CONNECLIONcoeieeereriirieeeere et 217

PART IV A MPL TUTORIAL 229
TULOITA OVEIVIEW ...ttt sttt 231
Session 1: Running MPL onaSample Model...........ccoviiineneneneneeee e 233
Session 2: Formulating a Simple Product-Mix Modelccccovovvereieneneneenn. 243
Session 3: Introducing Vectors and Indexesin MPL Models.........cccoecevvieeennen. 255
Session 4: A Production Planning Model with Multiple Time Periods................ 269
Session 5: A Production Planning Model with Multiple Plants..........ccccoovveeneenee. 283
Session 6: Upgrade the Model to Allow Shipments Between the Plants.............. 295
Session 7: Formulating Models With Sparse Datain MPL.......cccovvveevenenceenen, 309

APPENDICES 323
Appendix A: CharaCter SEl..........ooveieiececeeee e 325
AppendiX B: Error MESSAgESccveveeriesieseeeie et eeeee et sae st sa et nnenes 327

Table of Contents

PART | GETTING STARTED 1
CHAPTER 1 INTRODUCTION ...t iiiee et eeee e 3
L1 WRHEL ISIMPL?..eieeee et 4

1.2 Key Features Of MPL......c.ooiiieieereseee ettt s 5

1.3 How to Contact Maximal SOftWare.........cccovvrerierenenerieere s 7
CHAPTER 2 GETTING STARTED WITH MPL ..o 9
2.1 System REQUITEMENTScoviieieieieseseeee e see e see e e e see e s e e see s saeeneens 10

2.2 Installing MPL fOr WINCOWS........coiiiiirieniisenceeesie e 10

2.3 Setting Up SOIVEISTOr IMPLc.ooieicecee e 11

2.4 Using the MPL ENVIFONMENT.......cccooiiiirere e s 12
PART Il USING THE MPL MODELING SYSTEM 13
CHAPTER 3 RUNNING MPL ..ot 15
3.1 HOW L0 SEAIT MPL.....ooeeeeeeeeeeeee e 16
Running MPL from the Start MenU.........ccccceeeveneneeieneneseeeese e 16

Create a ShortCUL fOr MPL........cooiiieecee e 16
Embedding MPL Modelsin AppliCations.........ccocvveeveneneneeneneseseenens 17

Running MPL in RUN-IME MOUE........ccccoovirieieneneeeere e 17

Calling MPL from Other AppliCaionS.........ccccevierererrenesereesee e 18

3.2 The MPL Main WiINCOW........ccviieieniineeiesie e sneeeas 19
TREMAIN MENU ...t een 19

The PUll-AOWN MENUSccueeieienieeeeiesie sttt eeens 20

TNE TOOIDAN ...c.eieeeeeeee et eens 22

TRE SLALUS Boveeeieiee ettt st e s e re e s eaaee e 23

3.3 Using the MPL ENVIFONMENT........cccoviiririereseeeeseesie s see s sseeeas 24

SOIVEr SUPPOIT IN IMPL ... e 25
SOIVING MOAEISIN MPL......ooieeeceeee e 26

The Model DefinitionS WiNAOWcccoveirireneninenesieeeeeeseseeeeeeiens 28
TheMeSSage WINUOWcccocerieririeiere ettt 31

Using Projectsto Manage MOdEIS.........cooveeeevenenceieeneseeee e 32

Using the MPL Help SYSemM ... s 33
Context SENSITIVE HEIP ..o e 34
CHAPTER 4 DESCRIPTION OF MENUS ..., 35
4.1 TREMEBIN MENU ...t e 36
4.2 TREFIEMENU ..ot e 37
Create aNew Model File........cocoiiiiie e 37

Open an Existing Model File.........cccooiiiieieiereeeeeeee s 38

ClOSE FIES ...t 39

Save the Model Fle........oo s 40

Save Selected TeXt to AFIl€.......ccooeeiiieee e 41

Insert File INto the BEditorc.ooeieiiieeeseeee e 42

Print the Model Fle..........oo e 43

EXit the MPL Program.......c.cccviiieenese e 44

4.3 TREEAIT MENU....oiiiiiiiiteeee e 45
UNAO ChaNQJES ..ottt sttt 45
Cliphoard OPErations..........cceereeriererieriesieseeeeste e seesee e see e s eeenes 46

4.4 The SEArCH MENU......ceiiiitiieieeeste e 47
FiNd Text INthe MOdE! ..o 48

Find and REPIACE TEXT....ccueveeieiesiieieie et 49

GOto LiNeinthe MOGEL ..o 50

4.5 TREPIOJECE MENU ...ttt et 51
Create aNew ProjeCt File........ccooiiieieiereceeeee e 52

Open an EXisting Project File.........ooeiiiiiieeeseeee e 52

ClOSE ProjeCt FIlES....ccueeieeceeeie e 53
SAVEthe ProjeCt FIlE.....cvieeceeeeecee e 54
Change PropertieSfor aPrOJEC........ccevvvvnerierene e 55

4.6 TNERUN MENU....coiiiiiiiitiieee e 56
Check Syntax of the MOdel ..o 57
SOIVETNE MOGE ... s 58

Parse the Model INt0 MEMOXYcooveiiiiiieereseee e 59

Solve the Model Currently in Memorycoceverereeneneneeeere e 59
Generate SOIULION FlE.......oeiiiieee s 59

Clear the Current Model From MemOryccevvveeeeneneneeieenee e sesneenes 60
GENErate MaPPING .. .eeeeierieeeeeeesie st eee e see e ee et eseeseesaeseeseeseesseeeenes 60
Generate INPUL FITE ..o e 60

A7 TREVIEW MENU ..ottt 61
View the SOlUtION FIES..........ooiiee e 62

VIBW ONEN FIIES ..ottt st 63

ViIEW SOIULTION VAIUES.......ceeeieieeeie ettt st st eaee e 64

View the Model SEaLISHICS......cceoeeereirieieeeeeese e 65
View Model Definitions WINAOWcceceeerereninieneneeesesesieeeeniens 66
View MeSSage WINCOWcocverirerieiene e see e e sneeneens 70
4.8 The Graph MENU.......cccceiiiieieeesie ettt s eneeeas 71
Graph Of the MELXcocveieiieeee e e 71
Graph of the Objective FUNCLIONcccovvveeierereeeee s 73
4.9 The OPtONS IMENU.......coiiriiiieiee ettt ne e e s eas 74
Change MPL Environment OPtioNSccocceeerereneeseeneseseenee e seeseenes 75
Change MPL Language OpPLioNScccuvvrereerenieneereenieseeseesee e seeseenes 77
Datalase OPLiONS........ccoiiirieiere et sre e eneas 80
Change Solution File OPLioNS..........coceeverenereerese e 82
Change Generate File OptionS.........coceverenerieeneneneeseese e 84
Change General Solver OPLioNS.........coccvvvreriereneneeese e 85
Change CPLEX SImplIeX OptioNSccocvveeiereneniereenie e seeseeseenes 87
Change CPLEX Preprocessing OptioNnS.........cccvevereereenesesreeneeseeseesseenes 0
Change CPLEX Log File OptionS.........ccocvveeereneneereenieseseesee e 93
Change CPLEX Limit OPtiONS........cccueverererieniesieseeseeseesieeeesee e seeseenes 95
Change CPLEX MIP Strategy OptioNnScoceverereereereseneeseeseeseeseenes 98
Change CPLEX MIP Strategy2 OpLioNS.........ccceeveerereserienreeniesieseenenns 100
Change CPLEX MIP CUtS OPLiONS........cccvevererieeieeseesieseeeeeseeseeseeseeneens 103
Change CPLEX MIP Tolerance OptionsS...........ccocevereneeeeneenesesiennenns 103
Change CPLEX Barrier OptioNS.......ccocceeererererieereeseseseeseeseeseeseenenns 108
Change CPLEX Network OptioNnS.........ccceverererieenenesesesseesieseeseeneens 111
Change XPRESS SImplex OptioNnS.........cccocerereeieeneneseneeneesieseeseeneens 113
Change XPRESS Preprocessing OptionS..........ccoceveresereenenesesieenenns 116
Change XPRESS Log File Options.........cccccuvviirieenenieseeeeseene e 118
Change XPRESS Limit OPLiONS........ccccceiererenenieenienesieeeeseesieseeseenenns 120
Change XPRESS Tolerance OptionsS..........cccvveeeveeneneseneeneenieseeseeneens 122
Change XPRESS MIP Strategy OptionS........ccccceveverenerieenenesesieeneens 124
Change XPRESS MIP CUtS OptiONS........ccccuviririeerenieseeeeseeseeseeseenenns 126
Change Barrier Optionsfor XPRESS.........cccocvirieninincreerenie e 128
Change Solver Parameter Options...........cceeevereeieeneneseeeeneeseeseseeneens 130
Solver Options List Dialog BOX......ccovvveeierenienieeeenieneseeeeesee e sieseeneens 131
Setup Solversfor the RUN MENU.........cooeeeienenieeeeseeeee e 132
Change Setup OptionS fOr SOIVENS.........ceceverereeeere e 133
4.10 The WINdOW MENU........ooiiiiiieeeesesee et 135
Tile and Cascade WINAOWScccevrerieieeiniesesieeeesiesee e 135
Arrange Minimized ICONS.......ccoveeeiereneeeerese et 135
Cl0SE All WINAOWS.......coeieeeiesiesieieiee et 135
4,11 TREHEIP MENU....oeiiieieiieeee et et ee s 135
Using the MPL Help SYSemM ... 136

ADbout MPL fOr WINQOWS.......ccoocuiieeceiee ettt e 139

PART Il THE MPL MODELING LANGUAGE 141

CHAPTER 5LANGUAGE OVERVIEW ... 143
5.1 Structure of the MPL Model File........ccooviiirieiireeeeee e 145
The Problem Title.....co s 147

The DefiNitioN Part ..o 147
TREMOE Part.......ccceiiiieeereee e s 148

5.2 BasSiC INPUL EIEMENES......cceiieeeceeeees e 149
NUMDEIS. ..t st s ae e aesbesneeneens 149

NBIMIES ...ttt b e bbb b b nean 149
DEIIMITEIS .. st sre e een 150

WHITE SPACE. ... ittt s 150

INSErtiNG COMMENTS.....civiitiieeierie e eens 150

INCIUAE FIES......eee et 151
Conditional DIFECLIVES........cocviieieerie et 151

OPLION SEIINGS ...ccueeierieeeeere e 152
CHAPTER 6 DEFINING SETSAND INDEXES......cccccocviiiieenee. 155
6.1 NUMENC INAEXES.ottt s 156

6.2 NAMEU INUEXES.....ceiieieeeeesie et 157

6.3 AlIASTNUEXESceeierieeeeie sttt e 158

6.4 CIrCUIAr INAEXES......eoieeeeeieriecee ettt 158

6.5 SUDSELS OF INAEXEScoueeiiieeieeeeie e 159

6.6 FUNCLION INUEXES......oveeeeeiecieeeeeie sttt s 160

6.7 Set Operations 0N INUEXES........cccoviririeiere et 161

6.8 Multi-dimensional INdeX SELS.......cccoeriererenerere e 162

6.9 Reading Index From External Fle.........cccoovvieieiienininiene e 164
6.10 Import Index from Excel Spreadsheetccocvvvvivniennseeeescee 165
6.11 Import Index from Database...........ceevvererenerieereneeee e 166
CHAPTER 7 DATA FOR THE MODELccccooeiiieecee e, 167
7.1 Data CONSLANTS......cccueiieeiieieesieesiee et ae e s 168

7.2 DEtAVECIOIS... .ottt 170

7.3 SPArSE DAta VECIONS ..o 171

7.4 D@ ANTNMELIC ..o e s 172

7.5 Reading Data From External Fles..........ccoovvieieiininiesene e 172

7.6 Import Datafrom Excel Spreadshegt..........coocvevevinenieiene e 174

7.7 Import Datafrom Databhasecocvveeeerenesieeereneeee e 176
CHAPTER 8 FORMULATING THE MODELccccccevvviieecieene 177
8.1 Declaring DeCiSion Variables.........ccccevvvinieieneneneeese s 178
VariablE NaMES ... 178

INteger VariablEs.......cooiiiieeeseee et 179

Initial Valuesfor Variables.........ccueevecviiiieceee e 179

Where ConditionS on Variables.........cueevieceiei e 180

Export Variable Valuesto Data Files.........ccooevevereeceneneeeeenesceens 180
Export Variable Vauesto Excel Spreadsheetccccovvvvecenenencnnns 181
Export Variable Vauesto Database..........cccevevvvereereneneneenie s 182

8.2 DEfINING MACIOS......coiiiieiiiiieiesie ettt 183
8.3 The ObJeCtive FUNCLIONccoiiieieieese e 184
8.4 SPeCifying CONSLIAINTS.ccverierierieeieie et s 185
Plain CONSITAINTS.coveeeeirierieieeee et 185
VECtOr CONSIFAINTS ...ttt 187
Where Conditions 0n CONSITaINES........c..coeeererrereeieneneseeseeese e 188
Export Constraint Valuesto Data File.........ccccoovieeeiinnnencencneneens 189
Export Constraint Values to Excel Spreadsheetccccvoevcevinencnens 189
Export Constraint Valuesto Dataase.........c.ccoveveeeenenenenieneseneeeens 190

8.5 Bounds on Variables..........coeeriiirieieinseeee et 191
Free Variables........cooo e 192
Semi-Continuous Variables..........ccocviieeeiineeeeeses e 192

8.6 Integer and Binary Variables.........coceviviiirieeneneseeeese e 193
Specia Ordered Sets of Variables.........coceveveverienneneseeeeee s 193
CHAPTER 9 BUILDING FORMULAS.......co e 195
9.1 Coefficientsfor Variables............cooeieiiinireieee e 196
9.2 Using Arithmetic FUNCLIONS.........ccceiirininieeesene e 197
9.3 Using Variables in FOrMUIBS...........cocvvininirieeiesee e 198
9.4 FOrMUIB TENTS.... ettt sn e 200
9.5 IFIIF Conditions on FOrmula TEMIS........coerveierinenieieeenieseseee e 202
9.6 Where Conditions on FOrmula TEMISccveeeirenieieeeneseseeeeeeseeseeeeeens 202
9.7 Referring to IndexeSin FOrmMUIBSccovveeiereneneeeee e 203
9.8 USING ParentheSeS........ccovueiieiriesieeeeies e 204
9.9 Summing Vectors Over INdeX ValUES.........coccovevenerienenenee e 205
.10 USING MBCTOS......ccueeieieeieeiesie e steeeeste st see et see e ste e neeseeseesseeeenes 206
9.11 ADOIT If CONTITIONS......c.eitieeeeiieierieeee e 207
CHAPTER 10 ADVANCED INDEXING TECHNIQUES............. 209
10.1 Set Membership with the IN Operator..........ccoovvvreevenieneneerese e 210
10.2 Set Domain Index with the Dot OPeratorcoveveverenerieereseseeeeens 212
10.3 Set subsets with the OVER OPEraorcoceeceeviereneeieene e see s 213
10.4 Subscript Arithmetic with Conditional INdexes..........cccoovveeeeveneneeceenn. 214
10.5 Direct AsSIgNmeNnt Of SUDSCHIPES....ccveverereeiereneeeeee e 215
CHAPTER 11 DATABASE CONNECTION.....cccccciviiee e 217
11.1 Import INdexes from Dalabase..........ccovvrereeiereneeeeee e 219
11.2 Import Data Vectors from DalaDase........ccoeevvereriereeneeneseseenee e 221
11.3 Export Variable Values to Database.........cccceveverereeneene e 223

11.4 Export Constraint Valuesto Database.........ccccevvvereerenenenieenene e 226

PART IV A MPL TUTORIAL 229

TULONTAl OVENVIBW ...t e 231
SESSION 1: Running MPL on aSampleModeélcccooovriinienens 233
1.1 YOUr FIrSt MPL SESSIONueiuiiiiiieeeiesieseie sttt 234

1.2 Using the HElp SySteEM IN IMPLocooiiieeeeeeeeee e 241
SESSION 2: Formulating a Simple Product-Mix Modd 243
2.1 Problem Description: A Simple Product-Mix Modécccccoeevvrennnnne. 245

2.2 Formulating the MOEcoeeeiinieeee s 246
Identify the Decision VariableScooovviveeieneneceeeseee e 246

Identify the Objective FUNCHIONcccoviireeeeceeeeese e 246

Identify the CONSITAINES.cooeiireeere e 247

Summing up the FOrmMUIation ..o 247

2.3 Solving the Model INIMPL ..o 248
Step 1: Start MPL and Create aNew Model File.........cooevevviinnenns 248

Step 2: Enter the Model Formulation for the Bakery Modd 248

Step 3: Check the Syntax of the Modelcccoevevevinininreeeeeens 249

Step 4: Solvethe MOdE] ..o 251

Step 5: View and Analyze the SolUtioN.........cccceeceveneneneere s 252
SESSION 3: Introducing Vectorsand Indexesin MPL Models..... 255
3.1 New Conceptsin thiS SESSION.........cccevirinieerere s 256
Indexes as the Domains of the Model ... 256

Data, Variable, and Constraint VeCtors..........coeeeeererieneieseneneseeeeeens 256

Data CONSLANTS.ccueeeerirrieeeeesre e 257

Using SUMMELIONS OVEN VECIOISceviereieiieiesiesieseeeeseesieseenee e sneeeens 257

3.2 Problem Description: A Product-Mix Model with Three Variables......... 258

3.3 Formulation of the Model iINMPL.........cccooiiiiiieeeeeseeee e 259

3.4 Enter the Model in MPL Step-by-Step ..c..oovveeeeeeeeee e 260

3.5 Solvethe Model and Analyze the SOlULioNccoceevevenenceiereneeeeen 264
SOIVETNE MO ... 264

View and Analyze the SOIULIONcccoverieiereseeeee e 265
SESSION 4: Planning M odel with Multiple Time Periods............... 269
4.1 New ConceptSin this SESTION.......ccceeierererirerese e 270
PEMOO INAEXES ...t 270

Sales and Inventory Variabl €Scoovveeeerene e 270

Inventory Balance CONSLIaiNtS.cccererereeriereseeeee e 270

Initial and ENding INVENTOTYcceeieriinieeierese e 271

4.2 Problem Description: A Multi-Period Production Planning Moddl 272

4.3 Formulation of the Model IN MPL ... 273
4.4 Enter New Elementsto the Model Step-by-Step......cocevvveniecivnnineee 274
4.5 Solvethe Model and Analyze the SOIULIONcccoeeeievenenencere e 279
SESSION 5: Production Planning M odel with Multiple Plants....... 283
5.1 New ConceptSin thiS SESSION.........ccceeveiiiireeeresee s 284
Plants and other LOCation INAEXES..........cccvviieriereeerinieeeeesesee e 284
External Data FileScccoviiieeeereeee e 284

5.2 Problem Description: Planning Model with Multiple Plants...................... 285
5.3 Formulation of the Model iINMPL.........cccoiriinineenereeeeee e 286
5.4 Enter New Elementsto the Model Step-by-Step......coovvvvvveeieienenceene 287
5.5 Solvethe Model and Analyze the SOlUtioNccoceeeeveneneeiereseceee 292
SESSION 6: Allow Shipments Between the Plants...........c.ccocceeene, 295
6.1 New Conceptsin thiS SESSION......cccvviiierere e 296
Transportation MOGEIS.coviiiieree s 296
Transshipment MOGEIS.........cooiiiierieeee s 296

AlTBS TNAEXES ...ttt 296

Using Where Conditions on Vector Variables.........ccccvvveecenenenennenns 296

Plant Balance CONSIFaiNES.........cccveiririereeeniseseeeeesre e 297

6.2 Problem Description: Additions to Allow Shipments Between Plants......298
6.3 Formulation of the Model iIN MPL.........cccooiinieeeeeeeeeseeeeee 300
6.4 Enter New Elements to the Model Step-by-Step......coovevevvvercecenenceene 301
6.5 Solvethe Model and Analyze the Solutioncccceeveveveneececene e 306
SESSION 7: Formulating Models With Sparse Datain MPL 309
7.1 New Conceptsin thiS SESSION......cccvieiierere e 310
EQUIPMENT INAEXES ..ottt s 310

USING the TN OPEIELOrcoveierieeieeeerie e ree e eens 310

INAEX FIIES ... 311
SPASE DAAFIIES ...t 311

7.2 Problem Description: A Planning Model with Multiple Machines........... 313
7.3 Formulation of the Model iN MPL.........ccooiineeeeeeeseseeeeee 314
7.4 Enter New Elements to the Model Step-by-Step......coveveveveeieinnenceene 316

7.5 Solvethe Model and Analyze the Solutionccceeceeveveneecerese e 320

APPENDICES 323

APPENDIX A: CHARACTER SETccceeieevee e, 325
APPENDIX B: ERROR MESSAGES.......c.ccooiiie e, 327
Format Errorsin the FOrmulation ... 327
Errorsfor NONIINEAr ParSer..........ccovivirieerinieneieese et 340
Errors Using INCIUdE FIES........cc.ooieieeeceee e 341
Errors Using Conditional DIir€CHIVEScccevererereenienieneeeese e 341
Errorswith Data FilEs.........ooiiiiiiieeeee e 342
Errors Reading MPS FIIES.......oooiieeececeee e 342
Errors with Problem Size and Memory ... 342
Errors Using Datahase CONNECTION.cocceverererieriesie e 344

INDEX 347

PART |

GETTING STARTED

Chapter 1: Introduction
Chapter 2: Getting Started with MPL

Part | Getting Sarted

Chapter 1. Introduction

CHAPTER 1

INTRODUCTION

Optimization is today one of the most important tools in implementing and planning efficient
operations and increasing competitive advantage. Organizations need to make intelligent
decisions to obtain optimal use of their available resources, such as manpower, equipment, raw
materials and capital. The discipline of optimization, through the use of advanced mathematics
and computer science techniques, can be used to assist organizations with solving their complex
business problems in areas such as manufacturing, distribution, finance, and scheduling.
Typicaly, these optimization problems contain hundreds, thousands, or even millions of
interconnected variables and require an advanced set of software toolsto solve.

Today, the field of optimization entails highly advanced software applications that integrate
sophisticated mathematical algorithms and modeling techniques with intelligent software
programming and data processing capabilities.

Optimization projects begin with the development of a mathematical model that defines the
business problem. Individual business decisions are represented as “variables,” and the
connections between them are represented by a series of mathematical equations termed
“constraints”. The “objective” represents the goal of the business problem, for example, to
maximize profitability or lower costs. Identifying the variables, the constraints and the objective
is known as the “modeling” process and is an essential task for every optimization project. After
the model has been formulated, it is then solved, using an optimization solver, which, at its core,
has highly sophisticated algorithms adept at intelligently sorting through huge amounts of data
and analyzing possible approaches to come up with an optimal solution.

Part | Getting Sarted

1.1 What Is MPL?

Maximal Software is the developer of MPL (Mathematical Programming Language) an
advanced modeling system that allows the model developer to formulate complicated
optimization models in a clear, concise, and efficient way. Models developed in MPL can then
be solved with any of the multiple commercia optimizers available on the market today.

MPL includes an algebraic modeling language that allows the model developer to create
optimization models using algebraic equations. The model is used as a basis to generate a
mathematical matrix that can be relayed directly into the optimization solver. Thisis all donein
the background so that the model developer only needs to focus on formulating the model.
Algebraic modeling languages, such as MPL, have proven themselves over the years to be the
most efficient method of developing and maintaining optimization models because they are easier
to learn, quicker to formulate and require less programming.

MPL offers a feature-rich model development environment that takes full advantage of the
graphical user interface in Microsoft Windows, making MPL a valuable tool for developing
optimization models. MPL can import data directly from databases or spreadsheets. Once the
model has been solved, MPL also has the ability to export the solution back into the database.
MPL models can be embedded into other Windows applications, including databases and
spreadsheets, which makes M PL ideal for creating end-user applications.

The main purpose of a modeling language is to retrieve data from a structured data source, such
as a database, and generate a matrix that the optimization solver can handle. For large
optimization models, this matrix generation requires a modeling language with highly advanced
capabilities, such as sparse indexing and database management, as well as high scalability and
speed. Many details need to be taken into account when choosing a modeling language for
optimization projects:

* Model Development Environment

* Robustness and Flexibility of the Modeling Language
« Indexing and Data Management

e Scalability and Speed

» Database Connections

» Connection to Solvers

* Deployment into Applications

MPL was designed to support multiple platforms. MPL for Windows is the most popular
platform but an OSF Motif version is also available for various UNIX flavors including HP 9000,
IBM RS-6000, Sun Sparc, Silicon Graphics and Linux. MPL models are portable so a model
created for one platform can always be read on any other supported platform.

Thisrelease of MPL, offers the highest performance of modeling languages on the market today.
Since we are constantly working on new releases of MPL, please contact Maximal Software for
updated information.

Chapter 1. Introduction

1.2 Key Features of MPL

« Graphical User Interface. MPL is an integrated model development system that offers full
support for al standard Windows features, including dialog boxes, mouse support, pull-down
menus, graphics, toolbar, and on-line help. Furthermore, the new version of MPL, supports
advanced Windows graphical features such as tree windows, long filenames for models,
illustrative icons for each type of window, and context sensitive help.

« Direct link to Windows DLL solvers. MPL can set up the matrix and then send it to the
solver directly through memory. Solvers that are supported in MPL as Windows DLL include,
CPLEX, XPRESS, OSL, XA, CONOPT, LSGRG2, and FortMP. MPL can aso handle
legacy DOS solvers through a DOS window.

« Database Connection. MPL can import both indexes and data directly from a database.
After the model has been solved MPL can also export the solution back to the database.
Furthermore, MPL can easily be called directly from other Windows applications, including
databases. Supported databases include Access, Paradox, FoxPro, Dbase and any ODBC
compatible database.

« Manage models through projects. If you are using MPL to work on multiple models, that
use different files and option settings, you can use projects to manage the models. Projects are
used to store information about items such as, open model files and windows, the default
working directory, and current option settings.

« Modd Definitions window. MPL alows you to view defined items from the model
formulation in an easy to browse tree window. Y ou can expand and collapse each branch to
show only the elements you are interested in. 'Y ou can display the contents for each item, such
as elements for an index or solution values for avariable, simply by selecting it in the tree.

+ Message window. While MPL is running it can send various progress information to a
message window. What is displayed is selected by the user and can include status window
messages, MPL input lines, performance statistics, warning messages, SQL statements, and
iteration log information from the solver.

« Context sensitive help. MPL Supports Windows context sensitive help for dialog boxes. To
display the help, simply select the question mark button [in the upper right corner of the
dialog box and then click on the item you want help for. A small window will popup with a
short explanation of the item you selected.

« Multipleinput formats. In addition to the M PL modeling language, MPL can read multiple
other input formats, including MPS files and native input formats for solvers such as CPLEX.
MPL will automatically detect the format, when reading the input file, and switch to the
correct language. MPL can aso be used to generate severa different solver input formats.
This ensures that models created in MPL can be solved with nearly al industrial strength
optimization packages available on the market today.

Part | Getting Sarted

« Helpful error messages. MPL makes it easy to correct mistakes in your formulation. An
error window pops up containing the erroneous line in the model file with the error is
described in plain English. After you have read the message, the program automatically
locates the line in the model file and moves the cursor to it.

e Meaningful names. You can use meaningful names of any length for variables and
congtraints, so the formulation is easy to read and understand. You can aso, for additional
clarity, use explanations and general comments throughout the model file.

« Freeformat constraints. With MPL you can write variables and constants on both sides of
the constraints. This means that you do not have to convert the constraints to a standard
format before entering them.

« Arithmetic in the input. You can use fractions, products, percentages, and mathematical
functions in the model file. This flexibility not only alows clearer formulation, but also
automatically resultsin the highest possible accuracy. Full use of parenthesesis aso allowed.

« Separation of data from the model. With MPL you can read in data from external datafiles
in both sparse and dense data formats. The data files can be created either using the text editor
in MPL or be exported from other programs such as spreadsheets and databases. For example,
to read in adatafile containing a price list you would simply enter:

price[product] := datafile(price.dat)

« Data entered at run-time. Named data constants can be given a value interactively at run-
time. You are prompted for the value when the model file is read. This feature can be very
useful when you want to run the same model several times with different data values.

« Summation over vector variables. In MPL you can work with vector variables of up to
eight dimensions concisely and effectively. For example, to add the production cost for al
months and products, you simply type:

SUM(month,product: ProdCost * Production)

« Expansion of structured constraints. Models generally have many similarly structured
congtraints. In MPL you can enter these constraints in a single line that is then expanded to a
list of constraints. For example, to enter 12 constraints, one for each month, you would type:

InventoryBalance[month=dan. .Dec] :
Inventory = Inventory[month-1] + Production - Sales ;

« Macro definitions. Macro definitions in MPL alow you to define a part of a constraint or
formula that is frequently used as a macro. Y ou can then refer to it in the model by entering
just the macro name. In some cases, macros can be used to eliminate unnecessary equality
constraints and thereby reduce the size of the problem for the solver.

« Include files. MPL allows you to include externa files to the model formulation, using a
simple include command. This can make the model formulation more modular and easier to
read. Include files can aso be a great advantage when you want to solve a number of closely
related models containing common data or model statements.

Chapter 1. Introduction

1.3 How to Contact Maximal Software

If you have any questions regarding the use of MPL, please feel free to contact us for assistance.
We will do our best to help you solve your problems.

Maximal Software, Inc.

2111 Wilson Boulevard, Suite 700
Arlington, VA 22201

U.SA.

Td: (703) 522-7900
Fax: (703) 522-7902

Email: info@maximal software.com
Web: www.maximalsoftware.com

Maximal Software, Ehf.
Nordurasi 4

1S-110 Reykjavik
ICELAND

Tel: +354 587-7700
Fax: +354588-9728

Maximal Software, Ltd.

One Oxford Road

Uxbridge, Middlesex, UB9 4DA
United Kingdom

Te: +44(0)1895 819 344
Fax: +44(0)1895 819 345

Email: info@maximal software.co.uk
Web: www.maximal software.co.uk

MPL is continually evolving in order to bring you the most current and advanced techniques
available. Your input is a helpful component in shaping our focus and direction and is greatly

appreciated.

Part | Getting Sarted

Chapter 2. Getting Started with MPL

CHAPTER 2

GETTING STARTED WITH MPL

This chapter tells you what is needed to begin using MPL. The chapter contains these sections:

« System Requirements shows you the hardware and operating system requirements for
using the MPL software.

» Setting Up Solvers gives information about changing which solvers are available in the
Run menu in MPL and all solversthat are supported by the current version of MPL .

 Installing MPL for Windows gives information about installing MPL and what files are
contained on your M PL distribution diskette.

« Using the MPL Environment gives you a short overview on how to run the program.

Part | Getting Sarted

2.1 System Requirements

The minimal system requirements for running MPL for Windows are as follows:

» IBM PC compatible with 486 or Pentium processor

« 16 Mb of memory

« 3 Mb free hard disk space

» Microsoft Windows 95/98/Me or Windows NT/2000/XP

2.2 Installing MPL for Windows

Before you install MPL, to protect your software from loss, please copy al the files on the
distribution disk onto a backup and put in a safe place.

To install MPL for Windows place the first MPL installation disk in drive A:. From Sart menu
choose the Run command. Type a:\setup and click OK. The setup program will ask number of
simple questions such as where to install the software and then copy the files to the hard disk on
your machine. It will then create entries for MPL in the Sart menu.

Thefiles on the distribution diskette for MPL are copied to the hard disk as follows:

Mplwin4 directory:

Mplwin42.exe Contains the MPL for Windows application.
Mplwin42.hlp On-1line help file for MPL.

Mplwin42.cnt Contents file for the on-1line help.
Mplwhat.hlp Context sensitive help file for MPL.

* _mpl Contains sample input files, with full formulations of various LP
problems. These files tell you how to use many of the MPL features.

* .dat Contains the data files that accompany the sample model files.

Mplwin42.ini Initialization file for mplwin that stores the current setup.

*_opt Option files for some of the solvers supported by MPL.

Tutorial Directory containing sample models for the on-line tutorial.

Windows directory:

Mpl*.pif PIF files for running solvers in a DOS window.
Mpl*.bat Batch files for running solvers in a DOS window.

10

Chapter 2. Getting Started with MPL

2.3 Setting up Solvers for MPL

When MPL is run for the first time, after installing the software, it will automatically search the
hard disk for supported solvers. If the solver was not installed with MPL and you do not have a
solver already on the machine, you need to install one before MPL can be used to solve models.

After you have ingtalled the solver, you can change which solvers are available in the Run menu
by choosing Solver Menu from the Options menu. This will display the Solver Menu Setup dialog
box. Thelist box shows the solvers that are supported by the current version of MPL .

Solver Menu Setup

- Ayailable zolvers:

CRLES
CPLEX 300 oK
#Press

asL

A, kenu
amML :
ForthP Edit.
Frontline

Lindo

FCx Menu
LPSolve Meru Scan
Conopt henu
LSGRG2

GRGZ kenu
CFLE [mpz]

FarttF [mps)

b [mpsz)

Help

FEE L

Diouble-click on solver to add or
remore it from the menu:

Figure 2.1: Solver Menu Setup Dialog Box

To let MPL search your hard disk for supported solvers, press the Scan button. This option can
be especially useful when you are not sure where on the hard disk solvers have been installed and
you want M PL to locate them automatically and set them up.

You can select manually which solvers should be in the Run menu. Double-click on a solver
name to either add or remove it from the menu. Those solvers that are currently in the menu have
the word ‘Menu’ listed in the second column.

If you need to change some of the setup options for a solver, such as the filename or the location,
select the solver in the list box and then press the Edit button. This will display the Solver Setup
Options dialog box. For further information on how to setup solvers for MPL refer to the
sections on Setup Solvers for the Run Menu and Change Setup Options for Solversin Chapter 4.9
The Options Menu.

11

Part | Getting Sarted

2.4 Using the MPL Environment

To run the MPL program, select MPL for Windows from the Start menu. MPL for Windows is a
fully integrated model development environment with multiple windows and dialog boxes, pull-
down menus, toolbar, model editor, and an on-screen output viewer.

To start working on your model choose from the File menu either New to create new model or
Open to edit an existing model. To save your model use either Save or Save As from the File
menu.

After you have worked on your model in the editor choose Solve <solvername> from the Run
menu to solve the model.

we MPL for Windows 4.2 [_ (O] x]
File: Edit .ﬂaa_réh' Ei'ui_esi. Bun Miew Graph Options Mndn‘w Help

EEIEREEREEEEEEA

E C:\Mplwind\Planning.mpl =

& Model Definitions [_ O x]
[={£ TITLE Production_Planning

{ Planning.mpl }

I=-{£ INDEX

- .] & product (3)

{ Aggregate production planning for 12 months } e menh 013
=75 DATA

TITLE

Production_Planning; - @ price(product] (3

@ Demand[manith product] (38)

INDEX - @ ProductionCapacity[product] (31
product := 1..3; - @ ProductionCostproduct] ¢3)
i @ InventoryCost (1)
month == (January,February,Harch,April, May,June,July, £ VARIABLE
August,September ,0ctober ,November ,Decenber) ; i & Invertory[product morth] (381
DATA - @ Productionfpracuct morth] (38)
price[product] = {105.09, 234.80, 300.00); [$/Boxe @ Seleslpraductmonth] (38)
DEITIaI'II:I[Iz]I]I‘Ith,p!‘IEI[II.I[:t] = 1088 DATAFILE{demand.dat}; [Boxes/ E‘B MACRO
ProductionCapacity[product] := 1000 (10, 42, 14); [Boxes/ & Revenues (36)
ProductionCost[product] = (91;:“, 188.18, 653.280); [$/Boxe % Totaicost (72)
InventoryCost = 8.8; [$/Boxe 1 COHSTRAINT
URRIABLES - @ InvtBalprocuct month] (36)
Inventory[product,month] =» Invt; [Boxzes]
Production[product,month] -> Prod; [Boxes/
Sales[product,month] -> Sale; [Boxes/ View Guoto

1 l

P Messages
CPLEX: Iteration: 7 Objective = -21451600.000000
STATUS: Retrieving solution back from CPLEX
STATUS: Retrieving solution ranges back from CPLEX
STATUS: Generating solution file 'Planning.sol’
STATUS: Variable 'Inventory®

STATUS : Variable 'Production®

STATUS: Variable 'Sales®

STATUS: Constraint ' InvtBal®

STATUS: Optimal solution found

|Main madel file: Plarwing mel [3214 | Modiied | Solved

Figure2.2: MPL Model Development Environment

While optimizing, MPL displays a status window that gives you information on the solution
progress. When the model has been solved, the solution is written to a solution file. You can use
options from the View menu to display various parts of the solution. Y ou can also use the Graph
menu to display a graph of the matrix or the objective function.

12

PART Il

USING THE MPL

MODELING SYSTEM

Chapter 3: Running MPL
Chapter 4: Description of Menus

13

Part Il Using the MPL Modeling System

Chapter 3 Running MPL

CHAPTER 3

RUNNING MPL

The MPL Modeling Systemis a state-of-the-art optimization modeling software. Through the use
of advanced graphical user interface features, MPL creates a flexible working environment that
enables the model developer to be more efficient and productive. MPL provides in a single
system al the essential components needed to formulate the model, gather and maintain the data,
optimize the model, and then analyze the resullts.

The model developer uses the built-in model editor to formulate the model in MPL and then
selects the optimizer directly from the menus to solve the model. The solution results are
automatically retrieved from the solver and displayed, providing the user with instant feedback.
Each item defined in the model is also displayed in a tree window allowing the model devel oper
to browse through them easily.

The MPL Modeling System connects to solvers dynamically through memory at run-time. This
gives MPL the capability to integrate the solver completely into the modeling environment,
resulting in the matrix being transferred between the modeling system and the solver directly
through memory. As no files are involved, this seamless connection is both considerably faster
and more robust than the traditional use of files in other modeling systems. In the event it is
necessary to change any algorithmic options, MPL provides easy-to-use option dialog boxes for
each solver.

This chapter describes the process of running MPL in detail. It contains these sections:
e How to Start MPL demonstrates how to run M PL on your computer.
» The Main Window explains various parts of the main window in MPL .

» Using the MPL Environment gives you step by step explanations on how to use MPL.

15

Part Il Using the MPL Modeling System

3.1 How to Start MPL

There are several ways you can start MPL in Windows. The two most common are either
through the Start menu or by creating a shortcut for it.

Running MPL from the Start Menu

The installation program for MPL created an entry in the Start menu under Programs | MPL for
Windows. To accessit click the Start button from the task bar that appears along the bottom of
the Windows screen. The MPL for Windows start menu entry is shown herein Figure 3.1:

New Dffice Docurent

@L_{Jbe‘h Office Document:

[Accessories

> 7 Intemnet
“{ Documents X T W aximal Sofhware. L4
E-!:T Seftings b 7T Microsoft Office: »
) ProgamGroups *
= : Eind & 2 S;Fiare-f};a.\-’aapment »
9 Help T Startlp L4
: 7 Windows Apps (3

e — (3 Windows Explorer
;’;‘iﬁtariﬁf- T3 Microsaft Wwiord - Daeumem-q'

Figure3.1: MPL for Windowsin the Start Menu

Create a Shortcut for MPL

You can create a shortcut for MPL by clicking on the right mouse button anywhere on the
desktop. You will be presented with a pop-up menu where you choose New and then Shortcut.
This will start the Create Shortcut Wizard. In the input box enter the full path for the MPL
program. If you do not know the path you can press the Browse button to locate MPL in your
system. After entering the path, press Next to continue. In the next window enter the name of the
shortcut and then press Finish. The new shortcut will now be created on the desktop.

16

Chapter 3 Running MPL

You can also set up MPL so it will automatically open a specific model file when starting. There
is an example of this in Figure 3.1 where you can see the MPL icon with the caption
‘Planning.mpl. To see how this is set up, create a shortcut for MPL on the desktop and then use
the right mouse button to choose properties for it. This will bring up the Properties dialog box.
Select the Shortcut tab and in the Target input box enter the following:

c:\mplwin4\mplwin42.exe planning.mpl

By giving the name of the model file ‘planning.mpl as an argument after the program name on the
command line, MPL will automatically open the file when it is started. To create another icon
that opens a different file, first duplicate the icon by dragging it with the right mouse button and
select Copy Here. Then you can change the name of the model file in the command line by going
again into the Properties dialog box.

Embedding MPL Models in Applications

MPL was not only designed to help the model developer to create optimization models, but also
to make it easy to deploy the model by embedding it into business applications. With the
introduction of the OptiMax 2000 Component Library, MPL models can now be easily
embedded into end-user applications such as Excel and Access from Microsoft Office, using
programming languages such as Visual Basic and C++. This allows model developers whose
expertise lies in developing models, to effectively work with and deliver models to the IT
professionals who can then focus on working in databases and building graphical user interfaces
and end-user applications. Please contact Maximal for more details on the OptiMax 2000
Component Library.

Running MPL in Run-time Mode

MPL can be run directly from other windows applications in run-time mode. This will let MPL
solve a model from the other application without entering the integrated modeling system. MPL
is run in run-time mode by entering the command SOLVE to the command line before the name of
the model.

c:\mplwin4\mplwin42.exe SOLVE capri.mpl

This will direct MPL to read the model file that follows and solve the model directly. You can
also ask MPL to generate an input file, such as MPS, in run-time mode, by entering the command
GENERATE to the command line followed by the MPS filename.

c:\mplwin4\mplwin42.exe GENERATE capri.mps
This will direct MPL to read the model file, with the filename that follows, using the extension

“.mpl’ and then generate the input file you requested. MPL will determine which type of input
file to generate from the file extension used.

17

Part Il Using the MPL Modeling System

Calling MPL from Other Applications

Many end-user applications for Windows, such as databases and spreadsheets, have a macro
language that lets you execute other programs from a command line. This allows you to use the
application as a front-end that handles the data entry and management tasks for your project and
then call MPL directly from the application to solve the model. Then, using the database features
of MPL, you can create an application around your model where the end-user never has to know
how touse MPL.

The way you can call MPL from other applications depends on which software you are using.
The most common applications that are used include Visual Basic, C/C++, and databases such as
MS Access. In most cases this is accomplished by making a Win32 call to CreateProcess. Other
programs will possibly have functions like WinExec or Shell. In many cases, you will want your
calling application to wait until MPL and the solver are finished before continuing. Here is an
example of a WinExecWait function that will first call CreateProcess and then use the Win32
function WaitFor SngleObject.

int WinExecWait (LPSTR CommandLine)

{
UINT Result;

DWORD dwExitCode;
STARTUPINFO StartupInfo = {0};
PROCESS_INFORMATION ProcessInfo;

StartupInfo.cb = sizeof (STARTUPINFO);
Result = CreateProcess(NULL,CommandLine,NULL,NULL,FALSE,O0,NULL,NULL,
&StartupInfo,&ProcessInfo);
if (!Result)
return WE_SOMEERROR;
else {
CloseHandle (ProcessInfo.hThread) ;
if (WaitForSingleObject(ProcessInfo.hProcess, INFINITE) != WAIT_FAILED) {
GetExitCodeProcess(ProcessInfo.hProcess,&wExitCode) ;

CloseHandle (ProcessInfo.hProcess);
return WE_RANOK;

}

This WinExecWait function can now be called using a command line that runs MPL in the run-
time mode. For example:

WinExecWait ("c:\\mplwin4\\mplwin42.exe SOLVE capri.mpl");

Visual Basic supports a Shell function that allows you to run externa programs, such as MPL,
but it does not wait for the program to finish. If you need a function that waits until MPL
finishes, Visual Basic supports Win32 function calls and, therefore, will be very similar to the
above example. Please contact Maximal Software if you need sample copy of WinExecWait for
Visual Basic.

18

Chapter 3 Running MPL

3.2 The MPL Main Window

When you start MPL in stand-alone mode the Main Window appears. The Main Window
consists of the title bar at the top, the main menu, the toolbar, the work area, and the status line at
the bottom.

Figure3.2. TheMPL Main Window

The Main Menu

The main menu in MPL offers the following menus and functions:

File - Open and save model files.

Edit - Undo, cut, copy, and paste commands.

Search - Search and replace, goto commands.

Run - Run solver, check syntax, and generate input
Project - Open, save, and close projects

View - View the output on screen

Graph - Display graph of matrix and objective
Options - Change default options for MPL

Window - Handling of multiple windows

Help - On-line help for MPL

19

Part Il Using the MPL Modeling System

The Pull-down Menus

Here is a quick overview of al the pull-down menus that are available in MPL. For more
detailed information please refer the Chapter 4. Description of Menus.

File menu
New Create a new MPL model file
Open... Open an existing model file
Close Close the current editor window
Save Save the current model file to disk
Save As... Save model file under a new name

Save Selection...
Insert File
Print

Exit

Edit menu

Undo

Cut

Copy

Paste
Delete
Select All

Search menu
Find
Replace
Next
Goto Line

Proj ect menu

New Project
Open Project
Close Project
Save Project
Save as Project
Properties

Run menu

Check Syntax

Solve <solvername>
Parse Model

Solve Current

Generate Solution
Clear Model

Generate Mapping
Generate File <solver>

Save selected text to disk

Insert file from disk into current model
Print the current model file

Quit MPL

Undo last change to the model file
Move selected text to the clipboard
Copy selected text to the clipboard
Insert text from the clipboard
Delete text from the model file
Select all text in the model file

Search for text in the model file
Replace text in the model file

Search for the next occurrence of text
Goto line in the model file

Create a new project file

Open an existing project file

Close the current project

Save the current project to disk

Save project under a new name

Changing properties for the current project

Check syntax of the current MPL model file
Solve the model using the specified solver
Parse the model file into memory

Solve the model again without parsing
Generate solution file for last solver run
Clear the current model from memory
Generate mapping file for the solution
Generate input file for external solver

20

Chapter 3 Running MPL

View menu
Files <solution file> - View the MPL solution file generated
Files <output file> - View the output file from the solver
Files <input file> - View the input file for the solver
Files <log file> - View the log file for the solver run
Files Other Files - View any other file on the disk
Values/Reduced Cost - View variable values and reduced costs
Slack/Shadow Prices - View constraint slacks and shadow prices
Range Objective - View ranges for the objective function
Range RHS - View ranges for the right-hand-side
Model Statistics - View the statistics of the current model
Model Definitions - Open the model definitions window
Message Window - Open the message window

Graph menu
Matrix - Display graph of the matrix
Objective Function - Display graph of the objective function

Options menu

Environment... - Change options for the MPL environment

MPL Language... - Change options for the MPL language
Database... - Change options for the database connection
Solution File... - Change contents of the solution file
Generate File... - Change options for generated files

General Solver... - Change general options for solvers

CPLEX parameters... - Change option parameters for CPLEX

XPRESS parameters... - Change option parameters for XPRESS

Solver Parameters... - Change parameters for available solvers
Solver Options List... - Change various options for supported solvers
Solver Menu... - Sets up the menu of available solvers

Window menu

Tile - Divides the screen equally between windows
Cascade - Arranges windows on top of each other
Arrange Icons - Arranges iconed windows at the bottom
Close All - Closes all windows

Help menu
Contents - Display the help system contents window
Search for Help on - Search for a specific help topic
About MPL - Display the About MPL for Windows dialog.

21

Part Il Using the MPL Modeling System

The Toolbar

The Toolbar in MPL is located at the top of the window directly below the main menu.
It allows you to choose a menu command more quickly by simply pressing the button. The toolbar
contains many of the most commonly used commands in MPL. The following is a list of the

available buttons:

Button Menu

File | Open
File | Save
File | Print
Edit | Cut

Edit | Copy
Edit | Paste
Search | Find
Search | Replace
Search | Next
Project | Open

Project | Save

Run | Check Syntax

Run | Solve

View | Solution File
Graph | Matrix

Graph | Objective

View | Message Window

e EEE HE

View | Model Definitions

Description

Open an existing model file
Save the current model file to disk

Print the current model file

Move the selected text to the clipboard
Copy the selected text to the clipboard

Insert text from the clipboard

Search for text in the model file
Replace text in the model file

Search for the next occurrence of text

Open an existing MPL project file

Save the current project file to disk

Check syntax of the current model file

Solve the model using the default solver

View the solution file for the current model
Display graph of the matrix

Display graph of the objective function

Open the message window

Open the model definitions window

22

Chapter 3 Running MPL

The Status Bar

The Satus Bar in MPL islocated at the bottom of the main window. It is used to report back to
the user various information about status of the current model.

MPL automatically remembers the last model that was run and displays the name of it in the
message area, to the left of the Status Bar. This allows the user to quickly see the current model
file and solve it again, without having to find the window containing the model file again and
bring it to the front.

Figure 3.3: The StatusBar for MPL

Directly to the right of the message area are three smaller notification areas where MPL reports
various information about the status of the model.

The first area is used to show the current line and column number of the insertion point in the
model editor window.

The second areais used to report whether the current model file has been modified or if the fileis
to big to be edited and, therefore, can only be viewed.

The last areais used to report the current state of the model in memory. If Parsed, the model has
been parsed into memory, but not yet solved. If Solved, the model has been solved and the
solution is available for viewing.

While the pull-down menus are being used, M PL will turn off the standard Status Bar and instead
display a short explanation of the currently selected menu item. This allows the user to quickly
see, while browsing through the menus, the explanation.

23

Part Il Using the MPL Modeling System

3.3 Using the MPL Environment

Thefollowing is a quick overview on how to work in MPL and what you can do with each menu.

To start working on your model go to the File menu and choose either New to create a new model
or Open to edit an existing model file. When you have finished editing the model you can save it
using either Save or Save As from the File menu.

You can use the Cut and the Copy command from the Edit menu to copy block of text to the
clipboard and then the Paste command to place it elsewhere in your model. If you make a mistake
while entering your model you can use the Undo command from the Edit menu to correct it.

If you need to search for a text string in your model, you can use the Find command from the
Search menu or if you need to replace the text with an another text string use the Replace
command.

If you are using MPL to work on multiple models, that use different files and option settings, it
may be beneficial to use Projects to manage the models. Projects are used to store information
about open mode files and windows, the default working directory, and all the current option
settings. The Project menu is used to create new projects, and then open, save or close different
project files.

After you have created your model in the editor choose Solve <solvername> from the Run menu
to optimize the model. While optimizing, MPL displays a status window that gives you
information on the solution progress. When the model has been solved, the solution is written to
asolution file.

After the solver is finished optimizing the problem, you can use options from the View menu to
display various parts of the solution. Y ou can aso use the Graph menu to display a graph of the
matrix and of the objective function.

The Options menu alows you to change various default settings for MPL, including which
solvers you have, native solver options, contents of the solution file and other preferences.

The Windows menu is used to either tile or cascade the currently open windows, arrange at the
bottom minimized windows, and select from a list of open windows, the window you want to
bring to the front.

Through the Help menu you can access the context sensitive on-line help system which has
multiple screens containing useful reference information. While you are running MPL you can
also enter the help system by pressing the F1 key.

We will now explain the Status Window and the MPL Error Message Window that are used
while you are reading and solving your models.

24

Chapter 3 Running MPL

Solver Support in MPL

MPL works with the world's fastest and most advanced solver optimization engines, such as
CPLEX and XPRESS and many other industrial strength solvers. MPL is designed to have an
open architecture and is not restricted to only one solver. This enables the model developer to
choose the solver that best suits his specific project needs.

A unique feature of MPL is that it links to solvers directly through memory. As no files are
involved, this seamless connection is considerably faster and more robust than the traditional use
of files in other modeling systems. In the event it is necessary to change any of the algorithmic
options for the solver, MPL provides easy-to-use option dialog boxes.

MPL has extensive solver support and offer advanced features such as:

e Direct link to solvers through memory

e Status window with progress information

» Fast and efficient correction of errors

e Automatic infeasibility finder

e Log information and warnings displayed

» Setting of solver options through dialog boxes

MPL can work with most commercial solvers currently available on the market today, including
the following:

Solver Supported Algorithms

CPLEX LP, MIP, BAR
XPRESS LP, MIP, BAR
OSL LP, MIP, BAR
FortMP LP, MIP, BAR, QMIP
XA LP, MIP

OML LP, MIP
Lindo LP, MIP
FrontLine LP, MIP
LPSolve LP, MIP

PCx BAR
CONOPT LP, NLP
LSGRG2 LP, NLP

CPLEX is one of the most advanced and popular optimization solvers on the market today. It
offers a complete solution that contains almost every feature that the model developer would need
in an optimization solver. XPRESS, from Dash Associates, is a world-renowned solver, which
strength liesin its ability to solve very large optimization problems especially mixed integer. OSL
from IBM is also a very strong optimizer that has the ability to solve many different types of
models, including, for example, quadratic mixed integer problems.

There are numerous other solvers on the market today that offer different features that are
sometimes not supported by the market leaders, FortMP for example from OptiRisk Systems
offers quadratic MIP and stochastic programming. Sunset Software Technologies offers a
reasonably priced, relatively fast solver, XA. Another middle-range solver is OML from Ketron
Management.

25

Part Il Using the MPL Modeling System

Lindo Systems product, Lindo, is popular with academic users. FrontLine is from FrontLine
Systems, the same company that provides solvers for Microsoft Excel. LPSolve is a free solver
with support for mixed integer programming that is downloadable from the web. Argonne
National Laboratories solver PCx is also downloadable from the web and has a very good
implementation of Newton Barrier.

MPL currently supports two nonlinear solvers. CONOPT, a large-scale solver from ARKI
Consulting in Denmark that is highly specialized in solving difficult nonlinear models; and the
LSGRG2 solver made by Leon Lasdon at Optimal Methods that is used, for example, by Excel.

Solving Models in MPL

After you have edited your model in the model editor, choose Solve <solvername> from the Run
menu to let MPL start optimizing. The Satus Window appears, and MPL starts reading the
model file.

The Status Window

The status window describes what the program is doing (reading, solving, writing), and provides
statistics on the problem. While MPL reads the model file, the status window displays the
number of lines read, the number of variables and constraints encountered, and how much
memory has been used. While solving, this window shows you the number of iterations, and the
value of the objective function. Figure 3.4 shows an example of a status window:

Status Window E3

Dptimal zolution found

- MainFile —— Lihes — Memory — Time —
Capri.mpl 218 728K 1:43
- Model
Wariahles: 353 Honzeros: 1736
Caonztraints; 271 Integers: i
- Solver— [terations Objective Function -
Phazel: a4 00000
Total 455 2B90.0129

Wiety I

Figure 3.4: The Status Window

The top section in the status window is the message line. It tells you what MPL is doing at that
moment, for example, reading the model formulation, solving the model, and writing the solution

26

Chapter 3 Running MPL

file. The next section contains the name of the main model file, number of lines read so far, how
much memory has been used by M PL , and time elapsed since the start of the run.

The next section gives you various statistics of the problem, the number of variables and
constraints in the model, number of nonzeros, and the number of integer variables.

The last section tells you what the status of the solver is while optimizing the model. It givesyou
the total number of iterations the solver has done so far. To the right it shows the current value of
the objective function and while in Phase 1 the amount of infeasibilities that are left.

For integer problems the last section also reports the number of nodes in the branch and bound
tree visited so far, how many improving integer solution have been found, and the best possible
integer solution.

TheError Message Window

If MPL finds a mistake or an error in the formulation while reading, an error window appears. It
contains the erroneous line in the model file. Following that line comes a message with a short
explanation. Appendix B: Error Messages contains alist of all the error messagesin MPL. Here
isan example of atypical error message:

MFL Error Message E3

| InuvtBal[prod] : Inventory[prod,month] = Inw

A minor mistake was found in line 44:

84, The indes month’ invector Inventan' iz not specified in-the underving
ihdex list

Help |

Figure3.5: TheMPL Error Message Window

The above message tells you that the index month in the variable vector Inventory, was not
defined in the underlying constraint InvtBal. The mistake was located in line 44 of the model file.

Pressing the OK button or the Return key returns you to the model editor. The cursor is
automatically positioned at the location of the error in the model file, with the offending word or
character highlighted.

If you need more help on the error message, press the Help button. This will give you further
explanation of the error, including examples.

27

Part Il Using the MPL Modeling System

The Model Definitions Window

MPL alows you to view defined items from the model formulation in a tree window. Choose
Model Definitions from the View menu, to display the Model Definitions window. |If you want
you can leave this window open while you are working in MPL as it will be updated
automatically when you parse in your model.

k= Model Definitions =] B3

== TITLE Production_Planning
E-{== INDEX

----- @ InventoyCost
----- @ price{product]
----- & Demand[month,product]
----- @ ProductionCapacityproduct]
----- @ ProductionCost{product]
E-{£= YARIABLES
----- @ Inventorn]product month)
----- & Production[product. maonth]
----- & Salez{product month]
B MACROS
-4 Revenues
by TotalCost
E-F= CONSTRAINTS

by InwtBallproduct.manth]

Migw | Gato |

Figure 3.6: The Model Definitions Window

This window will show all the defined items in the model in a hierarchical tree structure. Each
branch in the tree corresponds to a section in the model. You can expand and collapse each
branch to show only the elements you are interested in.

At the bottom of the window are two buttons. The View button alows you to display the contents
of each defined item in a separate view window. What is displayed for each item is discussed in
the following pages. The Goto button will take you directly to the declaration of the selected item
in the model file.

MPL has severa options in the MPL Environment Options dialog box that allow you to control
how the Model Definitions window behaves. You can specify whether each defined item is
shown with the number of elements it contains. You can also specify whether each branch is
expanded or collapsed when the tree is initialy created. Finally you can set whether double-
clicking on a defined item will work as the Goto button or the View button.

28

Chapter 3 Running MPL

TheINDEX Branch
All defined indexes for the current model are listed in the INDEX branch. If there are multiple
INDEX sections in the model they will be shown as separate branches in the tree.

To obtain more information about an index entry, select the index name in the tree and press the
View button. This will open a view window containing the declaration and contents for the
selected index entry. What is shown for each index depends on how it was declared in the model.

¢ For numeric indexes the lower and upper range values are shown.

¢ For named indexes the name of each index element is shown aong with the shorter
abbreviated name which is used to generate variable and constraint names.

¢ For multi-dimensional indexes all the index elements are shown along with the shorter
abbreviated name similar to named indexes.

For example to view the named index month select the name in the INDEX branch and press the
View button. Thiswill display the view window shown here below:

kﬂ Yiew Index: month M= E=
month ==

(January -» "Jan'
February -> 'Feb*
Harch -> 'Har’
April -> 'Apr’
Hay -» 'HMay*
June -> "Jun’
July => "Jul*’
August -> 'Aug’
September -> 'Sep’
October -> 'Oct’
NHovember -> "Mov*
December -» 'Dec') ;

Figure 3.7: View Named Index Elements

The DATA Branch

All defined data vectors and data constants for the current model are listed in the DATA branch.
If there are multiple DATA sections in the model they will be shown as separate branches in the
tree.

To obtain more information about a data entry, select the data name in the tree and press the View
button. This will open a view window containing the declaration and contents for the selected
dataentry.

29

Part Il Using the MPL Modeling System

What is shown for each data entry depends on how it was declared in the model.
* For data constants the data value is shown.

* For dense data vectors the contents of the data vector is shown as list of numbers
organized into rows and columns according to the indexes the data vector was defined
over.

* For sparse data vectors the contents of the data vector is shown in a table with one line
for each element in the vector.

For example to view the dense data vector Demand select the name in the DATA branch and press
the View button. Thiswill display the view window shown here below:

{#h View Dense Data Vector: Demand =1 E3

Demand[month,product] == {

Seea8 24000 5e08
60888 Jooon 60088
700008 36000 7008
80088 42000 8008
20888 48000 2008

100888 52000 10008
110888 cooon 11888
120888 48000 12008
120888 440080 130888
120888 4O000 14008
110888 36000 14008
100008 32000 13008) ;

Figure 3.8: View Dense Data Vector Elements

TheVARIABLES Branch

All defined variables for the current model are listed in the VARIABLES branch. If there are
multiple VARIABLES sections in the model they will be shown as separate branches in the tree.

To obtain solution values, such as activity and reduced cost, for a variable, select the variable
name in the tree and press the View button. This will open a view window showing the solution
values for the selected variable. If the Compute Ranges option in the General Solver Options
dialog box is On the sensitivity analysis ranges for the objective function coefficients are also
shown. If the model has only been parsed, which means there are no solution values available,
only the expanded name for each variable is shown.

The MACROSBranch

All defined macros for the current model are listed in the MACROS branch. If there are multiple
MACROS sections in the model they will be shown as separate branches in the tree. To obtain
more information about a macro, select the macro name in the tree and press the View button.
Thiswill open aview window containing the declaration and contents for the selected macro.

30

Chapter 3 Running MPL

The CONSTRAINTSBranch

All defined constraints for the current model are listed in the CONSTRAINTS branch. To obtain
solution values, such as slack and shadow prices, for a constraint, select the constraint name in the
tree and press the View button. Thiswill open aview window showing the solution values for the
selected constraint.

@ Yiew Constraint: Capacity

VECTOR Capacity[month,machine] :

month machine Slack Shadow Price
Jan Grind 8. 8888 -8.5714
Jan Udrill 438 .8571 8.8a68
Jan Hdrill 812.80008 8.80008
Jan Boring 997 6286 8.0a68
Jan Planing 1189 . 8888 L 1i)]]
Feb Grind 76680808 8.8a08
Feb Udrill L78.8088 8.8a68
Feb Hdrill 184. 80008 8.80008
Feb Boring 1860. 886808 8.8a68
Feb Planing 1136. 068688 B.06888
Har Grind 816. 86088 8.8a08
Har Udrill 558 . 8088 8.8868 =

Figure 3.9: View Constraint Solution Values

If the Compute Ranges option in the General Solver Options dialog box is On the sensitivity
analysis ranges for the right-hand side are also shown. If the model has only been parsed, which
means there is no solution available, only the expanded name for each constraint is shown.

The Message Window

While MPL is running it can send various progress information to a message window. Before
solving or parsing a model you can open the message window by choosing Message Window
from the View menu. If you want you can leave this window open while you are working in
MPL asit will be updated automatically when you run your model.

What information is sent to the window will depend on which options are selected in the Message
Window group of the MPL Environment Options dialog box.

e Status window messages. Sends al the status messages that are displayed in the
topmost area of the Status Window to the Message Window.

e MPL input lines. Sends al input lines from the MPL model file to the Message
Window.

« Performance statistics. Sends performance statistics on parsing in the MPL modél file
to the Message Window.

e Memory Usage Statistics: Sends statistics on the MPL parser memory usage to the
Message Window.

31

Part Il Using the MPL Modeling System

e Warning messages. Sends al warning and error messages from MPL to the Message
Window.

« Database Connection: Sends all messages concerning connection to databases to the
Message Window.

¢ SQL statements: Sends all SQL statements that are issued when importing and
exporting data through the database connection to the Message Window.

e Solver Iteration Log: Sends all iteration log information from the solver to the Message
Window.

Please refer to the section on the MPL Environment Options dialog box in Chapter 4.9 The
Options Menu for more information.

Using Projects to Manage Models

If you are using MPL to work on multiple models, that use different files and option settings, it
may be beneficial to use Projects to manage the models. Projects are used to store information
about open mode files and windows, the default working directory, and all the current option
settings. Y ou can either place the project file in the same directory as the model or in a separate
directory where you store all your project files.

The Project menu is used to open, save or close different project files. To create a new project
choose the New Project command from the Project menu. This will open a dialog box where you
can enter the filename for the project, the working directory, and the main MPL filename.

To open an existing project file choose the Open Project command. This will open the Open
Project dialog box where you can open the project file. Before the selected project is opened the
previous project is closed, along with all windows currently open. When a project is opened,
MPL will re-open al the windows at the same place and size as before. Also al the option
settings are set to the same values that they were the last time the project was used. MPL will
also add the name of the project to its title bar for the main window so you can easily see which
project you have open.

To close a current project choose the Close Project command. This will close the project along
with all currently open windows, saving their place and size to the project file. All options
settings will also be saved to the project file.

If you have made any changes to a project and want to save it without closing the project choose
the Save Project command. Thiswill save all the position and size of all currently open windows
along with the current options settings. If you want to create a separate project file under a new
name with all the same settings as the project currently open choose Save As Project command.

If you want to change properties for the current project choose the Properties command from the
Project menu. Thiswill open a dialog box where you can change properties for the project, such
as the working directory or the main model! filename.

If you work in MPL without using projects, MPL will maintain a default project file mpwin.mpj
located in the mplwin directory to store the position and size of open windows and options
settings.

32

Chapter 3 Running MPL

Using the MPL Help System

MPL offers the user an extensive help system containing useful information on how to use the
MPL Modeling System. To access the help system choose the Topics command from the Help
menu. Y ou can aso enter the help system by pressing the F1 key while running MPL. The help
system dialog box contains three tabs; the Contents tab, the Index tab, and the Find tab, giving
you different ways of accessing the help.

The Contentstab

The Contents tab shows al the available topics in the help system in a hierarchical tree structure.
Each item shown as a book in the tree corresponds to a category or a section in the help while the
items containing the actual help topics are represented by a page with a question mark on it.

You can double-click on any of the books to see al the topics available in that category or
section. The MPL help system contains three main categories:

e The MPL Model Development Environment includes detailed information on how to use the
MPL modeling environment, the available menu commands, the toolbar, and a description of
all the options for each of the dialog boxes.

* The MPL Modeling Language contains a complete reference to the M PL language organized
in the same way as the printed version of the manual.

e TheMPL Tutorial contains multiple sessions with a series of models, gradually increasing in
difficulty; in order to explain how to formulate linear programming models. This tutorial is
specifically designed for teaching optimization modeling the way it is being applied in the
corporate world.

Y ou can continue opening books and browsing through the contents of the help until you locate a
topic that looks useful.

Y ou can print atopic by pressing the Print button at the bottom. If you want to print all the topics
in abook, select it then press the Print button. Each topic will be printed on a separate page.

Thelndex tab

The Index tab enables the user to access a list of all the keywords in the help file or do a search
for a specific keyword. The keyword list resembles a book index, with secondary entries indented
beneath the primary entries.

Asyou type in a keyword, the list is automatically scrolled to match the characters typed against
the primary entries in the list. If aword is not on the list, the user is taken to the word closest to
where the word ought to be. Of course, you can still scroll through the keyword list and choose a
word.

TheFind tab

The Find tab enables the user to find a help topic by searching for a specific words or phrasesin
the text. The Find database is built the first time you select the Find tab through the Find Setup
Wizard. The depth of the full-text search generated by the wizard is determined in the first wizard

33

Part Il Using the MPL Modeling System

window. The recommended choice, Minimize Database Sze, produces the smallest word list,
while Maximize Search Capabilities gives the largest database and therefore the best search

capabilities. You can further customize the search by pressing the Options button while in the
Find tab.

Context Sensitive Help

One of the nicer features of to the help system in Windows is the addition of context sensitive
help for diadlog boxes. To display the help select the question mark button [in the upper right
corner of the dialog box and then click on the item in the dialog box you want help for. A small
window will popup with a short explanation of the item you selected.

This alows you quickly get information about the item you are interested in. You can aso
display the context sensitive help by pressing the right mouse button on the item in the dialog box
and select What’s This? from the popup menu.

MPL Lanquage Options R
~ MPL |anguage options——— - Send log information to:—
¥ Case sensitive [Message window
v Plaity variables must be defined v Logfile

= Default bodel Type

% Linear Models i Honlinear Models
" Quadratic Madels [Estended Monlinear Models
— Diata files

Input Crirectany: I J
iz

Dutput Birectany: l

¥ Check sparse data for duplisate entries.

W Use quicksart for sparse data

— Mame Generation

1 |ndexed names tdax seariable length: |8

~ .
Numetic names bl s s hecrint lerathe 5
Max subscript length

Decides how many characters of indexes are retained
in the generated variable name. The default value is 3

Figure 3.10: Context Sensitive Help for Dialog Box

Chapter 4 Description of Menus

CHAPTER 4

DESCRIPTION OF MENUS

Using the menus in MPL is the same as in any other Windows program; just point to the menu
you wish to use and press the left mouse button to pull it down. From there you can choose the
menu item you want. You will notice that some of the commands in the pull-down menu are
grayed or inactive. Which menus are active depends on what window is currently at the top and
the state of the program.

Also, notice that some of the commands in the menus have an ellipsis ‘. . . * after them, indicating
that you have to supply more information in a dialog box before MPL can carry out the
command.

Some of the menu items are followed by a Ctrl-key entry. These Ctrl-key combinations are there
to provide the user with a short-cut. Instead of pulling down menus and choosing the commands,
you can just press Ctrl and the appropriate key at the same time.

This chapter provides a reference to all the menu items available in MPL.

35

Part Il Using the MPL Modeling System

4.1 The Main Menu

At the top of the main screen in MPL the main menu resides, from which you select the actions
you wish to perform.

File - Open, save, and print files

Edit - Undo, cut, copy, and paste commands

Search - Search, replace, goto line commands

Run - Run solver, check syntax, and generate input
Project - Open, save, and close projects

View - View the solution on screen

Graph - Display graph of the matrix and the objective
Options - Change default option for MPL

Window - Handling of multiple windows

Help - On-line help for MPL

In the following pages, each menu item will now be described in full detail.

36

Chapter 4 Description of Menus

4.2 The File Menu

The File menu is used to open, save, and print model files. To access the File menu, simply point
at the word File in the main menu and hold down the mouse button. The menu appears as shown
herein Figure 4.1.

o Chrl+M
Open.. Chrl+0
LCloze
Save CHl+S
Save fz. Chrl+&
Save Selechion...

Inzeit File. .. Ctrl+l
Frint.... Chil+F
Ezit

Figure4.1: TheFileMenu

New - Create a new MPL model file

Open... - Open an existing model file

Close - Close the current editor window

Save - Save the current model file to disk

Save As... - Save model file under a new name

Save Selection... - Save selected text to disk

Insert File... - Insert file from disk into current model
Print - Print the current model file

Exit - Quit MPL

Create a New Model File

If you need to create a new model file, choose the New command from the File menu and M PL
will open an empty editor window with the name Untitled. If another window is already open,
MPL will place the new window on top of the existing one. When you are finished editing and
want to saveit to afile MPL will ask for the filename.

37

Part Il Using the MPL Modeling System

Open an Existing Model File

To open an existing modél file, pull down the File menu and choose the Open command. Y ou can
also use the shortcut Cirl-O or press the File Open button in the Toolbar. The standard Open File
dialog box like the one shown below in Figure 4.2 will then be displayed.

Open [2]

Lookin: | ‘=3 Mplwind =] e e =

1 Tutorial @ Flanning. mpl

EZ B aken.mpl Prodplan. mpl

Ej Capri.mpl @ Tranzp.ripl

Ej Diet.mpl

EE; Multplan. mpl

Ej Flan.mpl

File: narme: I| Dpen I
Files of tipe: IMF‘L files [*.mpl] 1' Cancel |

Help I

Figure 4.2: The Open File Dialog Box

In the middle of the dialog box is alist of the files that are in the current folder. To open afile,
select it from the list of files and press the Open button. Alternatively, you can enter the filename
in the File name input box below the list. You can also open the file directly by double-clicking
onitinthelist of files. If you type in a file name that does not exist, MPL will automatically
create a new empty file with that name.

Thefilesthat arelisted in the list of files are determined by the entry in the Files of type input box
located at the bottom. From there you can select to show MPL model files “*.mpl’, MPS files
“*mps’, datafiles “*.dat’, project files “*.mpj’, or al files **.*’

The name of the current folder is shown in the Look In input box at the top of the dialog. If the
file you want to open isin a different folder, you can press the down arrow at the right of the Look
In input box to navigate through the directory tree. Select the folder name you want to go to and
thelist of files below will reflect the contents of the new folder.

If you do not want to open afile press the Cancel button to close the dialog box.

38

Chapter 4 Description of Menus

The maximum file size for the editor in MPL is about 40-50K. If the file you are trying to open is
too big, MPL will truncate the file and change the editor window to a view only mode. For large
models, you should consider using include files which are described in the Include Files section
in Chapter 5.2: Basic Input Elements.

Close Files

To close the file in the current window, choose Close from the File menu. If you have changed or
edited the model since it was last saved MPL will display a question dialog box that will ask
whether you want to save the file before you close it.

MPL for Windows

[? C:\Mplwind Planning.mpl has been changed. Save file before closing?

[[} I Cancel |

Figure 4.3: Save File Before Closing Question

If you want to save the file click on the Yes button. If you do not want to save the file click on the
No button and any changes you have made to the file will be lost.

39

Part Il Using the MPL Modeling System

Save the Model File

MPL has two commands on the File menu Save and Save As... that allow you to save your model
files. You can also use the shortcuts Ctrl-S and Ctrl-A respectively or press the File Save button
in the Toolbar.

You use the Save command when you want to save the file using the current name. When you
want to save the file under a different name use the Save As... command. The standard Save As
dialog box like the one shown below will then be displayed.

Save As
Save in: I 3 mphein j gl Ig =

1 Res capri.mpl praduce. mpl

1 store Dditest.mpl zostest.mpl

E;j Bendold. mpl index. mpl testhin, mpl

Ej biarni.mpl inop.mpl

Ej bjarni2.mpl odbcexcl.mpl

| bjarmid.mpl offzet.mpl

Ej Canneny2. mpl planning. mpl

File narme: Iplanning.mpl Save

Save as type: IMF'L filez [*.mpl] j Cancel

Pl

Help

Figure 4.4: The Save AsDialog Box

In the middle of the dialog box is a list of the files that are in the current folder. Enter the new
filename you want to save as in the File Name input box. Y ou can aso save the file by selecting
one of the existing filenamesin the list of files and then press the Save button.

Thefilesthat are listed in the list of files are determined by the entry in the Save as type input box
located at the bottom. From there you can select to show MPL model files *.mpl, MPS files
* mps, data files * .dat, project files*.mpj, or all files* *.

The name of the current folder is shown in the Save In input box at the top of the dialog. If you
want to save thefile in adifferent folder, you can press the down arrow at the right of the Save In
input box to navigate through the directory tree. Select the folder name you want to save in, then
enter the new filename in the File Name input box and press the Save button.

If you do not want to save the file press the Cancel button to close the dialog box.

Save Selected Text to a File

Chapter 4 Description of Menus

MPL allows you to select text in the editor and save to a separate file by choosing the Save
Selection command in the File menu. This will bring up the Save Selection dialog box shown

below.

Save Selection

[{3 Mplwing

Save n

= & o e =

Tutorial

E?; B aken.mpl
Ej Capri.mpl
Ej Diet.mpl

EE; Fultplam.mpl
] Plan.mpl

@ Tranzp.rpl

@ Flanning. mpl
Prodplan. rmpl

File: narme: I|

Save

Save as tpe: |MF'L files [*.mpl]

ll Cancel

Help

Pl

Figure 4.5: The Save Selection Dialog Box

This dialog box is very similar to the Save As dialog box explained on the previous page. In the
middle of the dialog box is alist of the files that are in the current directory. Enter the filename
you want to save the selection asin the File Name input box and then press the Save button.

Thefilesthat are listed in the list of files are determined by the entry in the Save as type input box
located at the bottom. From there you can select to show MPL model files *.mpl, MPS files

* mps, data files * .dat, project files*.mpj, or all files* *.

The current folder is shown in the Save in input box on the top of the dialog. If you want to save
the selection in a different folder, you can press the down arrow at the right of the Save in input
box to navigate through the directory tree. Select the folder name you want to save in, then enter
the new filename in the File Name input box and press the Save button.

If you do not want to save the selection press the Cancel button to close the dialog box.

41

Part Il Using the MPL Modeling System

Insert File Into the Editor

MPL allows you to insert a file into the current editor file by choosing the Insert File command
from the File menu. Thiswill bring up the Insert File dialog box.

Inzert File
Look it | 23] Mplwind j ﬁl b
_1 Tutorial @ Flanning. mpl

E?; B aken.mpl Prodplan. rmpl

Ej Capri.mpl @ Tranzp.rpl

Ej Diet.mpl

EE; Fultplam.mpl

] Plan.mpl

File: narme: l

Files of tipe: |MF'LfiIes [*.rmpl] :l Cancel |
Help I

Figure4.6: Thelnsert File Dialog Box

This dialog box is very similar to the Open dialog box explained in a previous section. In the
middle of the dialog box is alist of the files that are in the current folder. Enter the name of the
file you want to insert in the File Name input box and press the Open button.

Thefilesthat arelisted in the list of files are determined by the entry in the Files of type input box
located at the bottom. From there you can select to show MPL model files *.mpl, MPS files
* mps, data files * .dat, project files*.mpj, or all files* *.

The current folder is shown in the Look in section at the top of the dialog. If you want to save the
selection in a different folder, you can press the down arrow at the right of the Look in input box
to navigate through the directory tree. Select the folder name you want to save in and the list of
files below will reflect the contents of the new folder.

After you have selected the file you want to insert, press the Open button to insert it. Y ou can also
insert the file by double clicking on the file name in the list of files.

If you do not want to insert the file press the Cancel button to close the dialog box.

42

Chapter 4 Description of Menus

Print the Model File

To print the model file in the current editor window, choose Print from the File menu. You can
also use the shortcut Ctrl-P or press the File Print button in the Toolbar. The standard Print
dialog box like the one shown below in Figure 4.7 will then be displayed.

Prnint HE

— Pririter

Mame: HF Lazenlet 4000 PCL & [Main] Froperties |

Statug: Drefault printer; Ready
Type: HF Lazerlet 4000 Senes FCL B
Wherer ViMainthp-4000ps

Comment: 1T Bt
~ Print ramge i~ Copies
& Al humber of copies: |'| E

2 Pares fiom I ! i | 1 S T [
s LR
Selection
Ok I Cancel

Figure4.7: The Print File Dialog Box

Select whether you want to print al the text in the editor, the selected text only, or pages only
from the given from/to range. The default printer, that will be used, is shown in the top section of
the dialog box. If you want to change the default printer, press the down arrow at the right of the
Name input box to navigate through the printer selections. Select the printer name you want to go
to and the Name input box will reflect your new printer.

Part Il Using the MPL Modeling System

Exit the MPL Program

To exit the MPL program, choose Exit from the File menu. If you have changed or edited any of
the model files that are open, MPL will display a question dialog box for each of them that will
ask you whether you want to save the file beforeiit is closed.

MPL for Windows

[? C:AkplwindhFlanning. mpl haz been changed. Save file before clozing?

Mo | Cancel |

Figure 4.8: Save File Before Quitting MPL Question

If you want to save thefile, click on the Yes button. If you do not want to save the file click on the
No button. Any changes you have made to the file will be lost. If you do not want to exit M PL
you can cancel the operation by pressing the Cancel button.

Chapter 4 Description of Menus

4.3 The Edit Menu

The Edit menu is used to cut, copy, and paste with the clipboard and to undo changes you have

made to your model file.

Undo

Cut

Copy

Paste
Delete
Select All

Undo Changes

Undo Chl+Z
Cut Chrl+
Copy Chl+C
Pazte Chil+

Delete Crl+Diel

Select Al

Figure4.9: The Edit Menu

Undo the last change made to model file
Move the selected text to the clipboard
Copy the selected text to the clipboard
Insert text from the clipboard

Delete the selected text in the model file
Select all the text in the model file

If you make a change to your model file that you want to take back, choose Undo from the File
menu. Y ou can also use the shortcut Ctrl-Z to undo your changes.

45

Part Il Using the MPL Modeling System

Clipboard Operations

The clipboard in Windows allows you to copy text either within the editor or between different
editor files. You can also use the clipboard to copy text between different applications. To copy
text to the clipboard, you first select the text, then you copy it to the clipboard using the Copy
command. If you want to move the text instead of copying it, you can use the Cut command. After
you have copied the text to the clipboard, you point the cursor where you want to place the text
and use the Paste command to place it.

MPL supports all the text selection methods that are standard in Windows. To select text, smply
press the left mouse button where you want the selection to start and drag the cursor to the end of
the text you want to select. If you want to extend the current selection, hold down the Shift key as
you press down the left mouse button. To select all the text in the file you, choose Select All from
the Edit menu.

After you have selected the text, you can either cut or copy the text to the clipboard. If you want
to cut the text from the editor, choose Cut from the Edit menu. Y ou can also use the shortcut Ctrl-
X or press the Edit Cut button in the toolbar to cut it. This will move the text from the editor and
place it in the clipboard. If you want to copy the text, choose Copy from the Edit menu. You can
aso use the shortcut Ctrl-C or press the Edit Copy button in the toolbar to copy it. This will copy
the text from the editor and place it in the clipboard.

To place text from the clipboard into the editor, first make sure the cursor is where you want the
text to be placed. Then choose the Paste command from the Edit menu to place the text. Y ou can
also use the shortcut Ctrl-V or press the Edit Paste button in the toolbar to placeit.

If you only want to remove the selected text without placing it in the clipboard, you can choose
the Delete command from the Edit menu. Y ou can aso use the shortcut Ctrl-Del to delete it.

46

Chapter 4 Description of Menus

4.4 The Search Menu

The Search menu is used to find and replace text, and go to a specific linein the model file.

Replace... Cul+R
et F3

Goto Line... Cl+G

Figure 4.10: The Search Menu

Find... - Search for text in the model file
Replace... - Replace text in the model file

Next - Search for the next occurrence of text
Goto Line - Goto specific line in the model file

47

Part Il Using the MPL Modeling System

Find Text in the Model

To search for text in the model file, choose Find from the Search menu. You can aso use the
shortcut Ctrl-F or press the Search Find button in the Toolbar. The Find dialog box like the one
shown below in Figure 4.11 will then be displayed.

Find B

i~ Direction
* Fonward
" Backward

cacel | |

Search for; Imu:untH

i~ Optionz — [rigin

¥ Case sensitive &+ From cursor

[wihole words anly " Entire SCOpE

Figure4.11: TheFind Dialog Box

Enter the text you want to search for in the Search for input box. MPL offers a number of
optionsthat control how it searches for text. These options are described below:

Options

Case sengitive: If On search only for text that has exactly the same case as the text given in the
above Search for input box. If Off, the text is found regardless of the case.

Whole words only: If On search only for whole words in the text. If Off, text that is part of
another word will also be found.

Direction
Forward: Search forward from the current position.

Backward: Search backward from the current position.

Origin
From cursor: Start the search from the current position.
Entire scope: Search for the entire scope of thefile.

After you have entered the search text and the options, press the OK button to start the search. To
repeat the search select Next from the Search menu, or press the Search Next button in the
Toolbar.

Chapter 4 Description of Menus

Find and Replace Text

To replace text in the model file, choose Replace from the Search menu. You can also use the
shortcut Cirl-R or press the Search Replace button in the Toolbar. The Find and Replace dialog
box like the one shown below in Figure 4.12 will then be displayed.

Find and Replace EHE

Search for iln\,u't

Feplace with; ilrwentory

— Optionz - Direction = Onigin—
¥ Case sensitive &+ Fomward ¥ From cursor
[whole words anly . " Backward | | Entire seope

v Prompt on replace

ok I Change-All | Caricel | Help

Figure4.12: Find and Replace Dialog Box

Enter the text you want to search for in the Search for input box and the text you want to replace
it with in the Replace with input box. MPL offers a number of options that control how it
searches and replaces text. These options are described below:

Options
Case sengitive: If On, search only for text that has exactly the same case as the text given in the
above Search for input box. If Off, the text is found regardless of the case.

Whole words only: If On, search only for whole words in the text. If Off, text that is part of other
word will aso be found.

Prompt on replace: If On, you will be prompted for each replace. If Off, the replacement will be
automatic.

Direction
Forward: Search forward from the current position.

Backward: Search backward from the current position.

49

Part Il Using the MPL Modeling System

Origin
From cursor: Start the search from the current position.
Entire scope: Search for the entire scope of thefile.

After you have entered the search and replace text and the options press the OK button to start the
replace. To repeat the replace select Next from the Search menu, or press the Search Next button
in the Toolbar. If you want to replace all the occurrences of the text in one operation press the
Replace All button.

Goto Line in the Model

To go to a specific line in the model file, choose Goto Line from the Search menu. You can aso
use the shortcut Ctrl-G or press the Search Goto Line button in the Toolbar. The Goto Line
dialog box like the one shown below in Figure 4.13 will then be displayed.

Goto Line E

Gitoline: |54

Cancel |

Figure4.13: The Goto Line Dialog Box

Enter the line you want to go to in the model file and press the OK button. If you want to cancel
the operation, press the Cancel button

50

Chapter 4 Description of Menus

4.5 The Project Menu

The Project menu is used to open, save, and close projects. To access the Project menu, simply
point at the word Project in the main menu and hold down the mouse button. The menu appears
as shown herein Figure 4.14.

Project

Mew Project...
Open Project....
Cloze Project

Save Project...
Save bz Project...

Froperties...

Figure4.14: The Project Menu

New Project - Create a new project file

Open Project... - Open an existing project file

Close Project - Close the current project

Save Project - Save the current project to disk

Save as Project - Save project under a new name

Properties - Changing properties for the current project

51

Part Il Using the MPL Modeling System

Create a New Project File

If you need to create a new project, choose the New Project command from the Project menu and
MPL will open the New Project dialog box. You can indicate the project filename, the working
folder and the main M PL filename in the boxes provided.

Hew Project EE

Project Filename:

Ic:\mplwinﬂplanning.mpi
Wnrking [Direchony:

!c:\mplwinll

r &t MPL Filenarme:
Ic:\mplwind\planning.mpl

0k I Cancel Help

Figure 4.15: The New Project Dialog Box

If you want to create and save the project click on the OK button. If you do not want to save the
project then click on the Cancel button.

Open an Existing Project File

To open an existing project file, pull down the Project menu and choose the Open Project
command. Y ou can also press the Project Open button in the Toolbar. The standard Open Project
dialog box, like the one shown on the next page in Figure 4.16, will then be displayed.

52

Chapter 4 Description of Menus

Open Project

Loak jn: If_] mplwin
L0 Fes ‘% Flanning. mpj

1 store % Rich&.mpj
% Capn.mpj

% caprplan.mp

% Final.rmpj

% b plwsirn.

2 Filot.mpj

File: harne; || Open

Filez of twpe: IProiect files [*.mpy] d Cancel

Help

i

Figure 4.16: The Open Project File Dialog Box

Enter the name of the project file you want to open in the File Name input box and click on Open.
Alternatively, you can also use thelist box in the middle of the dialog to select afilein the current
folder and open it by double clicking on the filename with the mouse.

Thefilesthat are listed in the list of files are determined by the entry in the Files of type input box
located at the bottom of the dialog. From there you can select to show MPL project files ‘*.mpj’,
or al files**.*

The name of the current folder is shown in the Look In input box at the top of the dialog. If the
project file you want to open isin a different folder, you can press the down arrow at the right of
the Look In input box to navigate through the directory tree. Select the folder name you want to
go to and the list of project files below will reflect the contents of the new folder.

If you do not want to open a project file press the Cancel button to close the dialog box.

Close Project Files

To close the project file in the current window, choose Close Project from the Project menu. If
you have changed or edited the project file since it was last saved MPL will display a question
dialog box that will ask whether you want to save the project file before you close it.

If you want to save the file click on the OK button. If you do not want to save the project file click
on the Cancel button and any changes you have made to the project file will be lost.

53

Part Il Using the MPL Modeling System

Save the Project File

MPL hastwo commands on the Project menu Save Project and Save As Project that allow you to
save your project files.

You use the Save Project command when you want to save the project file using the current
name. You can aso press the Project Save button in the Toolbar. When you want to save the
project file under a different name use the Save As Project command. The standard Save As
Project dialog box, like the one shown below, will then be displayed.

Save As Project H

Save It‘i i j gl E £

|_1Res % Flanning. mpj
1 stare ‘% Rich.mpj
% Capri.mpj
% caprplan.mpj

Final. mpj
% b plwin. mp
@ Filat.mpj

File hame: Save

Save az twper | Project files [7.mpj) j Cancel

Help

Pl

Figure4.17: The Save As Project Dialog Box

In the middle of the dialog box is alist of the project files that are in the current folder. Enter the
new project filename you want to save as in the File Name input box. You can also save the file
by selecting one of the existing filenamesin the list of project files and then press the Save button.

The files that are listed in the list of project files are determined by the entry in the Save as type
input box located at the bottom of the dialog. From there you can select to show MPL project
files**.mpj’, or all files‘**.*’,

The name of the current folder is shown in the Save In input box at the top of the dialog. If you
want to save the project file in a different folder, you can press the down arrow at the right of the
Save In input box to navigate through the directory tree. Select the folder name you want to save
in, then enter the new project filename in the File Name input box and press the Save button.

If you do not want to save the project file press the Cancel button to close the dialog box.

Chapter 4 Description of Menus

Change Properties for a Project

If you need to change properties for the current project, choose the Properties command from the
Project menu and MPL will open the Project Properties dialog box. Y ou can change the working
directory and the main MPL filename for the project in the boxes provided.

Project Properties EE

Project Filename:

Ic: smplwindiplanning. mpj

Working Directaony:

Ic:\mplwintl

tain MPL Filename;
Iu:: wrplwindplanning. mpl

0K I Cancel Help

Figure 4.18: The Project Properties Dialog Box

If you want to save the changes click on the OK button. If you do not want to save the changes
click on the Cancel button.

55

Part Il Using the MPL Modeling System

4.6 The Run Menu

The Run menu is used when you want to solve the model, check the syntax, and generate input
files.

Check Syntax

Solve CPLEX
Solve L

Parze Madel
Solve Cument
Generate Solution

Clear Model

Generate b apping
Generate File L

Figure4.19: The Run Menu

Check Syntax - Check syntax of the current MPL model file
Solve <solvername> - Solve the model using the specified solver
Parse Model - Parse the model file into memory

Solve Current - Solve the model again without parsing
Generate Solution - Generate solution file for last solver run
Clear Model - Clear the current model from memory
Generate Mapping - Generate mapping file for the solution
Generate File - Generate input file for external solvers

56

Chapter 4 Description of Menus

Check Syntax of the Model

After you have entered your formulation in the model editor, you can check the model for syntax
errors by choosing Check Syntax from the Run menu. You can aso press the Run Check Syntax
button in the Toolbar. If MPL finds an mistake in the formulation it will report it in the Error
Message window.

MPL Emror Message E

| InvtBal[prod] : Inventory[prod,month] = Inu

A miror miztake was found in lire 44:

84, The index 'manth’ in.vectar | nventony’ s notspecified it the underdying
index list.

Help I

Figure 4.20: The Error Message Window

The above message tells you that the index month in the variable vector Inventory, was not
defined in the underlying constraint InvtBal. The mistake was located in line 44 of the model file.

Pressing the OK button or the Return key returns you to the model editor. The cursor will
automatically be positioned at the location of the error in the model file, with the offending word
or character highlighted.

If you need more help on the error message, press the Help button. This will give you further
explanation of the error, including examples. For alist of all the error messagesin MPL, please
refer to Appendix B: Error Messages.

57

Part Il Using the MPL Modeling System

Solve the Model

Y ou can solve the model by choosing Solve <solvername> from the Run menu. The solver that is
in the solve command is the current default solver for MPL. Y ou can also run the default solver
by pressing the Run Solve button in the Toolbar. The solve command performs several steps,
including parse the model into memory, check the syntax, create the matrix for the solver, call the
solver, and then create the solution file.

While optimizing, the Status Window appears, providing information about the solution progress.
For details about the contents of the Status Window, refer to Chapter 4.3: Using the MPL
Environment.

Status Window

DOptimal zolution found

- MainFile ———— Lines — Memomw — Time
Capri.mpl a18 728k 1:43
= Model
Vanables: 353 Monzeros: 1736
Conztraints; 271 Integers: i
- Solver— Iterations Objective Function -
Phasel: 3139 0.0000
Total 455 26900129

Wi I

Figure4.21 : The Status Window Dialog Box

MPL supports multiple solvers that are listed in the Solve submenu of the Run menu. To use a
different solver go to the submenu and choose the solver you want to run. MPL will
automatically update the default solver in the menu to the last one used.

The solvers MPL supports can be categorized into two groups, Windows DLL solvers and legacy
DOS solvers. When MPL uses Windows DLL solvers the matrix is sent directly through memory
to the solver. There are now many industry-standard solvers available as DLL’s including
CPLEX, XPRESS, OSL, FortMP, XA, and CONOPT, all of which are supported by MPL.

58

Chapter 4 Description of Menus

When MPL uses DOS legacy solvers, it writes out the matrix to an input file, normally an MPS
file, and then starts the solver in a DOS window. When the solver has finished optimizing, M PL
will read back the output file from the solver and return back to Windows. This method is of
course not as fast as transferring the matrix through memory, but it works with almost any solver
that can run in a DOS window.

If you need to change some of the setup options for a solver, choose Solver Menu from the
Options menu. From the Solver Menu Setup dialog choose the solver you need to change setup
options for in the list box and press the Edit button. This will display the Solver Setup Options
dialog box. Please refer to Chapter 4.9: The Options Menu for how to change the setup options.

Some solvers are also provided with option dialog boxes that allow you to change various
algorithmic options. Check the Solver Parameters dialog box in the Options menu to see if an
option dialog box is available for your solver. If it is, please refer to the solvers documentation
for more information on these options.

Parse the Model Into Memory

If you want to parse or read the model formulation into memory, without solving it, choose Parse
Model from the Run menu. Thiswill let MPL read through the model file, check the syntax, and
store it in memory. This is especialy useful when you want to analyze the model or display a
graph of the matrix.

Solve the Model Currently in Memory

If you have parsed the model into memory or you have solved your model once and want to solve
it again, perhaps after having changed some options, you can do so by choosing Solve Current
from the Run menu. This will solve the model currently in memory, without parsing it again,
which is unnecessary if the model has not been changed.

Generate Solution File

If you have changed any of the solution file options since the last solver run, you can generate the
solution file again without having to solve again by choosing Generate Solution from the Run
menu.

59

Part Il Using the MPL Modeling System

Clear the Current Model From Memory

To clear the current model from memory choose Clear Model from the Run menu. Thiswill clear
al memory used by MPL to store the model, solver information, the solution and other stored
items such as iteration information.

Generate Mapping

When using MPL with other programs it is sometimes advantageous to know how variable names
in MPL are mapped to the matrix that is sent to the solver. The mapping file contains, for each
variable and constraint, the abbreviated name that is sent to the solver, the original MPL name,
and all of the subscripts for vector entries. This enables the user to map the abbreviated name to
the MPL name and vice versa. This file can also be automatically generated while solving by
selecting Mapping File in the General Solver Options dialog box.

Generate Input File

Although, MPL can run most solvers directly from the menus, you might, in some circumstances,
want to run the solver separately. MPL can be used to generate severa different input formats
which can be selected from the Generate submenu in the Run menu. While generating, the Status
Window appears, providing information about the generation. For more information about the
Status Window, refer to Chapter 4.3: Using the MPL Environment.

Available input formats include the standard MPS format, native input formats for severa
different solvers including CPLEX, XA, Lindo, and Turbo-Simplex. MPL can also generate an
input file that is compatible with MPL. This can be particularly useful when you are have a
standard MPS file and want to create an MPL compatible input file.

60

Chapter 4 Description of Menus

4.7 The View Menu

The View menu is used after you have solved your model to view generated files and various parts
of the solution in awindow. Y ou can also get problem statistics and defined itemsin the model.

Yalues/Reduced cost
Slack#Shadow prices
Hange Objective
Range BHS

Model Statistics
todel B efinitiong

ezzage Window

Figure4.22: TheView Menu

Files <solution file> - View the MPL solution file generated
Files <output file> - View the output file from the solver
Files <input file> - View the input file for the solver

Files <log file> - View the log file for the solver run
Files Other Files - View any other file on the disk
Values/Reduced Cost - View variable values and reduced costs
Slack/Shadow Prices - View constraint slacks and shadow prices
Range Objective - View ranges for the objective function
Range RHS - View ranges for the right-hand-side
Model Statistics - View the statistics of the current model
Model Definitions - Open the model definition window

Message Window - Open the message window

The view window stores the file in memory allowing you to quickly browse through the solution
on the screen using the mouse. Y ou can have multiple view windows open at the same time. The
view window can handle very large solution files, up to several megabytes, depending on how
much memory you have available on your machine. If the solution file becomes too large, you can
change the contents of the file. Please refer to the Change Solution File Options section in
Chapter 4.9: The Options Menu for more information.

61

Part Il Using the MPL Modeling System

View the Solution Files

MPL generates a solution file after solving the model. Y ou can view this file by choosing Files
<solution filename> from the View menu. The filename listed will be the name of the solution
file, usualy with a .sol extension, for example as in the model shown below planning.sol. You
can also view the solution file by pressing the View Solution File button in the Toolbar.

&n View File: Planning_sol

MODEL STATISTICS

Problem name: Production_Planning
Filename: Planning.mpl
Date: August 18, 2861
Time: 88:33

Parsing time: 8.32 sec
Solver: CPLEX

Objective value: 19422800.0008
Iterations: 7y

Solution time: 8.86 sec
Constraints: 36

UVariables: 108

Honzeros: 141

Density: L3

SOLUTION RESULT

Optimal solution found

HAX Profit = 194228006 0060

JET 1
Figure4.23: Viewing the Solution Filein a Window

When you solve the model with a legacy DOS solver both a solver input file (usualy MPS) and
an output file will be generated. Both of these files will be listed also in the View Files submenu
so you can view them. If something goes wrong during the optimization process these files can
be very useful identifying the problem. Please refer to the documentation that came with the
solver for the description of the input and output file formats.

62

View Other Files

To view any file other than solution files, pull down the View menu and choose the Files | Other
Filescommand. The View File dialog box, like the one shown below in Figure 4.25, will then be

Chapter 4 Description of Menus

displayed.
View File H

Lookire | ‘3 Dist RN
Customer.dat E Dcgraph. fsl Depots, dat Factdep.d.
Customer.db E Dcroute.db E Depotz.db Factory.da
B Customer.dbf E Dcroute. dbf E D epotz. dbf E Factory.db
[=8] Cuistomer.fs) Dcroute. px E Depots.f2l E Factory.db
Customer.px Doroute. val Depots. px E Factory.fsl
Custaomer.wal Deroute. <02 Depots. val Factony.px
Dcost.dat Deroute. y02 Digtr.rpl Factary.rsl
File: name: Il:ustnmer.dat Open I
Files of fype: [l ies =) -l Carcel |
Help |

Figure4.24. The View File Dialog Box

In the middle of the dialog box is alist of the files that are in the current folder. To open afile,
select it from the list of files and press the Open button. You can also open the file directly by
double-clicking oniit in thelist of files. Alternatively, you can enter the filename in the File name
input box below the list and then press the Open button.

The name of the current folder is shown in the Look In input box at the top of the dialog. If the
file you want to open isin a different folder, you can press the down arrow at the right of the Look
In input box to navigate through the directory tree. Select the folder name you want to go to and
thelist of files below will reflect the contents of the new folder.

If you do not want to open afile press the Cancel button to close the dialog box.

63

Part Il Using the MPL Modeling System

View Solution Values

MPL alows you to view various solution values, in a view window without having to include
themin the solution file. There are four possible tables to view:

1. For the activity values and the reduced costs for each decision variable in the optimal
solution choose Values/Reduced Cost from the View menu.

2. For the slacks and the shadow prices for each constraint in the optimal solution choose
Sacks/Shadow Prices from the View menu.

3. For the ranges of the objective function coefficients choose Ranges Objective from the
View menu. The resulting table will contain the name of the variable, the objective
function coefficient, the lower bound, and the upper bound.

4. For the ranges of the right hand side values choose Ranges RHS from the View menu.
The resulting table will contain the name of the constraint, the RHS value, the lower
bound, and the upper bound.

Please note that the Compute Ranges option in the Solution File Options dialog box must be set
prior to solving the model if you want to be able to view ranges. Below, in Figure 4.26 is an
example of the view window for ranges of the objective function coefficients.

kﬂ View: Hanges Objective Function

RAHGES OBJECTIVE
UECTOR Inventory[product,month] :
product month Coefficient Lower Bound Upper Bound
1 January -8._80@08 -1E+28 B.8e8a
1 February -8.80808 -1E+28 6.0088
1 Harch -8._8000 -1E+28 A.ae8a
1 April -8._8@68 -1E+28 a.aaaa
1 Hay -§.80080 -1E+28 A.aeaa
1 .June -8._80@08 -1E+28 B.8e8a
1 July -8.80808 -1E+28 6.0088
1 August -8._8000 -1E+28 A.ae8a
1 Septenmber -8._8@68 -1E+28 a.aaaa
1 October -§.80080 -1E+28 A.aeaa
1 Hovember -8._80@08 -1E+28 B.8e8a
1 December -8.80808 -1E+28 1E+28
2 January -8._8000 -1E+28 -1.9808
2 February -8._8@68 -18.7 0084 -1.0808
2 Harch -§.80080 -18.70088 -1.9808
2 April -8._80@08 -18.70084 -1.0808
2 Hay -8.80808 -18.70088 -1.9088
2 June -8._8000 -1@.70084 -1.9808
2 July -8._8@68 -1E+28 a.aaaa
2 August -§.8000 -1E+28 A.aeaa -
| O

Figure 4.25: The View Ranges Objective Window

Chapter 4 Description of Menus

View the Model Statistics

To see the model statistics choose Model Satistics from the View menu. This will display the
Model Statistics dialog box shown below in Figure 4.27.

Model Statistics [2]
| todel filename: Platiting.mpl | ‘ Parzing hrme: 0.05 ‘
Congtraintz “ariables Monzeros: 14
Disfined: % 108 Dty Rl *
Plair;] 1]
Weckaor: 36 108 Rim elemants
- - i Object. elements: 108
RHS elements:]
i Upper bovnds: 108
Less than: i Integer: i s e 3
E qual; 36 Binary:
Greater thar:] Free:] Fuill matrix; 360
Help |

Figure4.26: Viewing Model Statistics

The top line of the model statistics window contains the names of the model file. On theright is
the time it took to parse the model.

On the left, in the middle of the window, is a table containing the number of constraints and
variables. If you defined variables in the DECISION VARIABLES section of the model, but didn't
use them all in the model, the Defined variable count will be higher than the Used variables. The
Plain and Vector variable count tells you how many of the variables were plain and how many
were defined as vectors.

At the bottom of the window, to the left, the constraints are divided into Less Than, Equal, and
Greater Than constraints. In the next section, to the right, the number of variables that are Free,
Integer, or Binary variables are listed.

To the right, in the middle of the window, are the number of nonzeros and the matrix density.
Below, in the lower right-hand corner, the number of objective function coefficients, the right
hand side (RHS) coefficients, and the upper and lower bounds are listed. Finally, at the bottom, it
shows the total number of nonzero elements for the full matrix that were stored.

65

Part Il Using the MPL Modeling System

View Model Definitions Window

MPL alows you to view defined items from the model formulation in a tree window. Choose
Model Definitions from the View menu, to display the Model Definitions window. Y ou can aso
press the View Model Definitions button in the Toolbar. You can leave this window open while
you areworking in MPL asit will be updated automatically when you parse in your model.

& Model Definitions | (O] x]
== TITLE Production_Planning

- INDEX

i fp product

----- & InventorpCost
----- @ price(product]
----- & Demand{manth,product]
----- @ ProductionCapacity[product]
----- & ProductionCost{product]
E-{= VARIABLES
----- & Inventorpproduct month]
----- & Production[praduct manth]
----- @ Sales[product month]
£ MACROS
----- & Revenues
iy TotalCost
El-{£= CONSTRAINTS

Ly InvtBaljproduct month]

Wigw | Gata |

Figure 4.27: The Model Definitions Window

This window will show all the defined items in the model in a hierarchical tree structure. Each
branch in the tree corresponds to a section in the model. You can expand and collapse each
branch to show only the elements you are interested in.

At the bottom of the window are two buttons. The View button alows you to display the contents
of each defined item in a separate view window. What is displayed for each item is discussed in
the following pages. The Goto button will take you directly to the declaration of the selected item
in the mode file.

MPL has several options in the MPL Environment Options dialog box that allow you to control
how the Model Definitions window behaves. You specify whether each defined item is shown
with the number of elementsit contains. You can also specify whether each branch is expanded
or collapsed when the tree is initially created. Finally you can set whether double-clicking on a
defined item will work as the Goto or the View button.

66

Chapter 4 Description of Menus

TheINDEX Branch
All defined indexes for the current model are listed in the INDEX branch. If there are multiple
INDEX sectionsin the model they will be shown as separate branches in the tree.

To obtain more information about an index entry, select the index name in the tree and press the
View button. This will open a view window containing the declaration and contents for the
selected index entry. What is shown for each index depends on how it was declared in the model.

¢ For numeric indexes the lower and upper range values are shown.

¢ For named indexes the name of each index element is shown along with the abbreviated
name which is used to generate variable and constraint names.

¢ For multi-dimensional indexes all the index elements are shown along with the shorter
abbreviated name similar to named indexes.

For example to view the named index month select the name in the INDEX branch and press the
View button. Thiswill display the view window shown here below:

gh View Index: month H=] E3
month :=

(January -»> "Jan’
February -> 'Feb®
HMarch -» ‘'Mar’
April -> "Apr'
Hay -> "Hay®
June =» “Jun’
July -> "Jul’
August ->» '"Aug"’
September -»> '"Sep’
October -> 'Oct’
Hovember -» "Hov’
December -» 'Dec") ;

Figure 4.28: View Named Index Elements

The DATA Branch

All defined data vectors and data constants for the current model are listed in the DATA branch.
If there are multiple DATA sections in the model they will be shown as separate branches in the
tree.

To obtain more information about a data entry, select the data name in the tree and press the View
button. This will open a view window containing the declaration and contents for the selected
dataentry.

67

Part Il Using the MPL Modeling System

What is shown for each data entry depends on how it was declared in the model.
* For data constants the data value is shown.

* For dense data vectors the contents of the data vector is shown as list of numbers
organized into rows and columns according to the indexes the data vector was defined
over.

* For sparse data vectors the contents of the data vector is shown in a table with one line
for each element in the vector.

For example to view the dense data vector Demand select the name in the DATA branch and press
the View button. Thiswill display the view window shown here below:

@ Yiew Denze Data Yector: Demand [_ (O] x|
Demand[month,product] =

S @aag 24008 Saaa

68888 Jaeos a@aa

7aaap Jaann 7aaa

e Is 1] 420808 gaaa

ogaan LEaa0 g@aa

1800088 52088 10088
110088 Sooas 11888
120008 48000 12000
120008 44008 13008
120088 Laoae 14068
110088 36088 140088
1800088 32008 13688y ;

Figure 4.29: View Dense Data Vector Elements

TheVARIABLESBranch

All defined variables for the current model are listed in the VARIABLES branch. If there are
multiple VARIABLES sections in the model they will be shown as separate branches in the tree.

To obtain solution values, such as activity and reduced cost, for a variable, select the variable
name in the tree and press the View button. This will open a view window showing the solution
values for the selected variable. If the Compute Ranges option in the General Solver Options
dialog box is On the sensitivity analysis ranges for the objective function coefficients are also
shown. If the model has only been parsed, which means there are no solution values available,
only the expanded name for each variable is shown.

68

Chapter 4 Description of Menus

The MACROSBranch

All defined macros for the current model are listed in the MACROS branch. If there are multiple
MACROS sections in the model they will be shown as separate branches in the tree. To obtain
more information about a macro, select the macro name in the tree and press the View button.
Thiswill open aview window containing the declaration and contents for the selected macro.

The CONSTRAINTSBranch

All defined constraints for the current model are listed in the CONSTRAINTS branch. To obtain
solution values, such as slack and shadow prices, for a constraint, select the constraint name in the
tree and press the View button. Thiswill open aview window showing the solution values for the
selected constraint.

@ Yiew Constraint: Capacity

UECTOR Capacity[month,machine] :

month machine slack Shadow Price
Jan Grind A.08808 -8.5714
Jan Udrill 438.8571 A.68888
Jan Hdrill 812 0088 a.8088
Jan Boring 907 6286 8.@08a
Jan Planing 1189. 0088 8.8084
Feb Grind 766 .0080 a. 8080
Feb Udrill L78.00888 A.68888
Feb Hdrill 184. 0888 A.68888
Feb Boring 1860. 0088 a.68088
Feb Planing 1130. 6088 a.8088
Mar Grind 816. 00088 8.8084
Har Udrill LL8. 0080 a. 8080 =]

Figure 4.30: View Constraint Solution Values

If the Compute Ranges option in the General Solver Options dialog box is On the sensitivity
analysis ranges for the right-hand side are also shown. If the model has only been parsed, which
means there are no solution values available, only the expanded name for each constraint is
shown.

69

Part Il Using the MPL Modeling System

View Message Window

While MPL is running it can send various progress information to a message window. Choose
Message Window from the View menu, to display the Message window. Y ou can aso press the
View Message Window button in the Toolbar. If you want you can leave this window open while
you areworking in MPL asit will be updated automatically when you run your model.

What information is sent to the window will depend on which options are selected in the Message
Window group of the MPL Environment Options dialog box.

Status Window Messages. Sends all the status messages that are displayed in the topmost
area of the Status Window to the Message Window.

MPL Input Lines. Sendsall input lines from the MPL model file to the Message
Window.

Performance Statistics: Sends performance statistics on parsing in the MPL model file
to the Message Window.

Memory Usage Statistics. Sends statistics for the MPL parser memory usage to the
Message Window.

Warning Messages: Sends all warning and error messages from MPL to the Message
Window.

Database Connection: Sends all messages concerning connection to databases to the
Message Window.

SQL Statements. Sendsall SQL statements that are issued when importing and
exporting data through the database connection to the Message Window.

Solver Iteration Log: Sendsall iteration log information from the solver to the Message
Window.

Please refer to the section on the MPL Environment Options dialog box in Chapter 4.9 The
Options Menu for more information.

70

Chapter 4 Description of Menus

4.8 The Graph Menu

The Graph menu is used when you want to display a graph of the matrix or of the objective
function values for each iteration.

T

Objective Funchion

Figure4. 31: The Graph Menu

Matrix - Display graph of the matrix
Objective Function - Display graph of the objective function.

Graph of the Matrix

To display agraph of the matrix nonzero elements, choose Matrix from the Graph menu. Y ou can
also press the Graph Matrix button in the Toolbar

WS Graph Matrix: CAPRI

Matrix Nonzero Elements

1 - .

e Cohrrins: 1-353
— e Rowos: 1271
oo PrcelsPer Col: 1
BN PixelsPerRom 1
Grraph TWhidth: 353

Graph Height: 271

2l

Figure4.32: The Graph Matrix Window

71

Part Il Using the MPL Modeling System

The graph shows all the positive numbers in blue and al the negative numbers in red.
Furthermore, numbers that have binary values (1 and -1) are showed in lighter blue and lighter red
respectively.

Y ou can use the mouse to zoom into the matrix. Place the mouse cursor in the upper-left corner of
the part of the matrix you want to zoom into. Hold the left mouse button down while you drag the
mouse down and to the right. Thiswill draw a box that shows the area that will be zoomed. When
the box is the correct size release the left mouse button to zoom.

Y ou can repeat the zoom several times until you reach the spreadsheet view. Thiswill alow you
to see the actua values and the names of each cell in the matrix. You can also reach the
spreadsheet view by clicking with left mouse button on the part of the matrix you want to see.

WS Graph M atrix: CAPRI
Matrix Nonzero Elements
Row|Co [EHREP78 |HEWETS |NCAPT® |WEINTE |WE2N78 | RHS
ACPTS 035500
CRI7S 153509
ACPT3 0037 Coharns; 138142
LAHT [Rows: 153198
CCHTS [_
LLNTE 1 [emil &) 0 ge}‘??' _ ?:
R [oes00]] i] 0 e””""'
AATTR -1 [Graph Tdth: 320
CCT7R 1085 Graph Height: a2
ALRTS [—
CCETa 0085
AARTS [
CCRTG 005
AAGTE [
CCGTa 00E5
CRST 16,5603
OBIEC | | i | i

Figure 4. 33: The Spreadsheet View of Matrix

You can move around in the matrix using the arrow keys. The red dot in the small box in the
upper right-hand corner shows you were you are located in the matrix. To zoom back out click
the right mouse button.

72

Chapter 4 Description of Menus

Graph of the Objective Function

To display a graph of the objective function values for each iteration, choose Objective Function
from the Graph menu. Y ou can aso press the Graph Objective button in the Toolbar. This will
display a graph window shown below containing the objective function values.

B2 Graph Objective: CAPRI M=] E3

Objective Function Values

Wahes
15000 4

10000

5000 -

=]
=

100 150 20 250 00 il
Tterations

5000 4

Figure 4.34: The Graph of Objective Function Window

The objective graph in MPL shows the objective function values in dark red. For iterations
where there is no feasible solution the graph shows the amount of infeasibilities in green.

For integer problems the graph will also show the objective function value for each node (dark-
blue) and the best integer solution value found so far (light-blue).

The graph of the objective function is only available when the model has been solved using
Windows DLL solvers.

73

Part Il Using the MPL Modeling System

4.9 The Options Menu

The Options menu allows you to change various options for the solvers, the solution file, and for
MPL.

Dptions

Environment. ..

MPL Language...
Databaze...
Solution File...
Generate File...

General Salver...

CPLE® Parameters k
#PRESS Parameters..,
Solver Barameters ¥
Salver Option Lists...

Solver Menu...

Figure 4.35: The OptionsMenu

Environment... - Change options for the MPL environment

MPL Language... - Change options for the MPL language
Database... - Change options for the database connection
Solution File... - Change options for the solution file
Generate File... - Change options for generated files

General Solver... - Change general options for solvers

CPLEX parameters - Change option parameters for CPLEX

XPRESS parameters... - Change option parameters for XPRESS

Solver Parameters - Change parameters for available solvers
Solver Option Lists... - Change solver options in a property list format
Solver Menu... - Sets up the menu of available solvers

74

Chapter 4 Description of Menus

Change MPL Environment Options

You can change the various preferences for MPL by choosing Environment from the Options
menu. Thiswill display the Environment Options dialog box shown below.

Environment Dptions ElE3
= Integrated environment ————— ~ Mezzage Window
l“v" Auto zave before Dp.timizing ¥ Show message headers

I Shiott flenames in window tiles =
Send to message windaiw:

v Status window messages
™ MPL input lines

™ Performance statistics

~ Model Definitions wWindow
¥ Show element count

W Evpand Branches :
- I | Memany usage statistios

I | Double-click az gota fine in model
: v W arming/Erar messages

¥ Database conmection
[S0L statements

W | Salver iterstion lag

Cancel Help

Figure 4.36: The Environment Options Dialog Box

Integrated environment

Auto Save: The model file is automatically saved whenever you optimize or parse the problem.
This makes sure that you don’t lose your work if something goes wrong during the optimization
process.

Short filenames in window titles: MPL places the filename in the title bar of editor windows.
This option directs whether the title bars for editor windows contain the full path information of
the filename.

75

Part Il Using the MPL Modeling System

M odel definitions window
Show element count: Specifies whether the element count, for each item, isincluded in the Model
Definitions window.

Expand Branches. Specifies whether each branch in the tree containing the model definitions is
expanded. For larger models it may be beneficial to not expand the branches in order to be able
to quickly find the branch you want to see.

Double-click as goto in model: If On double-clicking on a defined item in the tree brings the user
to the line where the item was declared in the model. If Off, which is the default, double-clicking
will open aview window with the defined item.

M essage window

Show message headers. Specifies whether messages sent to the message window will be prefixed
with a header text showing the type of the message.

Send to message window

Satus window messages. Sends all the status messages that are displayed in the topmost area of
the Status Window to the Message Window.

MPL input lines: Sends all input lines from the MPL modél file to the Message Window.

Performance statistics: Sends performance statistics on parsing in the M PL mode! fileto the
Message Window.

Memory usage statistics: Sends statistics on the MPL parser memory usage to the Message
Window.

Warning messages. Sends all warning and error messages from MPL to the Message
Window.

Database Connection: Sends all messages concerning connection to databases to the Message
Window.

L statements: Sends all SQL statements that are issued when importing and exporting

data through the database connection to the Message Window.

Solver Iteration Log: Sends all iteration log information from the solver to the Message
Window. Thisisthe same option as the Send iteration log to message
window option in the General Solver Options dialog box.

76

Change MPL Language Options

Chapter 4 Description of Menus

Y ou can change the various preferences for MPL by choosing MPL Language from the Options
menu. Thiswill display the MPL Language Options dialog box shown below.

MPL Language Options

- MFL language options
V¥ LCase zensitive

¥ | Plain vaniables must be defined

(7] %]

- Send log information bo:—
™ Message window
W Lagfile

— Default todel Type

& Linear Models
¢ Quadratic Models

™ Nanlinear Models
" Eutended Monlinear Madels

— Diata fles

Ihput Directon: I

Output Directons: I

W Check sparse datafor duplicate entries
W Use quicksort for sparse data

— Mame Generation
& |ndered names

& Wumeric names

) Prefised numerc names

M ax variable length; IB
Maw subzerpt length: |3

Canicel

Help |

Figure4.37: The MPL Language Options Dialog Box

MPL language options

Case sensitive: Directs whether the MPL language is case sensitive or not. The default is case

sensitive On.

Plain variables must be defined: Specifies whether plain variables must be defined in the
Decision Variables section of the model or can be introduced as they appear in the model. For
larger models, requiring plain variables to be defined, can increase the maintainability of the

model.

77

Part Il Using the MPL Modeling System

Send log information to:

Message window: Specifies whether log information from the M PL language parser are send to

the Message Window. T
Environment Options dial

his is the same option as the Performance statistics option in the MPL
og box.

Log file: Specifies whether log information from the M PL language parser are to send to file.

Default model type
Linear Models

Quadratic Moddls

Nonlinear Models

Specifies that the M PL language parser should only accept models that
are either linear or mixed integer.

Specifies that the M PL language parser should accept models that are
quadratic in addition to the standard linear or mixed integer models.
Please note, that in order to solve quadratic problems, you will need a
optimizer that supports quadratic programming, such as the CPLEX
Barrier solver.

Quadratic problems are defined to have the objective function of the
following form: Q * xT * x + cT x where T means that the vector is
transposed. Q isamatrix of quadratic objective function coefficients.
The elements Qjj are coefficients of the quadratic terms xj*2 while the
elements Qij and Qji are summed together to be the coefficient of the
term xi*xj.

There are two different types of Q matrices that are supported:

a separable prablem is one where only the diagonal terms of the matrix
are defined, and a non-separable is one where at |east one off-diagonal
term of the matrix is zero. Quadratic solvers, such as CPLEX Barrier,
will solve only convex quadratic minimization problems (or concave
maximization problems). For convex problems, Q must be positive
semi-definite, which means that the term Q * XT * x >= 0 for any x,
whether or not x isfeasible. (For maximization problems, the
requirement isthat Q is negative semi-definite, which meansthat Q *
XT * x <= 0for al x). Notethat for separable Q (in a minimization
problem), Q positive semi-definite is equivalent to Q >= 0.

Specifies that the M PL language parser should accept models that are
nonlinear, for example have variables multiplied together or uses one of
the arithmetic functions like LOG or EXP on variables. Please note,
that in order to solve nonlinear problems, you will need a solver that
handles nonlinear models. MPL currently supports the nonlinear solvers
CONOPT from ARKI Consulting and LSGRG2 from Optimal Methods.

78

Chapter 4 Description of Menus

Datafiles

Input Directory: Selects the folder where M PL will search for input datafiles. The default is the
current folder.

Output Directory: Selects the folder where MPL will save output data files. The default is the
current folder.

Check Sparse Data For Duplicate Entries. Specifies whether sparse data files are checked for
duplicate index entries. In some cases the user may want to read in a data file without receiving
errors even if it has duplicate entries. When there are duplicate entries, the last entry in the file
will be used by MPL.

Use quicksort for sparse data: Specifies whether sparse data is sorted with quicksort after it is
read in. It isnormally faster to use quicksort but if there is an invalid entry, such as duplicates, in
the data file MPL will not be able to pinpoint the problem line accurately.

Name gener ation

Indexed names. Directs MPL to generate names for vector variables and constraints using the
indexes they were defined with.

Numeric names. Directs MPL to generate variable names as numeric with the prefix ‘C’ and
constraint names with the prefix ‘R’.

Prefixed numeric names. Directs MPL to generate names for vector variables and constraints as
numeric with the prefix based on the vector name.

Max variable length: Most LP solvers have a restriction on the length of variable names. Since
MPL, in most cases, sends the matrix directly through memory to the solver, the variable names
are normally not needed. If they are needed, the value set here helps you ensure that the variable
names generated are within limits. The default value is 8.

Max subscript length: This value decides how many characters of indexes are retained in the
generated variable name. This allows you to use long index names in the model, but keep variable
names concise in the generated input file. The default value is 3.

79

Part Il Using the MPL Modeling System

Database Options

Y ou can change the various preferences for MPL by choosing Database from the Options menu.
Thiswill display the Database Options dialog box shown below.

Databasze Options |

- Database connection

Dratabaze file [*mdb);

I zer: I Fazzword: |

— [ratabase optiohs
[Dia not expaort to database
[Export zemo values with CREATE ZREFILL

[Export MPL sumbols after gensrate input file

¥ Use Transactions [nteryval: I1EIEIEI
(] I Cancel I Help I

Figure 4.38: The Database Options Dialog Box

Database connection

Default: Chooses which of the supported databases is the default for the MPL Database
Connection. MPL supports both specific databases, such as FoxPro and Paradox, as well as the
databases that are supported by the ODBC standard such as Access.

Directory or data source

Depending on which database is selected, this entry will specify the database directory or the data
source that MPL will use as default when importing data. For Xbase type databases, such as
FoxPro and Paradox, this will typically be the directory where the database files are stored. For
ODBC type databases this either be a database file, such as <filename.mdb> for MS Access and
<filenamexis> for Excel, or a defined ODBC data source that can be specified in the ODBC
control panel.

80

Chapter 4 Description of Menus

Username

When you are working with databases that require a Username to log in, this option can be used
to specify it.

Password

When you are working with databases that require a Password to log in, this option can be used to
specify it.

Database options

Do not export: Do not export solution values to database even if there are export statements in the
model.

Export zero values. When exporting using either CREATE or REFILL, this option specifies
whether records with zero activity values should also be exported. The default value is Off since
in most cases only the nonzero records are needed.

Export MPL symbols. When exporting MPL symbols such as; indexes and datavectors, they are
generally only exported when model is solved and not when an input file is generated. This
options directs MPL to export symbols when input files are generated, since this might be useful
for debugging purposes. The default value is Off.

Use Transactions. Directs MPL to use transactions when exporting to a database. Using
transactions can greatly improve speed especially when working with remote databases. Please
note, that not all databases support transactions. The default value is On.

Interval: Specifies what the interval should be between when the transactions are performed.

81

Part Il Using the MPL Modeling System

Change Solution File Options

Y ou can change the contents and various options for the solution file by choosing Solution File
from the Options menu. Thiswill display the Solutions File Options dialog box shown below.

Solution File Options EE

¥ Generate solution fils Filerame: = an
I Use MPS names Nurber width: [16
IV MNonzera values only Dscimals: l4_
[Zeo values as dot

~ Solution File Contentz
Header: Solution: [Compute ranges
IV Sustem Info v Manable Yalues [~ | Objective Ranges
v Solver Infa ¥ Reduced Cost [~ Obijective Cosff
¥ Model Irfa ¥ Slack Walues ['RH5 Ranges
v Salution Irfo ¥ Shadow Prices ™ RHS Values

Cancel Help

Figure 4.39: Solution File Options Dialog Box

Hereisalist of the options that you can change with explanations to follow.

Generate Solution File: Directs whether MPL creates a solution file automatically after solving
the problem.

Use MPS Names: Directs whether the solution file uses MPS type names for constraints and
variables instead of listing the value of each subscript in columns.

Nonzeros values only: Directs whether the solution should list al solution values or nonzero
values only.

Zero Values as Dot: Directs whether zero values in the solution are listed using a dot instead of
zero.

Filename: Specifies the filename MPL will use to save the solution file. If the filename given
contains star (*) instead of the name, like *.sol, MPL will use the name of model file with the

extension given.
Number width: Set the field size for number valuesin the solution file.

Decimals: Set the number of places after the decimal point.

82

Chapter 4 Description of Menus

Solution file contents

System Info: Includes various statistics from the system and about the problem in the solution
file; filename, date and time when run, and how much time the parsing of the model took.

Solver Info: Includes various statistics about the optimization process in the solution file; which
solver was used, value of the objective function, number of iterations, number of nodes for integer
prablems, and how much time the optimization took.

Model Info: Includes various statistics about the model in the solution file; the problem name,
number of constraints, number of variables, number of nonzeros, density of the matrix, and
number of integer variables for integer problems.

Solution Info: Includes various statistics about the solution result in the solution file; status of the
solution reported from the solver, and then the sense, name, and value of the objective function.

Variable Values: Includes the activity valuesfor each variable.
Reduced Cost: Includes the reduced costs for each variable.
Sack Values: Includes the slack values for each constraint.
Shadow Prices: Includes the shadow prices for each constraint.

Compute Ranges. Directs whether solution ranges are retrieved from the solver and stored in
MPL memory. This option is automatically selected if either objective or RHS ranges are
selected for the solution file contents. This is the same option as the Compute Ranges for
Sensitivity Analysis option in the General Solver Options dialog box.

Objective Ranges. Includes the objective function ranges for each variable.
Objective Coeff: Includes the objective function coefficient for each variable.
RHSRanges. Includes the RHS ranges for each constraint.

RHS Values: Includesthe RHS value for each constraint.

83

Part Il Using the MPL Modeling System

Change Generate File Options

Y ou can change various options for generated files by choosing Generate File from the Options
menu. Thiswill display the Generate File Options dialog box shown below.

Generate File Ophions EE

— Geretate file margiris - Generate MPS files

Left margin |3 ¥ Inclhide comments

Left inderit |5 [Coreert bo minimize
Right mardir |?2 ™ Single Column

™ 505 reference mws

|nteqer wariables:
" |se Ul bound entries

" Use integer markers

Canicel Help

Figure 4.40: Generate File Options Dialog Box

Generatefile margins

Left Margin: Sets the left margin for the generated input file. The default valueis 3.

Left Indent: Setsthe left indent for the generated input file. The default value is 5.

Right Margin: Sets the right margin for the generated input file. The default valueis
72.

Generate MPSfiles

Include comments. This option determines whether MPL should place comments in the header
of the MPSfilethat give various statistics about the problem. The default is On.

Convert to minimize: This option determines whether the sense of the objective function will be
converted to minimize regardless of how the origina formulation was set up. This can be useful
when creating MPS files for packages that require MIN problems.

S reference rows. This option determines whether reference rows can be specified when
creating SOS marker records. When this option is set the SETORG entry will be moved to field 4
to make space for the reference row which will be put in field 6.

Sngle column: This option determines whether the MPS file is written with one column of data
in the COLUMN section. The default is Off for two columns of data.

84

Chapter 4 Description of Menus

Integer variablesin generate MPSfiles
Use Ul bound entries: This option determines whether integer variables will be specified using Ul
records in the BOUNDS section in the generated MPSfile. Thisisthe default.

Use integer markers: This option determines whether integer variables will be specified using
integer marker recordsin the COLUMNS section in the generated MPSfile.

Change General Solver Options

Y ou can change various general options for solvers by choosing General Solver from the Options
menu. Thiswill display the General Solver Options dialog box shown below.

General Solver Options EE
— Computahianal options - Generate Files———————————
[Uze Advanced Bagis [T Mative input file
B asiz Filznams: |"bas I Binary input file

™ PS5 file [Sibeer)

[Compute rahges for sensitivity analysis I MPS file [MPL]
W Use [nfeasibility Findss [Standard output file
[T Sobve LP relaxation anly F41P] I Binary output file

[Salution Mapping file

— Send teration log to:
W Message Window

V¥ Logfile: Filename: [log

Cancel Help

Figure4.41: The General Solver Options Dialog Box

Computational options
Use Advance Basis. The advance basis for the previous optimization is used as the starting point
for the next optimization. The defaultis On.

Basis Filename: Specifies the filename the solver will use for the basisfile. If the filename given
contains asterisks ‘*’ instead of the name, like the default entry ‘*.bas’, the solver will use the
name of model file with the extension given.

85

Part Il Using the MPL Modeling System

Computerangesfor sensitivity analysis

Directs whether solution ranges are retrieved from the solver and stored in MPL memory. This
option is automatically selected if either objective or RHS ranges are selected for the solution file
contents.

Useinfeasibility finder

If the model being solved is infeasible, solvers such as CPLEX can automatically invoke an
infeasibility finder to help locate the problem. In some cases the infeasibility finder can not help
or takes avery long time. This option can then be used to turn off the infeasibility finder.

Solve L P relaxation only (M1P)

Directs MPL to not send any information about integer variables to the solver and solve only the
LP relaxation for the model.

Send iteration log to:

Message window: While the solver is optimizing the iteration log information will be sent to the
Message Window.

Log file: While the solver is optimizing the iteration log information will be sent to alog file.

Log filename: Specifies the filename the solver will use for the log file. If the filename given
contains asterisks ‘** instead of the name, like the default entry **.log’ the solver will use the
name of model file with the extension given.

Generatefiles

Native input file: Directs the solver to write out its native input file for the matrix it received from
MPL. Thisoption can be very useful for debugging purposes.

Binary input file: Directs the solver to write out its binary input or save file for the matrix it
received from MPL.

MPSfile: Directs the solver to write out a MPS file for the matrix it received from MPL .

MPSfile (MPL): Directs the MPL to write out a MPS file for the matrix it generated. Thisoption
can be very useful for debugging purposes.

Sandard output file: Directs the solver to write its standard output file for the solution.
Binary output file: Directs the solver to write out a binary output file for the solution.

Solution mapping file: Directs MPL to write out a mapping file that shows how variables and
constraints sent to the solver are mapped on to the MPL vector variables and constraints. This
can be useful when writing a program that will read the output files generated by MPL..

86

Chapter 4 Description of Menus

Change CPLEX Simplex Options

You can change the simplex options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the Smplex tab. This will display the simplex options for
CPLEX inthe dialog box as shown below:

CPLEX Parameter Options
Simplex |PIBD[DCI Log filei Lirmits I MIF Strategyi WIF Strategy 2! MIF Eutsl MIP Tnlerancei Banieri Netwnlki
i~ Algarithim — Pricing Frimal ———— 1~ Refactarzation
@ Primal " Net Prinal ' Reduced cost pricing Frequency: !EI
" Dual T Het Dual £+ Hybrid reduced/deves
¢ Bamier Barier w/Cross " Dievex pricing sl =

€ Stespest adge pricing Frequency: |5EIEIDD

Erii Methnd-" ; ; 1 Steepest wislack noms :
 Altemate objective / aggressive 2 - Perturbation
" Ignare obisctive / agaressive © Eull pricing [Uze Peurbation
@' Altemate objective £ default Eriftant W‘
~ Pricing Dwal ————————— .
e & Determined automatically ilenils i
" Noscaling

" Standard dual pricing

L ; - N ic Tal
' Equilibration scaling [Steaasteras oo HIMENE | HISEnees

' More aggressive scaling : Eeasibiliy: h e-006
" Steepestin slack space
e, Optirnality: |1e-DDE
- Infeazbility finder ————— ™ Steepest, urit initial normrs =R >

@ FasterlIS ¢ Smaller % Markowitz: |U.U'|

Cancel | Apply I Help i

Figure4.42: The Simplex Tab in CPLEX Options Dialog Box

Algorithm

The algorithm option selects which algorithm to use when optimizing the LP problem. Primal
simplex is the default algorithm, but always try to dual simplex as well, particularly for difficult
prablems. Barrier works well on many large problems. The network algorithm is fastest if alarge
network structure exists in the problem.

Primal Use the primal simplex algorithm (default).

Dual Use the dual simplex agorithm.

Barrier Use the barrier algorithm.

Net Primal Use the network algorithm and then primal simplex.

Net Dual Use the network algorithm and then dual simplex.

Barrier w/Cross Use the barrier algorithm followed by an automatic crossover to

abasic solution.

87

Part Il Using the MPL Modeling System

Crash method

The Crash method option determines the way CPLEX orders variables relative to the objective
function when selecting an initial basis. Standard order usually works well, but experimentation is
required to determine if changing this option will benefit the problem solution efficiency.

Alternate objective/aggressive If primal, alternate ways of using objective coefficients; else, if
dual aggressive starting basis.

Ignore objective/aggressive If primal, ignore object coefficients during crash; else, if dual
aggressive starting basis.

Alter nate objective/default If primal, alternate ways of using objective coefficients; else, if
dual default starting basis (default).

Scaling
The Scaling option determines the scaling of the problem matrix. If your problem has difficulty
remaining feasible during the solution process, try aggressive scaling.

No scaling No scaling isto be done.
Equilibration scaling Use the equilibration scaling method (default).
More aggressive scaling Use amodified, more aggressive scaling method that can

produce improvements on some problems.

Infeasibility finder

The Infeasibility finder option determines the method to be used to identify the 1IS set for an
infeasible model.

Fagter 11S Faster method that works best for most models (defaullt).

Smaller 1S This method produces a smaller 11S set, but more computation
timeisusually needed.

Pricing primal

The Pricing Prima option selects the pricing algorithm for the primal simplex. The default
hybrid pricing usually provides the fastest solution time but many problems can benefit from
aternate settings.

Reduced cost pricing Use reduced-cost pricing.

Hybrid reduced/devex Use Hybrid reduced-cost and Devex pricing (default).
Devex pricing Use Devex pricing.

Seepest edge pricing Use Steepest-edge pricing.

Steepest w/slack norms Use Steepest-edge pricing with slack initial norms.
Full pricing Use Full pricing.

88

Chapter 4 Description of Menus

Pricing dual

The Pricing Dua option selects the pricing agorithm for the dual smplex. While the default
pricing usually provides the fastest solution time, many problems benefit from alternate settings.

Determined automatically Pricing determined automatically (default).
Sandard dual pricing Use Standard dual pricing.

Steepest edge pricing Use Steepest-edge pricing.

Seepest in dack space Use Steepest-edge pricing in slack space.
Seepest, unit init norms Use Steepest-edge pricing, unit init norms.

Refactorization

The number of iterations between refactorizations of the basis matrix. In the default setting of
zero, CPLEX determines a setting automatically at run time.

Basisinterval

The number of iterations between refactorizations of the basis matrix. In the default setting of
zero, CPLEX determines a setting automatically at run time.

Use perturbation

When the perturbation option is On all problems will automatically be perturbed as optimization
begins. When Off allows CPLEX to determine dynamically, during solution, whether progressis
slow enough to merit a perturbation. The default is Off, the situations in which a perturbation
helps will be rare and restricted to problems that exhibit extreme degeneracy.

Perturbation constant

The perturbation constant sets the amount by which CPLEX will perturb the upper and lower
bounds on the variables when a problem is perturbed. This parameter can be set to a smaller value
if the default value creates too large a change in the problem.

Perturbation limit

The prima and dual simplex methods include a perturbation mechanism for dealing with
situations in which no progress has been made in the objective function over a significant number
of iterations. This phenomenon is sometimes called stalling. With default settings, the number of
stalled iterations before perturbation is invoked is determined internally by CPLEX depending
upon problem dimensions. However, when the parameter is set to a positive value by the user,
that value becomes the limit on stalled iterations before perturbation will be performed.

Feasibility tolerance
The feasibility tolerance specifies the degree to which a problem’s basic variables may violate
their bounds. This tolerance influences the selection of an optimal basis and can be reset to a
lower value when a problem is having difficulty maintaining feasibility during optimization.
Default value is 1e-06.

89

Part Il Using the MPL Modeling System

Optimality tolerance

The optimality tolerance specifies the reduced cost tolerance for optimality. This option governs
how closely CPLEX must approach the theoretically optimal solution. Default value is 1e-06.

M arkowitz tolerance

The Markowitz tolerance influences pivot selection during basis factorization. Increasing the
Markowitz threshold may improve the numerical properties of the solution. Default value is 0.01.

Change CPLEX Preprocessing Options

Y ou can change the preprocessing options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the Preproc tab. This will display the preprocessing options for
CPLEX inthe dialog box as shown below:

CPLEX Parameter Options

Simplex Preproc |L|:|g filei Lirnits I k1P Slralegyi MIP Strateqy 2; MIF Eutsl MIP Tolerancei Earrieri Netwnrki

- Advanced basiz - Preszolve
v Use advanced basis v Use presolve
Basiz flename: |* bas [Pass dual problem
- Dependency checker
= Aagegator ™ Use dependency checker
Application limit; |-1
S — MIF Initial relaxation -
b atri fill lirnit: I'ID W
- MIF Bound stienathening———— [~ MIP Coefficient reduction——
* Automatically determined " Ma cosfficient reduction
' Do not-apply bound stengthening ' Integer cosff reduction
" Apply bound strengthening ' Full coeff reduction

Cancel l Apply | Help

Figure 4.43: ThePreproc Tab in CPLEX Options Dialog Box

90

Chapter 4 Description of Menus

Advanced basis
Use advanced basis: The advance basis for the previous optimization is used as the starting point
for the next optimization. The default is On.

Basis Filename: Specifies the filename CPLEX will use for the basis file. If the filename given
contains asterisks ‘*’ instead of the name, like the default *.bas CPLEX will use the name of
model file with the extension given.

Application limit

The aggregator, when set to a nonzero value, will invoke the CPLEX Aggregator to use
substitution where possible to reduce the number of rows and columns before the problem is
solved. If the parameter is set to a positive value then, the aggregator will be applied the specified
number of times, or until no more reductions are possible. At the default value of -1, the
aggregator is applied once for linear programs, and an unlimited number of times for mixed
integer problems. At this setting, all potentia presolve reductions are performed for mixed integer
programs.

Matrix fill limit

Sets the Matrix fill limit for the aggregator. By default, determined automatically. This parameter
should only rarely require adjustment.

MIP bound strengthening

The Bound Strengthening option is used when solving mixed integer programs. Bound
strengthening tightens the bounds on variables, perhaps to the point where the variable can be
fixed and thus removed from consideration during branch-and-bound. This reduction is usually
beneficial, but occasionally, due to itsiterative nature, takes along time.

Automatically determined
Do not apply bound strengthening
Apply bound strengthening

Use presolve

The Presolve option, when set to On, will invoke the CPLEX Presolve to make problem
simplifications and reductions.

91

Part Il Using the MPL Modeling System

Pass dual problem

The Pass dua problem option determines if CPLEX Presolve should pass the prima or dual
linear programming problem to the linear programming optimization algorithm. By default,
CPLEX Presolve is applied to the primal problem, and the resulting primal problem is passed to
the optimizer. If the Pass Dua Problem option is set to On, then the CPLEX presolve agorithm
will till be applied to the prima problem, but the resulting dual linear program is passed to the
optimizer. Thisis auseful technique for problems with more constraints than variables.

Dependency checker

The dependency checker option determines if the “ dependency checker” is activated. If On, the
dependency checker will search for dependent rows during preprocessing. If Off (default),
dependent rows will not be identified. For many models, eliminating the dependency check will
speed up the preprocessing time, at the expense of not identifying dependent rows.

Presolverelaxed LP

When the Presolve Relaxed LP option is On, CPLEX will invoke the Presolve for linear programs
for the initial relaxation of a mixed integer program, according to the other CPLEX Presolve
parameter settings. Sometimes additional reductions can be made beyond any MIP presolve
reductions that may have already been done.

M I P coefficient reduction

Coefficient reduction is a technique used when presolving mixed integer programs. The benefit of
coefficient reduction is to improve the objective value of the initia (and subsequent) linear
programming relaxations solved during branch-and-bound by reducing the number of non-
integral vertices. However, the linear programs generated at each node may become more difficult
to solve. There is a resulting tradeoff between reducing the number of nodes in the branch-and-
bound tree and the time to solve each node via a linear programming algorithm. Full coefficient
reduction reduces al possible coefficients, while integer coefficient reduction will only reduce
coefficientsto integer values.

No Coefficient Reduction No coefficient reduction.
Integer Coeff. Reduction Reduce only to integral coefficients.
Full Coeff. Reduction Reduce al possible coefficients. (default)

92

Chapter 4 Description of Menus

Change CPLEX Log File Options

You can change the log file options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the Log filetab. Thiswill display the log file options for CPLEX
in the dialog box as shown below:

CPLEX Parameter Options HE

Simple:-:l Preproc Logfile | Lirnits I MIP Slralegyi MIP Strategy 2; MIP Eutsl MIP Tolerancei Earrieri Netwnrki

- Senditerationlogto: ———————————— 1~ LPiteration log: -
v eszage window) Mo iteration log
[Logfie ' Standard iteration log

) Full iteration log-and pivit

Filenarne: I".Iog

— Barrier proaress infolog: -

- MIP node log: ' No progress information
" Mo node lag & Momal information

£ |nteger feasible nodes " Diagnostic information
{* Every W nodes

= Metwark teration log:

£ Every node with LP fteration log 'K Raratior o

" Every node with root relazation info
o ' Tiue objective values

= Every node with subproblem inf
h B * Penalized objective values

Cancel i Apply | Help

Figure4.44: TheLogfile Tab in CPLEX Options Dialog Box

Send iteration log to:

Message window: While CPLEX is optimizing the iteration log information will be sent to the
MPL Message Window. This is the same option as the Send iteration log to message window
option in the General Solver Options dialog box.

Log file: While CPLEX is optimizing the iteration log information will be sent to alog file. This
is the same option as the Send iteration log to log file option in the General Solver Options dialog
box.

Log filename: Specifies the filename CPLEX will use for the log file. If the filename given
contains asterisks *’ instead of the name, like the default *.log" CPLEX will use the name of
model file with the extension given.

93

Part Il Using the MPL Modeling System

MIP nodelog

The MIP Node log option controls the frequency of the node logging. This option is useful for
monitoring the progress of a problem that requires many nodes to solve.

No node log No node information appears in the log.

Feasible nodes Node information appears only for each integer feasible
solutions found

Every n-th node Node information appears for every n-th node where n isthe
number given in the input box. The default is every 100"
nodes.

Every node and iteration Node information appears for every node as well asthe

standard LP iteration log.

Every node and relaxation Node information appears for every node as well asthe LP root
relaxation info.

Every node and subproblem Node information appears for every node as well asthe LP
subproblem info.

LPiteration log

The LP iteration log controls the amount of information that is sent to either the log window
and/or the log file.

No Iteration log No iteration information appearsin the log.
Sandard iteration log Iteration information appears for every refactorization.
Full iteration log and pivot Iteration information appears for every iteration.

Barrier progressinfolog
The Barrier progress info log option controls the level of progress information to be reported.

No progress information No progress information appearsin log.
Normal information Normal progress information appearsin log.
Diagnostics information Diagnostic information appearsin log.

Network iteration log

No iteration log No iteration information appearsin the log.

True objective values True objective values are included in the log.

Penalized objective values Objective values, including monotonic values are included in
the log.

94

Chapter 4 Description of Menus

Change CPLEX Limit Options

Y ou can change the limit options for CPLEX by choosing CPLEX parameters from the Options
menu and then pressing the Limits tab. This will display the limit options for CPLEX in the
dialog box as shown below:

CPLEX Parameter Options
Simple:-ti F'leprocl Log file Limits |MIF' Stlategyi MIF Strategy 2! IIF Eutsl IIF Tolerance! Balrieri Networki
- LP Lirnit
Time limit (hhemmessh [100000000 0 :[o it teraiinE] 10
Itetaticr linit: |21DDUDDDDD O, walue lower fimit; 1-1 e+(75
Pricing cand. list size: |IJ Obj; walue upper limit: I1B+U?5
— IF Liriitz — MIF Strong branching limits
MIP solutions limit: I21 00000000 Candidate list limit: h 0
Hode fimit; I21 00000000 |teration Limit IU
Tree mernary limit: |1 e+075 Thiread lirit: i"
ktin SOS size: 2
3 S l ~ MIP Nods fil
Mode file size limit: !‘I e+075 ' MNarads file
€ Mode file in memary [compressed)
€ Maode file an disk
" Maode file on disk [comprezsed]

Cancel | Apply | Help

Figure4.45: TheLimitsTab in CPLEX Options Dialog Box

Time limit

The Time limit option used to set maximum time (in hours:min:sec) for computations before
termination. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer
optimizations, as well as infeasibility finder computations.

Iteration limit

The Iteration limit sets the maximum number of iterations before the algorithm terminates,
without reaching optimality. Be sure to enter only an integer value. The default value is
2100000000.

Pricing candidate list size
Contains the maximum number of variables kept in the pricing candidate list. If the value is zero
the number is determined automatically at run-time.

95

Part Il Using the MPL Modeling System

Singularity limit

The Singularity limit value restricts the number of times CPLEX will attempt to repair the basis
when singularities are encountered. Once the limit is exceeded, CPLEX replaces the current basis
with the best factorizable basis that has been found. At this point the user can examine and
modify the problem or increase the singular limit to force CPLEX to work harder at eliminating
singularities. The default valueis 10.

Object value lower limit

Setting a lower objective function limit will cause CPLEX to halt the optimization process once
the minimum objective function value limit has been exceeded. This limit applies only during
Phase Il of the optimization.

Object value upper limit

Setting an upper objective function limit will cause CPLEX to halt the optimization process once
the maximum objective function value limit has been exceeded. This limit applies only during
Phase Il of the optimization.

M I P solutions limit

The MIP solutions limit value limits the mixed integer optimization to finding only this number of
mixed integer solutions before stopping. The default value is 2100000000.

Node limit

The Node limit value sets the maximum number of nodes solved before the algorithm terminates,
without reaching optimality. The default value is 2100000000.

Treememory limit

The Tree memory limit value sets an upper limit on the amount of memory (in megabytes) that the
branch-and-bound tree can consume. CPLEX will terminate optimization when the amount of
memory required to store branch-and-bound information exceeds the tree memory parameter
setting.

Min SOSsize

The Min SOS Size parameter is used to set the minimum size for sets found during the scan for
SOS Type 3 sets. The SOS algorithm may not be worthwhile on smaller size sets. The default
valueis 2.

Node file size limit
The Node File Size Limit option limits the size of the nodefile.

96

Chapter 4 Description of Menus

MIP strong branching limits

Candidate list limit Controls the length of the candidate list when using the * strong
branching” variable selection setting. Default is 10.

Iteration list limit Controls the number of simplex iterations performed on each variablein
the candidate list when using the “ strong branching” variable selection
setting. The default setting O chooses the iteration limit automatically.

Thread limit Controls the number of parallel threads used to perform strong
branching. This parameter does nothing if the MIP thread limit is
greater than 1

MIP nodefile

The MIP Node File is used when the tree memory limit is reached. If no node file is selected the
optimization is terminated when the tree memory limit is reached. Otherwise, a group of nodesis
removed from the in-memory set, and transferred to a node file. This group of nodes is returned
to the in-memory set as needed.

Node files are used most efficiently when the amount of tree memory is reasonably large, so that
the node files do not have to be formed too frequently. The compression options require a small
amount of extra time due to the extra processing but since they result in smaller node files the
overall systemsis smaller and the system throughput may increase.

No Node File No node file (default).

Node File in Memory (Compressed) Node file in memory and compressed.
Node File on Disk Node file on disk.

Node File on Disk (Compressed) Node file on disk and compressed.

97

Part Il Using the MPL Modeling System

Change CPLEX MIP Strategy Options

Y ou can change the MIP strategy options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the MIP Strategy tab. Thiswill display the MIP strategy options
for CPLEX in the dialog box as shown below:

CPLEX Parameter Options

Simple:-ti Preplocl Log filei Limits MIP Strategy I P Strategy 2; 1P I:utsl MiP Tolerancei Eanieri Networki

- Mode selecton——————————— -~ MIP Probe—————————————— ~ Branch direction
" Depth first " Mo probing ' Branch down
(¢ Best bound % Automatic & Algorithm select
" Best estimate " Probing level 1 " Branch up
(" Best estimate altemate " Probing level 2

"~ Probing lewvel 3
Best bound interval; !?
= MIP Priority order -

= Wariable selection-

= -
" Minirnum infeasibiliy " s MIF picrit order

& :
* Automatic £+ Do hot genetate

€ Marirmum infeasibility 5 . :
s& decreasing cos
" Pzeudo costs

B barhing ' Usa increasing bound range

Use increasing cost per
" Pseudo reduced costs Coetiti=t cotint

Cancel | Apply ! Help

Figure4.46: The MIP Strategy Tab in CPLEX Options Dialog Box

Node selection

The Node selection option is used to set the rule for selecting the next node to process when
backtracking (proceeding back through the tree when a node is infeasible or cutoff). The Best
Bound method works better for many problems; but Depth First may find a good solution deep in
the tree faster. Depth first will also use less memory.

Depth first The depth-first search strategy chooses the most recently created node.

Best bound The best bound strategy chooses the node with the best objective
function for the associated LP relaxation (default).

Best estimate The best estimate strategy selects the node with the best estimate of the

integer objective value that would be obtained from a node once all
integer infeasibilities are removed.

Best estimate Alternate Alternate best-estimate search.

98

Chapter 4 Description of Menus

Best bound interval

When using Best-Estimate Search, the Best Bound Interval istheinterval at which the best bound
node, instead of the best estimate node, will be selected from the tree.

0 Best estimate node always sel ected
1 Best bound node always selected
>1 The interval at which the best bound node will be selected from the tree.

The default valueis 7.

Variable selection
The Variable selection option is used to set the rule for selecting the branching variable at the
node which has been selected for branching.

Minimum infeasibility The minimum infeasibility rule chooses the variable with the smallest
fractional value. It may lead more quickly to afirst integer feasible
solution, but will usually be slower overall to reach the optimal
integer solution.

Automatic Branch variable automatically selected. This option allows CPLEX to
select the best rule based on the problem and its progress (default).

Maximum infeasibility The maximum infeasibility rule chooses the variable with the largest
fractional value; It forces larger changes earlier in the tree, which
tends to produce faster overall times to reach the optimal solution.

Pseudo costs Pseudo costs causes variable selection based on pseudo-costs which
are derived from pseudo-shadow prices.

Strong branching Strong branching causes variable selection based on partially solving
anumber of subproblems with tentative branches to see which branch
is the most promising. This strategy can be effective on large, difficult
MIP problems

Pseudo reduced costs Pseudo-reduced costs causes variable selection based on pseudo-costs
which are derived from pseudo-shadow prices.

MIP probe

Determines the amount of variable probing to be performed on a problem. Probing can be both
very powerful and very time consuming. Setting the value to Probing level 1-3 can in some cases
result in dramatic reductions or dramatic increases in solution time on particular models.

No probing

Automatic

Probing level 1

Probing level 2

Probing level 3

99

Part Il Using the MPL Modeling System

MIP priority order

A priority order assigns a branching priority to some or all of the integer variables. Variables
with priorities will be branched on before variables without priorities. Variables with higher
priorities will be branched on before variables with lower priorities (when the variables have
fractional values). To switch off this function, make sure the box is unchecked.

Use MIP priority order ~ When this option is checked, will use the priority order (if it exists)
for the next mixed integer optimization.

Do not generate
Use decreasing cost
Use increasing bound range

Useincreasing cost per coefficient count

Branch direction

The Branch direction option is used to decide which branch, the up branch or the down branch,
should be taken first at each node. For some problems, directing the algorithm to aways branch
up or down can improve performance.

Branch down Branch down (restricted to lower value)
Algorithm select The agorithm selects the branch direction (default).
Branch up Branch up (restricted to higher value)

100

Chapter 4 Description of Menus

Change CPLEX MIP Strategy2 Options

You can further change the MIP strategy options for CPLEX by choosing CPLEX parameters
from the Options menu and then pressing the MIP Strategy2 tab. This will display the MIP
strategy options for CPLEX in the dialog box as shown below:

CPLEX Parameter Options EHE

Simplexi F‘repru:u::l Log filei Lirnits I MIP Strateqy MIP Stategy 2 lMIF' Eulsl MIP Tnlerancei Earrieri Networki

— Crozzover Strategy - Start algronthm
' Primal crossover & Primal Simplex
" Dual crossover Dual Simples

7 Netwark Simpla

7 Barrier wicrossover
' Dual/B amier

i Barier w/o crossover

[Use adyv. starting values

V¥ Reduced cost fixing

[T Scanfor 505
- Sub algorithm-
— Rounding heuristic- € Primal Simplex
€~ Do hotuze heuristic % Diyal Simplex
* Automatic £ Network/Dual
0 se oot heuristic ' Barier wiciossaver
' Dual/B amier
Frequency: iD = Barrier wio crossover

Cancel i Apply | Help i

Figure4.47: The MIP Strategy2 Tab in CPLEX Options Dialog Box

Crossover strategy
Chooses whether to employ Primal or Dual crossover when using Barrier for subproblems.

Use advanced starting values

Used to indicate how the MIP advanced starting values are used at node 0. When set to On
indicates that the values should be checked to see if they provide an integer feasible solution
before starting optimization.

Reduced cost fixing

This option determines whether the reduced cost fixing strategy is to be applied. Reduce cost
fixing sets integer values to bounds by considering reduced cost information at sub-problems.
This technique can significantly improve MIP performance, but can increase memory usage. By
default, reduce cost fixing is On, but can be turned off as a memory-saving measure.

101

Part Il Using the MPL Modeling System

Scan for SOS

The Scan for SOS option, when set to On, initiates a scan for SOS Type 3 sets and invokes SOS
Type 1 branching for these sets of variables. The automatic scan occurs immediately before
CPLEX starts optimizing. An SOS Type 3 set results from each equality row with all binaries
and +1 or -1 coefficients, and an RHS value of 1 - (number of -1 coefficients). SOS Type 3 sets
are a specia subset of SOS Type 1 sets which can be identified automatically by CPLEX. The
default value for Scan for SOS option is Off.

Rounding heuristic

The Rounding heuristic option determines which heuristic should be applied to develop an initial
integer solution.

Do not use heuristic Do not use arounding heuristic.

Automatic The decision on using a heuristic will be automatically determined by
looking at the solution to theinitial relaxation of MIP.

Use heuristic Rounding heuristic should be used.

Rounding heuristic frequency

The heuristic frequency options determines how often to apply the periodic heuristic. Setting the
value to 0, the default, indicates that the periodic heuristic will not be applied at any nodes.

Start algorithm

The Start Algorithm option determines which LP agorithm should be used to solve the initia
relaxation of the MIP.

Primal simplex Use primal simplex (default).

Dual simplex Use dual simplex.

Network simplex Use network simplex.

Barrier w/crossover Use barrier with crossover.

Dual/Barrier Dual simplex to iteration limit, then barrier.
Barrier w/o crossover Use barrier without crossover.

Sub algorithm

The sub algorithm option sets the algorithm to be used on subproblems
Primal simplex Use primal simplex.

Dual simplex Use dual simplex (default).

Network/Dual Use network optimizer followed by dual simplex
Barrier w/crossover Use barrier with crossover.

Dual/Barrier Use dual simplex to iteration limit, then barrier.
Barrier w/o crossover Use barrier without crossover.

102

Chapter 4 Description of Menus

Change CPLEX MIP Cuts Options

You can change the MIP cuts options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the MIP Cuts tab. This will display the MIP cuts options for
CPLEX inthe dialog box as shown below:

CPLEX Parameter Dptions EHE|
Simplex i Freproc I Log file i Limits I MIF Strateqy i MIP Strateqgy 2 MIF Cuts | MIF Tolerance ! Barmier i Network I
—MIP cutz generation

Clique: cuits: ihulomatic _"_I Implied bound cuts: iAutDmalic :j
Cover cuts: iAutomatic _:i Flow covver cuts: ia‘-‘«utnmatic j
GLE cuts: ;.ﬁutomatic Li Flowe path cuts; ;Automatic :j
MIF cuts; if—‘«utomatic ﬂ Disjunctive cuts: ;Automatic :j

Gomory fractional cuts; iAutDmatic :J

i~ MIP cut firnits i~ Gomon cut imits
Cutting plane passes limit: IEI Gormory passes limit: iu
Constraint aggregation limit: I3 Gorory candidate lmit {200
Rowe multiplier factor for cuts; |4
Cancel | Apply | Help '

Figure4.48: The MIP Cuts Tab in CPLEX Options Dialog Box

Clique cuts

Determines whether or not to generate clique cuts for the problem and how aggressively.
Do not generate cuts Do not generate clique cuts.

Automatic Generate clique cuts only if it seems to be helping (default)
Moderately Generate cligue cuts moderately.

Aggressively Generate clique cuts aggressively.

Cover cuts

Determines whether or not to generate cover cuts for the problem and how aggressively.

Do not generate cuts Do not generate cover cuts.

Automatic Generate cover cutsonly if it seemsto be helping (default).
Moderately Generate cover cuts moderately.

Aggressively Generate cover cuts aggressively.

103

Part Il Using the MPL Modeling System

GUB cuts

Determines whether or not to generate GUB cuts for the problem and how aggressively.
Do not generate cuts Do not generate GUB cults.

Automatic Generate GUB cuts only if it seems to be helping (default).
Moderately Generate GUB cuts moderately.

Aggressively Generate GUB cuts aggressively.

MIR cuts

Determines whether or not mixed integer rounding (MIR) cuts should be generated for the
problem and how aggressively.

Do not generate cuts Do not generate MIR cuts.

Automatic Generate MIR cuts only if it seemsto be helping (default).
Moderately Generate MIR cuts moderately.

Aggressively Generate MIR cuts aggressively.

Implied bound cuts
Determines whether or not to generate implied bound cuts for the problem and how aggressively.

Do not generate cuts Do not generate bound cuts.

Automatic Generate implied bound cuts only if it seems to be helping (default).
Moderately Generate implied bound cuts moderately.

Aggressively Generate implied bound cuts aggressively.

Flow path cuts
Determines whether or not to generate flow path cuts for the problem and how aggressively.

Do not generate cuts Do not generate flow path cuts.

Automatic Generate flow path cuts only if it seems to be helping (default).
Moderately Generate flow path cuts moderately.

Aggressively Generate flow path cuts aggressively.

Digunctive cuts
Determines whether or not to generate disjunctive cuts for the problem and how aggressively.

Do not generate cuts Do not generate digunctive cuts.

Automatic Generate digunctive cuts only if it seems to be helping (default).
Moderately Generate digunctive cuts moderately.

Aggressively Generate digunctive cuts aggressively.

Very Aggressively Generate digunctive cuts very aggressively.

104

Chapter 4 Description of Menus

Gomory fractional cuts
Determines whether or not to gomory fractional cuts for the problem and how aggressively.

Do not generate cuts Do not generate gomory fractional cuts.

Automatic Generate gomory fractional cuts only if it seemsto be helping (default).
Moderate For models requiring some fine tuning of performance.
Aggressive For models requiring some fine tuning of performance.

Cutting plane passes limit

Sets the upper limit on the number of passes CPLEX performs when generating cutting planes on
a MIP model. Positive values give number of passes to perform. And zero means Automatic
(default).

Constraint aggregation limit

Limits the number of constraints that can be aggregated for generating flow cover and mixed
integer rounding cuts. For most purposes the default of 3 will be satisfactory.

Row multiplier factor for cuts

Limits the number of cuts that can be added. The number of rows in the problem with cuts added
is limited to this factor value times the original number of rows. If the problem is presolved, the
original number of rows is that from the presolved problem. A factor of 1.0 o less means that no
cuts will be generated. Because cuts can be added and removed during the course of
optimization, factor may not correspond directly to the number of cuts seen during the node log or
in the summary table at the end of optimization.

Gomory passes limit

Limits the number of passes for generating Gomory fractional cuts. At the default setting of O,
CPLEX decides. The parameter is ignored if the Gomory fractional cut parameter isis set to a
nonzero value.

Gomory candidate limit

Limits the number of candidate variables for generating Gomory fractional cuts. The default is
200.

105

Part Il Using the MPL Modeling System

Change CPLEX MIP Tolerance Options

Y ou can change the MIP tolerance options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the MIP Tolerance tab. This will display the MIP tolerance
optionsfor CPLEX in the dialog box as shown below:

CPLEX Parameter Options EHEI

Simple:-ti F'lepn:-ci Log filei Lirnits I MIP Stlategyi MIP Stlategy2i MIP Cutz MIP Talerance i Eanieri Networki

i~ Eutoff criteria
Upper cutoff; i'l e+175
Lowwer citaff; 5-1 e+07h

Objective difference: iD
Relative object diff; ;D

- Optimality tolerance

Relative gap: in.uum
Abzolute gap: ;U

- Mumerical tolerance
Integrality; i'l e-005

— Backbracking tolerance

Relative degradation: om

Cancel l Apply I Help i

Figure4.49: The MIP Tolerance Tab in CPLEX Options Dialog Box

Upper cutoff

Used to cut off any nodes that have an objective value above the upper cutoff value, when the
prablem is a minimization problem. On a continued mixed integer optimization, the smaller of
this value and the updated cutoff found during optimization will be used during the next mixed
integer optimization. A too-restrictive value for the upper cutoff parameter may result in no
integer solutions being found.

L ower cutoff

Used to cut off any nodes that have an objective value below the lower cutoff value, when the
prablem is a maximization problem. On a continued mixed integer optimization, the larger of this
value and the updated cutoff found during optimization will be used during the next mixed integer
optimization. A too-restrictive value for the lower cutoff option may result in no integer solutions
being found.

106

Chapter 4 Description of Menus

Objective difference

The objective difference value is used to update the cutoff each time a mixed integer solution is
found. This absolute value will be subtracted from (added to) the newly found integer objective
value when minimizing (maximizing). This forces the mixed integer optimization to ignore
integer solutions that are not at least this amount better than the one found so far. The objective
difference value can be adjusted to improve problem solving efficiency by limiting the number of
nodes; however, setting this option at a value other than zero (the default) can cause some integer
solutions, including the true integer optimum, to be missed. Negative values for this option will
result in some integer solutions that are worse than or the same as those previously generated, but
will not necessarily result in the generation of all possible integer solutions.

Relative object diff

The relative objective difference value is used to update the cutoff each time a mixed integer
solution is found. The value is multiplied by the absolute value of the integer objective and
subtracted from (added to) the newly found integer objective when minimizing (maximizing).
This forces the mixed integer optimization to ignore integer solutions that are not at least this
amount better than the one found so far. The relative objective difference option can be adjusted
to improve problem solving efficiency by limiting the number of nodes;, however, setting this
parameter at a value other than zero (the default) can cause some integer solutions, including the
true integer optimum, to be missed. If both relative objective difference and objective difference
are nonzero, the value of the objective difference will be used.

Relative gap
The relative tolerance on the gap between the best integer objective and the objective of the best
node remaining.

Absolute gap

The absolute tolerance on the gap between the best integer objective and the objective of the best
node remaining.

Integrality tolerance

The integrality tolerance specifies the amount by which an integer variable can be different than
an integer and still be considered feasible.

Backtrack factor

The backtracking factor controls how often backtracking is done during the branching process.
At each node, CPLEX compares the objective function value or estimated integer objective value
to these values a parent nodes;, the backtracking parameter dictates how much relative
degradation is tolerated before backtracking. Allowable values are any positive number. Low
values tend to increase the amount of backtracking, which makes the search process more of a
pure best-bound search. Higher values, greater than 1.0, tend to decrease backtracking, making
the search more of a pure depth-first search. While the default value is good for many models,
increased backtracking (lower values) often pays off on models that have expensive sub-
prablems.

107

Part Il Using the MPL Modeling System

Change CPLEX Barrier Options

Y ou can change the barrier options for CPLEX by choosing CPLEX parameters from the Options
menu and then pressing the Barrier tab. This will display the barrier options for CPLEX in the
dialog box as shown below:

CPLEX Parameter Options [2]

Simple:-ti F'lepn:-cl Log filei Lirnits i MIF Strateg_l,li MIP Strategy 2! FIF Cutsl MIP Tolerance. Barrier | Netwnlki

— Barrier algorithm

{* Dafault primal/dual log barrier Column nonzeras:]D

(" Inteasibility - estimate start e !1—
" |nteasibility - constant start
" Standard Barrier Iteratiar limit: ’200
: _ _ Grawith lirit [1000000
— Ordenng algontbm ————————————————————
& Aulomatic Dbjective range: 11 e+020
' Apprazimate Minimum Degree [AMD) Variable upper limit: |1 e+020
" Approximate Mininiun Fill [&MF)
(" Nested Dissection (ND] Convergence to [1e 008
— Starting point algorithm
¥ Dualis zero " fwerage primal, dual is zem
" Estimate dual " Average primal, estimate dual

Cancel | Apply I Help

Figure4.50: TheBarrier Tab in CPLEX Options Dialog Box

Barrier algorithm

The default barrier algorithm is almost always fastest. However, on problems that are primal or
dual infeasible, the default algorithm may not work as well as alternatives. The two alternative
algorithms may eliminate numerical difficulties related to infeasibility, but will generaly be
slower

Primal Dual Log Use standard algorithm. Thisisthe default
Infeasi bility-Estimate Use infeasibility-estimate start
Infeasibility-Constant Use infeasibility-constant start

Sandard Barrier Use for problems other than MIP, it is fastest.

108

Chapter 4 Description of Menus

Ordering algorithm

The Ordering option sets the algorithm to be used to permute the rows of the constraint matrix in
order to reduce fill in the Cholesky factor.

Automatic This option attempts to choose the most effective of the available ordering
methods. It usually requires more ordering runtime than any of the alternatives,
but it typically chooses the best ordering. The ordering runtimeis usualy small
relative to the total solution time, and a better ordering can lead to smaller total

solution time.

AMD The AMD agorithm provides good quality orderings in moderate ordering
runtime.

AMF The AMF agorithm usually gives better orderings than AMD (usually
5-10% smaller factors), but requires somewhat more runtime (10-20%).

ND The ND agorithm produces significantly better orderings than AMD or AMF.

Ten-fold reductions in barrier solvers runtimes have been observed for some
problems. This option sometimes produces worse orderings, though, and it
requires much more ordering runtime.

Starting point algorithm

This option sets the algorithm to be used to compute the initial starting point for the barrier solver.
The default starting point is satisfactory for most problems. Other starting points may provide
better performance for certain problems, or provide better convergence properties for the barrier
algorithm. Since the default starting point is tuned for primal problems, using the other starting
points may be worthwhile in conjunction with the Presolve Pass Dua Problem option.

Dual iszero Default primal, dual pi isO
Estimate Dual Default primal, estimate dual
Avg. primal, Dual iszero Primal average, dual pi isO

Avg. primal, Estimate dual Primal average, estimate dua

Column nonzeros

The Column Nonzeros value is used in the recognition of dense columns. If columns (in the
presolved and aggregated problem) exist with more entries than the value of this option, these
columns will be considered "dense" and CPLEX Barrier will treat the dense columns specialy in
order to reduce their effect. At the default setting of O this option is determined automatically,
considering factors such as the size of the problem. If a number greater than O is entered, this
number will be used as the "cutoff" number of entries for considering columns to be dense.

Note: If the problem (after Presolve and Aggregator) contains less than 400 rows, dense column
handling will not be initiated, regardless of the column nonzero setting.

109

Part Il Using the MPL Modeling System

Max correction limit

This option sets the maximum number of centering correction done on each iteration. By default
the barrier solver automatically computes an estimate value for this parameter (the computed
value can be observed by setting the barrier progress info log option to diagnostics information in
the log file option dialog box). When the using the default barrier algorithm, if the computed
value is zero setting the value to an explicit value greater than zero may improve the numerical
performance of the algorithm at the expense of computation time.

-1 Automatically determined (default)
0 None

>0 Maximum number of corrections
Iteration limit

The iteration limit sets the number of barrier iterations before termination. When set to 0, no
barrier iterations will occur, but problem "setup” will occur and information about the setup will
be displayed (Cholesky factorization information).

Growth limit

The growth limit is used to detect unbounded optimal faces. At higher values, the barrier
algorithm will be less likely to conclude that the problem has an unbounded optimal face, but
more likely to have numerical difficulties if the problem has an unbounded face. The default
valueis 1e-6.

Objectiverange

The objective range value sets the maximum absolute value of the objective function. The barrier
algorithm looks at this limit to detect unbounded problems. The default value is 1e+15.

Variable upper

The variable upper value sets the upper bound for all variables that have infinite upper bounds.
This limit is used to prevent difficulties associated with unbounded optimal faces. The default
valueis 1e+20.

Convergencetol

The convergence tolerance sets the tolerance on complementarity for convergence. The barrier
algorithm will terminate with an optimal solution if the relative complementarity is smaller than
this value. The default valueis 1e-8.

110

Chapter 4 Description of Menus

Change CPLEX Network Options

You can change the network options for CPLEX by choosing CPLEX parameters from the
Options menu and then pressing the Network tab. This will display the network options for
CPLEX inthe dialog box as shown below.

CPLEX Parameter Options

Simpler:i F‘repru:u::l Log filei Lirnitz I kP Strategyi MIP Strategy 2! MIF Eulsl MIP Tnlerance’ Barier Metwork |

- Fricing i~ Mumeric Tolerances ————————————
& :
famsic Feasibilty: [1e-008
" Pattial pricing

" Multiple partial pricing Dptimaity: I1 sl

€ Multiple partial pricing with sorting Ikeration Limit: 121 toooaoon

= Metvwirk, extraction
& Matural netwark only
" Use reflection scaling

€ lse general zzaling

Cancel | Apply | Help

Figure4.51: The Network Tab in CPLEX Options Dialog Box

Pricing

The default (Automatic) shows best performance for most problems, and currently is equivalent to
Multiple partial pricing with sorting.

Automatic (default)

Partial pricing

Multiple partial pricing

Multiple partial pricing with sorting

111

Part Il Using the MPL Modeling System

Network extraction

The Network extraction option selects the level of network extraction for network simplex

optimizations.
Natural network only

Use reflection scaling
Use general scaling

Numeric tolerances
Feasihility

Optimality

Iteration Limit

Only natural networks are extracted (default).
Larger networks are extracted using reflection scaling.
Larger networks are extracted using general scaling.

The feasihility tolerance specifies the degree to which a problem’s flow
value may violate its bounds. This tolerance influences the selection of
an optimal basis and can be reset to alower value when aproblem is
having difficulty maintaining feasibility during optimization. Y ou may
also wish to lower this tolerance after finding an optimal solution if
thereis any doubt that the solution istruly optimal. If the feasibility
toleranceis set too low, CPLEX may falsely conclude that aproblemis
infeasible. If you encounter reports of infeasibility during Phase |1 of
the optimization, a small adjustment in the feasibility tolerance may
improve performance. The value can by any number between 0.0001
and le-11.

The optimality tolerance specifies the amount a reduced cost may
violate the criterion for an optimal solution. The value can by any
number between 0.0001 and le-11.

Sets the maximum number of iterations to be performed before the
a gorithm terminates without reaching optimality. The value can be any
non-negative integer.

112

Chapter 4 Description of Menus

Change XPRESS Simplex Options

You can change the simplex options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the Smplex tab. This will display the simplex options for
XPRESS in the dialog box as shown below:

XPress Options

Sirnplex |F'repru:u:essingi Liog file! Lirriits i Tolerancesi MIP Slralegiesl MIP Eutsi Barrierl

—Alaarithm -
" Automatic selection
= Prmal algorithm
& Diyal slgorithm

' Mewton barrier

- Crash method
£ Oif

" Singletons / One pass

' Singletons / Multi pass
" Multi pass /Slacks

= Multi pass 4 Slack at end:

Passes: I1 1]

~Prcinga—— - Initial zolution
& fitomatic selection " Phase| / Phase |l
£ Partial pricing (* Big M:
£~ Deves pricing Penalty: I1D24
~ Infeasibility sets =~ Secaling-

% Search for 4l

™ Search for none

i~ Search for first: !1

i~ Perturbation-

& Automatic

£ Manual:

Perturb Y alue: 30

W Row scaling

v Column sealing

™ Ruow scaling again

I Maximin scaling

[Curtis-Reid scaling

(" Scale by geometric mean

% Seale by masimun lem.

Figure 4.52: The Simplex Tab in XPRESS Options Dialog Box

Algorithm

The agorithm to used by the optimizer to solve the problem can be specified here. The default
value is Automatic selection. Following are the four possible selections:

Automatic selection
Primal algorithm
Dual algorithm
Newton barrier

Dual simplex for LPs and IPs; Newton barrier for QP.
Use primal ssimplex algorithm.

Use dual simplex algorithm.

Use Newton barrier algorithm

113

Part Il Using the MPL Modeling System

Crash method

The type and severity of the crash to be performed for primal simplex can be choosing one of the
following options:

Off Turns off al crash procedures.
Sngletons/ One pass For singletons only, one pass.
Sngletons/ Multi pass For singletons only, multi pass (default).

Multi pass/ Sacks

Multi pass/ Sack at end Multiple passes through the matrix considering slacks. Y ou can
specify how may passes to perform.

Pricing

The Pricing option for primal simplex has the following possible selections:

Automatic selection The pricing strategy is to be decided automatically (default).
Partial pricing Partial pricing is to be used.

Devex pricing Devex pricing is to be used.

Infeasibility sets

Infeasibility sets controls the number of irreducible infeasible sets to be found. It has the
following possible selections:

Search for all (default).
Search for none.
Search for first n.

Perturbation

The Use perturbation is used to select whether to use perturbation or not, prior to optimization.
Y ou can choose either Automatic perturbation or Manual peturbation; if you choose Manual, you
can set the perturbation value (default is 0, i.e., no perturbation).

I nitial solution

The Initial Solution allows you to choose between the Phase I/Phase |1 method or the Big M
method (the default) to obtain an initial feasible solution.

Phasel / Phasell For Phasel/Phasell.

BigM Big M method to be used. Y ou can set the infeasibility Penalty
which has the default of 1024 (default).

114

Chapter 4 Description of Menus

Scaling

It is always worth striving to create a well-scaled matrix during the formulation stage. Thisis not
always easy to do, and so automatic scaling can be applied to improve the numerical stability, if
the range of coefficient values of amatrix is very large. The following are the five available
scaling techniques:

Row scaling.
Column scaling.
Row scaling again.
Maximin scaling.
Curtis-Reid scaling.

Furthermore, you can choose between scaling by geometric mean or by maximum element. The
default is Row and Column scaling, by maximum element.

Scaling of integer entitiesis not supported, though XPRESS will scale the continuous variablesin
aMIP problem. This means that you should be careful about the scale of the integer entities when
formulating MIP problems.

115

Part Il Using the MPL Modeling System

Change XPRESS Preprocessing Options

Y ou can change the preprocessing options for XPRESS by choosing XPRESS parameters from
the Options menu and then pressing the Preprocessing tab. This will display the preprocessing
options for XPRESS in the dialog box as shown below:

*Press Options El

Simplex F'lepmcessing_l Log filei Linitz i Tolelancesi MIP Strategiesi MIP Eutsl Balrierl

~Presolve————————— ~Preprocessing type-
v Usze presolve " Reduced cost fising
[Trace infeasibility [Logical preprocessing

[Probing [at raot only)

Figure 4.53: The Preprocessing Tab in XPRESS Options Dialog Box

Use presolve

The presolve facility can greatly improve performance by modifying the user’s matrix so that it is
easier to solve. The presolve algorithms identify and remove redundant rows and columns, thus
reducing the size of the matrix. If the model contains global entities, integer presolve methods
such as bound fixing and coefficient tightening are also applied to tighten the LP relaxation.

When a solution to a presolved problem has been found it is internally postsolved so that the user
can access a solution to the original problem.

If Use presolve is On, the optimizer will begin by preprocessing the matrix. This reduces the
active matrix size by identifying redundant rows and columns by inspection and modifying the
matrix in order to make it easier to optimize.

116

Chapter 4 Description of Menus

Traceinfeasibility

Control of the infeasibility diagnosis during presolve. If On, the logical deductions made by
presolve to deduce infeasibility will be displayed.

Reduced cost fixing
Reduced cost fixing at each node. Default is On.

L ogical preprocessing
Logical preprocessing at each node. Default is On.

Probing (at root only)

Probing set at the top node. Default is On.

If any of these three above options are selected, integer preprocessing for MIP problems will be
performed at each node of the branch-and-bound search tree (including the top node). If a

variable is fixed at a node, it remains fixed at all its child nodes but it is not deleted from the
matrix (unlike the variables fixed by presolve).

117

Part Il Using the MPL Modeling System

Change XPRESS Log File Options

You can change the log file options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the Log file tab. This will display the log file options for
XPRESS in the dialog box as shown below:

*Press Options ElE2

Simpler:i Preprocessing Log file |Limits i Tolerancesi MIF Strategiesi P Cutsi Balrieri

— Send log to “MIEnodelog—

¥ Message window " Mo node log
. ("

¥ Log file Surnmart at end

€ Detail all solutions

Filernames |* log
| " Detail every node

~LP iteration log ' Summarny every |1EIEI nodes

£ Summary at end

- Barrier progress log

(% Summary eveny I1DD iterations " No progress log
C Details aven I1DD iterations ' Printout every iteration

Cancel | el |

Figure4.54: TheLog File Tab in XPRESS Options Dialog Box

Send log to:

Message window: While the solver is optimizing, the iteration log information will
be sent to the Message Window.

Log file: While the solver is optimizing, the iteration log information will
besenttoalogfile.

Log filename: Specifies the filename the solver will use for the log file. If the

filename given contains asterisks *** instead of the name, like the
default entry **.log’, the solver will use the name of model file
with the extension given.

118

Chapter 4 Description of Menus

LPiteration log

The LP iteration log controls the amount of information that is sent to either the log window
and/or the log file. The following are the possible selections:

Summary at end
Summary every n iterations.
Details every niterations.

The default is summary at every 100 iterations.

MIP nodelog

The MIP Node log option controls the frequency of the node logging. This option is useful for
monitoring the progress of a problem that requires many nodes to solve. The following are the
possible selections:

No node log.

Summary at end.

Detail all solutions.
Detail every node.
Summary every n nodes.

The default is summary at every 100 nodes.

Barrier progressinfolog
The Barrier Progress Info Log option has the following possible selections:

No progress log.

Printout every iteration (default).

119

Part Il Using the MPL Modeling System

Change XPRESS Limit Options

You can change the limit options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the Limits tab. Thiswill display the limit options for XPRESS in
the dialog box as shown below:

¥Press Options
Simplexi F'repru:u:essingi Logfie Limits |Tolerancesi MIP Slralegiesl MIP Eutsi Barrierl
~ Time lirnit — Barrier limits
Time [him:s): |U :;ﬁ“ :IE_ Iteration hnmit; 200
(= Memarny limit —Cache limit———
LP "“_"its = & futomatic € Butomatic
[teration fimit: i21 47407645 el - Manial
Part. pricing cand. list sizing: i1 !100 ME 1250 KE
— MIF limnits
MIP zolutions limit; iﬂ Entra proceszzors for parallel MIF; !U
Mode lirnit: 11 0o000nooo
Cancel | CE]

Figure4.55: TheLimitsTab in XPRESS Options Dialog Box
Time limit
Thetime limits option alows you to specify the maximum time for the optimization.

LP iteration limit

The LP iteration limit option specifies iteration limit for the simplex algorithm, summed up over
all nodes. The default value is 2147483654.

Part. pricing cand. list sizing
Partial pricing candidate list sizing parameter. The default valueis 1.0.

120

Chapter 4 Description of Menus

Barrier iteration limit

The barrier iteration limit option specifies the maximum number of Newton Barrier iterations.
The default valueis 200.

Barrier memory limit

Barrier memory limit specifies the amount of memory in megabytes to be used by the barrier
algorithm. The default of Automatic indicates the memory should be determined automatically.
The Manual option allows you to enter the memory amount in MB.

Barrier cachelimit

Barrier cache limit specifies the amount of memory in kilobytes to be used by the barrier
algorithm. The default setting Automatic indicates the memory should be determined
automatically, if possible (if not, a value of 512 kB is assumed). The Manual option allows you
to enter the memory amount in KB.

MI P solutions limit
Maximum number of integer solutionsto find. Default is 0, which means no limit.

Node limit
Maximum number of nodesin Branch and Bound search. Default is 100000000.

Extra processorsfor parallel MIP
Number of slave processorsto use for the parallel MIP search. Default isO.

121

Part Il Using the MPL Modeling System

Change XPRESS Tolerance Options

Y ou can change the tolerances options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the Tolerances tab. This will display the tolerance options for
XPRESS in the dialog box as shown below:

HE

*Press Options

Simple:-ti Preprocessingi Log filel Limits ~ Tolerances |MIF' Slralegiesl MIP Culsi Barrierl

~Mumernical tolerance

Integer feazibility tolerance: I-D"Eﬁﬁg_
Reduced cost tolerance: ﬁ;ﬁﬁé_
Pivat tolerance: W
Relative pivot tolerance: ﬁw

~Zeia tolerance:

b atriv elermenit 2era tolerance: I1 e-003
Eta elements zefo tolerance: I'I ez

~ Banier tolerance

Relative duality gap tolerance: I1 e-00g
Prirnal infeasitilties tolerance: [1e-008
Dual infeasibiities tolerance: | 1e-003

tinimal ztep size tolerance: I'I &0
Cholesky decomp. zero tol. Te-3

- Markowitz tolerance

Elimination phaze of presolve; ID.DD1

I'I e-008

RHS zemo tolerance: Factonzation tolerance: 0.0
Frint walues zero tolerance; !'I e-005

Cancel | e |

Figure 4.56: The Tolerancestab in XPRESS Options Dialog Box

Numerical tolerance
There are four numerical tolerances that can be set:

Integer feasibility tolerance (default value is 5e-6);
Reduced cost tolerance (default valueis 1e-6);
Pivot tolerance (default value is 1e-9) and

Relative pivot tolerance (default value is 1e-6).

122

Zero tolerance
There are four zero tolerances that can be set:

Matrix element zero tolerance (default valueis 1e-9);
Eta elements zero tolerance (default valueis 1e-13);
RHS zero tolerance (default value is 1e-6) and

Print values zero tolerance (default valueis 1e-5).

Barrier tolerance
There are five barrier tolerances that can be set:

Relative duality gap (default is 1e-8);

Primal infeasibilities tolerance (default is 1e-8);
Dual infeasihilities tolerance (default is 1e-8);
Minimal step size tolerance (default is 1e-10) and

Cholesky decomp. zero tolerance (default is 1e-15).

M arkowitz tolerance

There are two markowitz tolerance options that can be set:

Elimination phase of presolve (default is 0.001) and

Factorization tolerance (default is 0.01).

123

Chapter 4 Description of Menus

Part Il Using the MPL Modeling System

Change XPRESS MIP Strategy Options

You can change the MIP Strategy options for XPRESS by choosing XPRESS parameters from
the Options menu and then pressing the MIP Strategies tab. This will display the MIP strategy
options for XPRESS in the dialog box as shown below:

¥Press Options

Simpler:i Preprocessingi Log filel Limits i Tolerances. MIP Strategies I MIP Culsi Barrieri

~Modeset zelection—————— [~ Optimality criteria

% Local first search Relative gap: iEI
" Best(breath] first search Abzolute gap: ;D

€ Depth first search

= First biest first. then local first; e {uup, down)

Switch after I']D nodes (e)
£ Sum [(2 mir fup, dowr] + mak [up, down]]

— Degradation estimate

- Mode selection

@ = Sum max [up, down)

Target obj. ID i Sum dowr
™ Smallest zolution " Sum up
&+ Smallest bound

—Degradation control————————————

Estimate deq. mult: I1
Default preudo cost; 30.01

Cancel |] |

Figure 4.57: The MIP Strategies Tab in XPRESS Options Dialog Box

Nodeset selection
The nodeset selection option has the following possible selections:

Local first search Choose among the two descendant nodes, if none among all active
nodes (default).
Best first search All nodes are always considered.
Depth first search Depth-first search exploring both descendants first.
First best first,
then local first,

Switch after n nodes All nodes are considered for the first n nodes, after which local first
search is resumed.

124

Chapter 4 Description of Menus

Node selection
The node selection option has the following possible selections:

Best estimate If atarget object function has not been set, choose the node with the
best estimate target object function for global. If atarget objective
function hasis been set (by the user or from a previous I P solution), the
choice is based on the Forrest-Hirst-Tomlin Criterion.

The Target obj. function used in “best estimate” node selection
technique. This is set automatically after solving the LP relaxation
unless set by the user.

Smallest solution Always choose the node with smallest estimated solution.
Smallest bound Always choose the node with smallest bound (default).
Relative gap

The relative MIP optimality stopping criterion. The MIP search will stop if the relative optimality
gap, ABS(best solution — best bound) / best bound, is less than or equal to this criterion value.
The default is 0.0.

Absolute gap

The absolute MIP optimality stopping criterion. The MIP search will stop if the absolute
optimality gap, ABS(best solution — best bound), is less than or equal to this criterion value. The
default is 0.0.

Degradation estimate

Degradation estimate is the node selection degredator estimate control. The Degradation estimate
option has the following possible selections:

Sum min (up, down) (default)

Sum (up + down)

Sum ((2 min (up,down) + max (up, down))

Sum max (up, down)

Sum down

Sumup

Estimate deg. mult
Factor to multiply estimated degradations by, default is 1.0.

Default pseudo cost
Default pseudo cost used in node degradation estimation, default is 0.01.

125

Part Il Using the MPL Modeling System

Change XPRESS MIP Cuts Options

You can change the MIP cuts options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the MIP Cuts tab. This will display the MIP cuts options for
XPRESS in the dialog box as shown below:

¥Press Options

Simplexi F'repru:u:essingi Log file! Lirniitz i Tolerancesi MIP Strategies MIP Cuts |Barrierl

— Gt strateqy i Cut-ff |
& Automatic lnitial cutoff [0
£ Mo cut
i Addtacutoi [1e-005

" Conservative cut strateqy

W) shrategy Percent cut-off ID.DDD'I

~ Level and frequency

Generate cuts everny |8 lewelz untl |0 levels deep in the tree

- Mumber of cut generation rounds —

Lifted cover inequalities: At roat: |2D [tree: iz
Gomany: cuts: Ak pont: |2 It tree; |D

— Cut poc] lirnits

bax cuts: !200 tax nonzeno coeffs; |1 oo

Cancel | CE] |

Figure 4.58: The MIP Cuts Tab in XPRESS Options Dialog Box

Cut strategy

XPRESS automatically generates and applies cuts tailored to your problem. Adding cuts during
the global search may lead to bound changes on variables, in addition to those imposed by the
branch-and-bound a gorithm, which come in to effect when branching.

The Cut strategy option has the following possible selections: Automatic (default)/No cuty/
Conservative cut strategy/Aggressive cut strategy.

126

Chapter 4 Description of Menus

Cut-off

Initial cut-off: Nodes in the IP tree search with an LP objective value worse than Cut-off
value are fathomed, i.e., not explored any further. Set it to the value of a
known IP feasible solution (although this will prevent XPRESSfinding that
solution) or any objective value you must better in the | P search.

Add to cut-off: After an IP solution is found, Cut-off value is updated to be the value of the IP
solution plus Add to cut-off value. So XPRESS will not bother looking for
other IP solutions within Add to cut-off value of the solution it has found. Add
to cut-off value would normally be positive for maximization solutions; and
negative for minimization solutions.

Percent cut-off: After an IP solution is found, Cut-off value is updated to be the value of the IP
solution plus Percent cut-off value. So XPRESSwill not bother looking for
other 1P solutions within Percent cut-off value of the solution it has found.

Level and frequency

The level and frequency option has the following possible selections. Generate cuts every n
levels: specifies the frequency at which cuts are generated in the tree search. If the depth of the
node modulo this value is zero, then cuts will be generated. The default is 8. Generate cuts until
n levels deep in the tree: specifies the maximum depth in the tree search at which cuts will be
generated. The default is 0, so cuts are not generated in the tree by defaullt.

Lifted cover inequalities
LCI at root Number of rounds of lifted cover inequalities at the top node, default is 2.

LClintree Number of rounds of lifted cover inequalities at nodes in the tree, default is 2.

Gomory cuts
Gomory at root Number of rounds of Gomory cuts at the top node, default is 2.

Gomory intree Number of rounds of Gomory cuts at nodes in the tree, default is 2.

Max cuts

The max cuts option contains the maximum number of cuts in the cut pool. For maximum
efficiency, the space-allocating max cuts option should be specified by the user if their values are
known. If this is not done, resizing will occur automatically, but more space may be allocated
than the user requires. The default value is 200 cuts.

M ax nonzer o coeffs.

The max nonzero coeffs. option contains the maximum number of nonzero coefficients in the cut
pool.

127

Part Il Using the MPL Modeling System

Change Barrier Options for XPRESS

You can change the barrier options for XPRESS by choosing XPRESS parameters from the
Options menu and then pressing the Barrier tab. This will display the barrier options for
XPRESS in the dialog box as shown below:

¥Press Options

Simplexl F'repru:u:essingi Log filei Lirmits i Tolerancesi MIP Slralegiesl MIF Cits Barier |

— Bamier algorthrn——————— = Ordering algorithm
% Automatic selection @ Aptomatic selection
" Primal problem ™ Mirirum degres
" Dual problem ' Minimum local il

' Mested dizsection

- Crosz=over contral

" Mo cross-over if presolve is off - Cholesky factorisation—

' Cross-over o a basic solution " Full Cholesky
£+ Push Cholesky

- Denge column remowal

Elements l4D

Cancel | CE]

Figure 4.59: TheBarrier Tab in XPRESS Options Dialog Box

Barrier algorithm

Selects whether the algorithm solves the primal or dual problem. The barrier algorithm option
has the following possible selections:

Automatic selection (default).

Primal problem.

Dual problem.

Cross-over control

The cross-over control option has the following possible selections:
No cross-over (only availableif presolveis Off).

Cross-over to a basic solution (default).

128

Chapter 4 Description of Menus

Dense column removal

Columns with more elements than this value are considered to be dense, and a special procedure
is used to handle them in the Cholesky factorization.

Ordering algorithm

Specifies the ordering algorithm for the Cholesky factorization. The ordering algorithm option
has the following possible selections:

Automatic selection (default).
Minimum degree.

Minimum local fill.

Nested dissection.

Cholesky factorization
Specifies the type of Cholesky factorization used. The available options are:

Pull Cholesky (default).
Push Cholesky.

129

Part Il Using the MPL Modeling System

Change Solver Parameter Options

Y ou can change various native solver parameter options by choosing Solver Parameters from the
Options menu. Y ou will presented with a submenu where you can select which option dialog box
you want to display. Depending on how the solver handles options, there are two types of dialog
boxes available. If MPL can, as with CPLEX, contral the options directly through memory, you
will see a separate menu containing all the applicable dialog boxes. If MPL, on the other hand,
controls the options through a text file, such as with XA and FortMP, you will see a dialog box
called <Solvername> Option Parameters as shown herein Figure 4.61.

*A Option Parameters EE3
SET FREG 0 =
SET SCALE YES
MUTE MO
Options file;]c: mplwindsmplka.opt
0K I Canrel Help |

Figure 4.60: XA Option Parameters Dialog Box

This dialog box works very similarly to a text editor, where you can insert new options and
change or remove existing options. When you are finished, press the OK button to let MPL save
the options to the filename listed in Options file input box. If you do not want to save the options
press Cancel.

130

Chapter 4 Description of Menus

Solver Options List Dialog Box

The Solver Options List dialog box allows you to change various options for supported solversin
atext editor window.

Solver Dptions List [7]

Solver: [CFLEX =

Optimizedlgorithm
SolutionTimelinit
CrashIndicator
DualPricinghlgorithm
CandidatelistSize
PerturbationConstant
IISAlgorithmnIndicator
HetworkExztractLevel
PerturbationIndicator
Perturbationlimit
FrimalPFricinghlgorithm
FefactorFreqg
Iterationlimit
Objectivelpperlimit
SingularityLimit
Objectivelowerlimit
FeasibilityTolerance
ReducedCostTolerance
MarlkowitzPivotTolerance

cbe+011

.oon1

o e B Y e e e e e B TR

2100000000
1e+075

10

—1e+075

1e-006

1e-008

0.01 hd

Cancel I Help |

Figure4.61: Solve Option List Dialog Box

The Solver drop-down list alows you to choose which solver you are changing the parameter
options for. When you select the solver, MPL automatically pullsin al the different options for
that particular solver and lists them in the text edit box below. There you can change any of the
options that you may need. Please refer to the documentation for each solver or contact Maximal
Software for further information on each option.

131

Part Il Using the MPL Modeling System

Setup Solvers for the Run Menu

You can change which solvers are shown in the Run menu by choosing Solver Menu from the
Options menu. Thiswill display the Solver Menu Setup dialog box shown below in Figure 4.63.

Solver Menu Setup i

- Available solvers:

CPLEX A e
CPLEX 300)4
=Prezs

osL

A, b enu
dmML :
ForthP Edlis
Frantline

Lindo

PCx Menu
LPSaolve Menu Scan
Conopt b enu
LSGRGZ

GRGZ Menu
CPLER [mpz)

ForttdF [mpz)

4, [mpz)

Help

FbE

[Drouble-click on zolver to add or
remove it fram the menu.

Figure 4.62: Solver Menu Setup Dialog Box

The list box shows all solvers that are supported by the current version of MPL. Depending on
which solvers you have installed on your machine, double-click on a solver to either add or
remove it from the menu. Those solvers that are currently in the menu have the word Menu listed
in the second column. The solvers that have (mps) directly after the name are DOS legacy solvers.

If you need to change some of the setup options for a solver, select the solver in the list box and
then press the Edit button. This will display the Solver Setup Options dialog box which is
explained extensively in the section on the next page.

If you want MPL to search your hard disk for supported solvers, you can do so by pressing the
Scan button. This option can be especially useful when you are not sure where on the hard disk
solvers have been installed and you want MPL to locate them automatically and set them up.

132

Chapter 4 Description of Menus

Change Setup Options for Solvers

If you need to change some of the setup options for a solver, select the solver first in the Solver
Menu Setup dialog box described on the previous page and then press the Edit button. This will
display the Solver Setup Options dialog box with the options for that solver. These setup options
have been set to the correct defaults and under most circumstances do not need to be changed.

DLL Solver Setup Options EE

Salver 1D

tenu Hame ;CF‘LEK

DLL Filename iE:\M phwindhcplexBe. dil

- Solver Tupe:
DLl O Diver O LIB DS

DLL Salver Optigns:

License I

Server I

] 4 I Cancel Help

Figure4.63: The Solver Setup Options Dialog Box

Thefollowing isalist of the setup options you can change.

Solver ID: Selects the solver whose entry is being changed. This entry is amost never changed
after it has been set to a certain solver.

Menu Name: Sets the menu name as it appears on the Run | Solve menu. The default is the name
of the solver. When the solver is a DOS solver that uses MPS input, the default menu name is the
name of the solver followed by (mps).

DLL Filename: Specifies the name and location of DLL solvers. MPL will automatically fill this
field when it locates supported solvers at startup.

Solver type

Specifies whether the solver is a Windows DLL solver (default), DLL driver, solver library built
into MPL, or alegacy DOS solver. In most cases, the default option DLL is the correct one.

133

Part Il Using the MPL Modeling System

DLL solver options
DLL solvers have two further options that are displayed when solver typeis set to DLL or Driver.

License: In some cases solvers need to receive a license string when they are being loaded into
memory which can be specified here.

Server: Specifies network location for external server solvers.

DOS solver options
DOS solvers have selected options that are displayed when solver type is set to DOS.

PIF Filename: Sets the PIF filename for a DOS solver. MPL comes with a separate PIF file for
each DOS solver it supports. You can change options of the PIF file using the PIF Editor
program that comes with Windows (see the Windows documentation for details). You can aso
create anew PIF file and give the filename here.

Input Filename: Specifies the filename MPL will use for the input file for the solver. If the
filename given contains star **’ instead of the name, like *.mps, MPL will use the name of the
model file with the extension given. If the solver needs to be told which type theinput is, it can be
specified in the Type column.

Output Filename: Specifies the filename MPL will use for the output file from the solver. If the
filename given contains *’ instead of the name, like *.out MPL will use the name of the model
file with the extension given. If the solver needs to be told which type the output is, it can be
specified in the Type column.

Pause after solve: After the solver has solved the problem in a DOS window, this option can be
used to let the program wait until you press a key before closing the window. This is especially
useful when something goes wrong during the optimization process and you want to see the error
message from the solver before continuing.

134

Chapter 4 Description of Menus

4.10 The Window Menu

The Window menu is used when you need to change the layout of windows that are currently
opened or minimized. It also alows you to close or select open windows.

WS in o

B
LCascade
Arrange [cons
Cloze all

v 1 C:AMplwindSPlanning: mpl
2 Mezzages
2 Maodel Defiritions

Figure 4.64: The Window Menu

Tile - Divides the screen equally between windows
Cascade - Arranges window on top of each other
Arrange Icons - Arranges minimized windows at the bottom
Close All - Closes all windows

Tile and Cascade Windows

To divide the main window equally between open windows, choose Tile from the Window menu.
To cascade or stack all open windows on top of each others so that you can see the title of each
window choose Cascade from the Window menu.

Arrange Minimized Icons

To arrange at the bottom all the windows that have been minimized down to an icon, choose
Arrange Icons from the Window menu.

Close All Windows

To close al editor, view, and graph windows that are open, choose Close all from the Window
menu.

List of Open Windows

MPL keepsalist of al open windows in the window menu that can be used to quickly search for
and switch between windows.

135

Part Il Using the MPL Modeling System

4.11 The Help Menu

The Help menu is used when you need to access the MPL Help System. You can aso use the
shortcut F1 to access the help system.

Topicz

Search for Help O

About MPL for Windows.,

Figure 4.65: TheHelp Menu

Using the MPL Help System

To open the main help system window for MPL, select Topics from the Help menu. This will
display the help window for MPL where you can select the help topic you wish to view. The
help window contains three tabs, Contents, Index, and Find. The Contents tab lists al the help
topics in a hierarchical tree structure, while the Index and the Find tabs allow you to search for
the help topic you want either by keyword or by words or phrasesin the help file.

Y ou can also display the help window with the index tab on top by selecting the Search for Help
On command directly from the Help menu.

136

Chapter 4 Description of Menus

The Contentstab

The Contents tab of the help window shows al the available topics in the help system in a
hierarchical tree structure. Each item shown as a book in the tree corresponds to a category or a
section in the help while the items containing the actual help topics are represented by a page with
aquestion mark onit.

Help Topicz: MPL for Windows Help

indes | Find |

[0 MPL todel Development Environment
@ Uzing the MPL Environment
@ tenu Commands
@ Button Bar
@ Dialog Boxes
':ﬂ] MPL Modeling Language
Structure of the Model File
[?] Sample Modsl File
@ The Defirition Part
@ The Madel Part
@ Bazic Input Elements
@ Building a Formula
@ Advanced Indexing Techniques
@ D atabaze Connection
@ Character Set

Figure 4.66: MPL for Windows Help Contents Window

You can double-click on any of the books to see al the topics available in that category or
section. Y ou can then continue opening books and browsing through the contents of the help until
you locate atopic that looks useful.

Y ou can print atopic by pressing the Print button at the bottom. If you want to print all the topics
in a book, select it then press the Print button. Each topic will be printed on a separate page,
though.

137

Part Il Using the MPL Modeling System

Thelndex tab

The Index tab of the help window enables the user to access alist of all the keywords in the help
file or do a search for a specific keyword. The keyword list resembles a book index, with
secondary entries indented beneath the primary entries.

Help Topics: MPL for Windows Help

Abort Conditions

Abort Conditions =
About MPL Dialog Box

Advanced Commands

Advanced Indesing Techiniques
Aliaz Indexes

Arithmetic Functions

Bazic Input Elements

Bounds

Building a Farmula

Buttan Bar

Character Set

Coefficients

Conditional Directives

Constraintz

CPLEX Barrier Optiong Dialog Box
CFLEX Limit Optionz Dialog Box
CPLEX Log File Options Dialog Box

Figure 4.67: Thelndex Tab in the Help Window

Asyou type in a keyword, the list is automatically scrolled to match the characters typed against
the primary entries in the list. If aword is not on the list, the user is taken to the word closest to
where the word ought to be. Of course, you can still scroll through the keyword list and choose a
word.

TheFind tab

The Find tab enables the user to find a help topic by searching for a specific words or phrasesin
the text. The Find database is built the first time you select the Find tab through the Find Setup
Wizard. The depth of the full-text search generated by the wizard is determined in the first wizard
window. The recommended choice, Minimize Database Sze, produces the smallest word list,
while Maximize Search Capabilities gives the largest database and therefore the best search
capabilities. You can further customize the search by pressing the Options button while in the
Find tab.

138

Chapter 4 Description of Menus

About MPL for Windows

Y ou can display the About MPL for Windows dialog box by choosing About MPL from the Help
menu.

About MPL for Windows B2

l MPL Modelng System
| Release 4.2

Copyright € 1983-2001 Maximal Saftware, [he:
All rights reserved.

Max problem size; 2100000000 constraints

Licenzed for excluzive use bo:
Biarni Knztianszon

fd aximal Software, [nc.

Single User Licenze

Senal Mo 52171234501

Figure 4.68: The About MPL for Windows Dialog Box

This dialog box shows you the current release number of MPL, copyright information, the
maximum problem size, who the software is licensed to along with the serial number.

139

Part Il Using the MPL Modeling System

PART Il

THE MPL MODELING LANGUAGE

Chapter 5: Language Overview

Chapter 6: Defining Sets and Indexes
Chapter 7: Datafor the Model

Chapter 8: Formulating the Model

Chapter 9: Building Formulas

Chapter 10: Advanced Indexing Techniques
Chapter 11: Database Connection

141

Part Il The MPL Modeling Language

Chapter 5 Language Overview

CHAPTERS

LANGUAGE OVERVIEW

The M PL modeling language offers a natural algebraic notation that enables the model developer
to formulate complex optimization models in a concise, easy-to-read manner. Among modeling
languages, MPL is unrivaled in its expressive power, readability, and user-friendliness. The
MPL modeling language was designed to be very easy to use with a clear syntax making the
process of formulating models in MPL efficient and productive. MPL is a flexible language and
can be used to formulate models in many different areas of optimization ranging from production
planning, scheduling, finance, and distribution, to full-scale supply-chain optimization.

MPL is avery robust and stable software whose core modules have been through extensive use
and testing over more than a decade. This assures that the MPL software is both reliable and
dependable and can be used in mission-critical projects. Some of the more notable features of the
MPL language include:

e Separation of the data from the model formulation.

¢ Import data from different data sources.

* Independence from specific solvers.

¢ Include files to make handling of large problems easier.

« Exclusion of parts of the model using conditional directives.

¢ Specia Ordered Sets and Semi-continuous variables.

WHERE/IF conditions to handle special cases.

¢ Readable and helpful error messages.

143

Part Il The MPL Modeling Language

Sparse Index and Data Handling

One of the most important features of any modeling language is how it handles large amounts of
data. What makes MPL so powerful is its ability to effectively handle very large sparse index
and data sets. In addition, MPL has extensive flexibility when working with subsets of indexes,
functions of indexes, and compound or multi-dimensional index sets. This alows the model
formulator, for example, to index only over products that are made by each machine in a specific
plant instead of having to go through al the products for al the machines and al the plants,
which would be considerable slower.

Scalability and Speed

MPL can easily handle very large matrices with millions of variables and constraints. This is
especially important when dealing with large supply-chain optimization models over multiple
time periods that can grow very quickly. MPL has its own memory manager that can
dynamically store models of any size, giving it a full scalability. The only limitation the model
developer faces is how much memory is available on his or her machine. Typicaly, MPL uses
only a few megabytes of memory per 10,000 variables, which puts a minimal additional burden
on the machine capacity needed to generate and solve the model.

The matrix generation in MPL is extremely fast and efficient which is important since it
contributes to the overall time needed to obtain the solution of the model. Maximal has over the
years invested significant R&D efforts on continuing to improve the speed of the matrix
generation. As a result, MPL can now run models with millions of variables and generate a
matrix for them in less than one minute. This is very important, because if the model generation
takes too long it can seriously add to the time needed to reach the solution even if the fastest
optimization solvers are used. MPL provides the fastest and most scalable model generation
capabilities available in amodeling system on the market today.

The MPL modeling language was developed with one key goal in mind; the input must resemble
the notation people use to write their problem formulations on paper as closely as possible. In
order to achieve that goal, advanced compiler and language parsing techniques normally reserved
for writing high-level computer languages were used. The resulting language includes many
features that can be of great assistance when formulating optimization models.

« Give each variable and constraint a meaningful name.
« Extend constraints over multiple lines.

 Place variables on both sides of constraints.

« Usearithmetic such as fractions and percentages.

« Factor out common coefficients using parentheses.
 |Insert comments anywhere in the model.

« Use subscripted variables and data coefficients.

« Usemacros for repetitive parts of the model.

« Use summations over vectors and arrays.

Theinput to MPL isafile that contains the model formulation. Thisfile is a standard ASCII text
file and can be created using the built-in model editor in MPL. Any text editor capable of
working with text files can also be used.

144

Chapter 5 Language Overview

5.1 Structure of the MPL Model File

The MPL model file is divided into two main parts; the definition and the model. In the
definition part you define various items that are then used throughout the model. The model part,
on the other hand, contains the actual model formulation. Each part is further divided into
sections, which are asfollows:

The Definition Part
TITLE - The problem name.
INDEX - Dimensions of the problem.
DATA - Scalars, data vectors and files.
VARIABLES - Decision variables.
MACRO - Macros for repetitive parts.

The Model Part

MODEL
MAX or MIN - The objective function.
SUBJECT TO - The constraints.
BOUNDS - Simple upper and lower bounds.
FREE - Free variables.
INTEGER - Integer variables.
BINARY - Binary (0/1) variables.

END

None of the sections are actualy required in MPL, but in order to have a valid optimization
model you will need at least the objective function and the constraints. MPL alows you to place
the sections in any order, but since any item must be declared before it is used in the model, the
above order is used most of the time. Multiple entries of each section are allowed. The keywords
MODEL, SUBJECT TO and END are optional, but used most of the time to aid readability. Asan
example of how simple the model in MPL can be, hereis onetiny but still perfectly legal input:

MAX x + vy ;

X +2y < 10 ;

In this chapter each of the aforementioned sectionsis explained in full detail. On the next page is
the MPL model file * planning.mpl that we will use as an example.

145

Part Il The MPL Modeling Language

{ Planning.mpl }

{ Aggregate production planning for 12 months }

TITLE
Production_Planning;
INDEX
product = 1..3;
month = (January,February,March,April May,June,July,
August,September,October,November,,December);
DATA

Price[product] (105.09, 234.00, 800.00);
Demand[month,product] 1000 DATAFILE(demand.dat);
ProductionCapacity[product] := 1000 (10, 42, 14);
ProductionCost[product] (64.30, 188.10, 653.20);
InventoryCost 1= 8.8 ;

DECISION VARIABLES

Inventory[product,month] -> Invt;
Production[product,month] -> Prod;
Sales[product,month] -> Sale;

MACRO
Revenues := SUM(product,month: price * Sales);

TotalCost := SUM(product,month: InventoryCost * Inventory
+ ProductionCost * Production);

MODEL

MAX Profit = Revenues - TotalCost;
SUBJECT TO

InventoryBalance[product,month] -> 1IBal

Inventory = 1Inventory[month-1] + Production - Sales;
BOUNDS

Sales < Demand;
Production < ProductionCapacity;
Inventory[month=January..November] < 90000;
Inventory[month=December] = 20000;

END

Figure5.1: The Planning.mpl Model File

146

Chapter 5 Language Overview

The Problem Title

The title section is used to give each problem a name which we strongly recommend. When you
use aname, MPL places it in the generated file where appropriate, which helps you keep track of
files and printouts. Your title section starts with the keyword TITLE, followed by the problem
name. The name can be of any length but cannot contain spaces or other delimiters. Y ou may
place a semicolon after the name, although it is not necessary. If you omit the title, it defaults to
the name Problem.

Example:

TITLE Production_Planning ;

The Definition Part

The Definition Part is used to define various items to be used later in the model. Here you can,
for example, define subscripted variables, data to be imported from other programs and macros
for repetitive parts of the model.

The first section, after the title, is the index section, starting with the keyword INDEX. This is
where you define the indexes and the sets for the model. This will be covered in Chapter 6:
Defining Sets and Indexes.

After the indexes, the next step is to setup the data for the model in the DATA section. You can
specify both data defined directly in the model and also read in data from either external datafiles
or databases. Thiswill be covered in Chapter 7: Data for the Model.

Following the data section you normally define the variables for the model in the DECISION
VARIABLES section. If you need to make the variables dependent on a certain sparse data
vector you do this using the WHERE command. See Chapter 8.1: Declaring Decision Variables
for further information.

The last section in the Definition Part is the MACROS section. The macros can be used to give
complex expressions a distinctive name and then refer to these complex expressions throughout
the model by the macro. See Chapter 8.2: Defining Macros for further information.

Each section in the definition part, except the problem title, can appear as often as you want.
These sections normally appear in the order listed above, but they can appear in any order you
choose. Please note though that each item must be defined before it is referred. In the following
chapters each section will be discussed in detail.

147

Part Il The MPL Modeling Language

The Model Part

The model part contains the actual problem formulation. Although the keyword MODEL is
optional, it is useful to mark the beginning of the problem formulation.

The layout of the model is straightforward. The first step is the objective function. Either the
keyword MAX or keyword MIN is used, depending on whether it is a maximization or
minimization problem.

After the objective function, the next step is to list the constraints. The keyword SUBJECT TO is
used as a separator between the objective function and the constraints.

The next step is to enter simple upper and lower bounds on variables if they are used. You use
the keyword BOUNDSto mark the beginning of the bounds section.

Free variables are entered following the FREE keyword. Integer and binary variables are entered
after the INTEGER and BINARY keywords, respectively. SOS sets of variables are entered after
the SOS keywords. These last five sections (including bounds) are all optional and can be placed
in any order.

The END keyword is optional and marks the end of the model. Everything that follows it is
ignored.

148

Chapter 5 Language Overview

5.2 Basic Input Elements

Numbers

Y ou can enter numbers as real numbers or as integers, MPL uses them all as rea (floating point)
numbers. Scientific notation is not allowed. Integer numbers can be entered with a decimal point
to the right. Numbers between -1.0 and 1.0 can be entered without a leading zero.

Examples of numbers recognized by MPL.:

24
4.8565
13.
-.7854

Names

The names of variables and constraints can be of any length. A name begins with a letter
followed by any combination of letters and digits. MPL is case sensitive by default, but you can
change that in the MPL Language Options dialog box in the Option menu. See Chapter 4.9: The
Options Menu for further information. You cannot use spaces in a name, but the underscore
character * ' isallowed. For full list of characters alowed in variable names, refer to Appendix
A: Character Set.

Examples of legal filenames:

x1
Inventory

An adternative way is to use double quotes ("). Then any character can be used, even spaces and
other specia characters. A quote symbol in quoted name is represented by two adjacent quotes.
An empty name (name without any charactersin it), which can be useful in name abbreviations, is
written by two quotes with nothing between them (").

Examples of quoted names:

"Inventory in April"
Prod3 -> "P3"
x[foods] -> '

149

Part Il The MPL Modeling Language

Delimiters

MPL detects the end of a name when it encounters a delimiter. A delimiter is any of the
following characters:

Furthermore, the space character, the end of an input line, and any character in the ASCII range
0..31 are also treated as delimiters. This manual always specifies ASCIl values with decimal
(base 10) numbers.

White Space

MPL automatically skips over al white space characters when reading the input. White space
characters are;

The space character: Spaces are often used to make the formulation easier to read. We
recommend you use them extensively.

The control characters (ASCII range 0..31): You can use various control characters in
the input for printing considerations without affecting MPL. This includes characters
like Tab (ASCII 9) and FormFeed (ASCII 12).

Inserting Comments

A comment is a part of the input file that MPL does not process. Usually, comments are
explanations of the formulation in plain words, but you can aso use them to temporarily
“remove” various parts of the model. Typically, you might want to hide a constraint, which you
can later make visible again. Also, you can switch between sets of formulas or constraints.
Conditional directives and include files (explained later in this chapter) are also often used for this
purpose. You can insert comments anywhere in the input file. There are two basic types of
comments:

Sngle-line comments; !

Single-line comments are used to add a comment of one line or a part of a line of text.
When M PL finds the exclamation mark, it simply skips the rest of the line.

Block comments: { ...}

Block comments are used to add several lines or pages of text. When MPL reads the
input, it skips everything inside the braces. For example to hide part of a formulation,
perhaps only temporarily, you can add braces before and after the part in question. A
block of text can even have comments contained within it; i.e.,, MPL can handle nested
comments.

150

Chapter 5 Language Overview

Include Files

Include files allows you, instead of storing the entire model in a single large file, to break it up
into one or more files that are then included in the main model file. Place the include command
on aline by itself, at the point where you wish the include file to be read. For example:

#include filename

In above example filename is the name of the file you wish to include. Include files can be nested
up to 8 levels.

Include files make the construction of large models much easier and more reliable. The main
advantages of using includefiles are:

« Several models can share the common part of a formulation. This could be a large
objective function containing many prices, or several constraints that are the same in al
the models. This sharing saves typing and simplifies the changes since only one file must
be modified. Thisis particularly important when you are creating a group of models that
work together.

It is often convenient to group related parts of large problems together, and to put each
group in a separate file to get better overview and make them easier to maintain.

« When you use more than one version of a constraint, it is better to place each version into
a separate include file than to use many dightly different main files. With separate
include file you can avoid repeating the parts of the model that stay the same.
Conditional directives can be used for the same purpose. Refer to the next section on
Conditional Directives on the next page for further information.

Conditional Directives

Thisfeaturein MPL iswell known in computer programming. Conditional directives can be just
as useful when developing linear programming models as when developing programs. They
alow you to define special symbols called directives and then, based on these directives, to
include or exclude some part of the model.

All directive commands take one line and must be the first item on that line. They start with the
‘#' character followed by the command and the symbol in question, where applicable. You can
nest the #ifdef’ s up to any level.

Hereisalist of the conditiona directives that are allowed:

#define symbol ! defines the symbol

#undef symbol ! undefines the symbol

#ifdef symbol ! include the following if symbol is defined
#ifndef symbol ! include if symbol is not defined

#else ! else on the last #ifdef

#endif ! closes the last #ifdef

151

Part Il The MPL Modeling Language

To illustrate this, lets say you have a problem with variables which can either be regular or integer
variables. You can then use conditional directives to decide whether they are to be defined as
integer in the model.

#define IntegerProblem

#ifdef IntegerProblem
INTEGER

X,y
#endif

In this example, you define the directive IntegerProblem in the beginning of the model
formulation. Then, if you want to make the variables noninteger, you only have to delete or
comment out the define for Integer Problem.

Option Settings

In addition to setting options in the option dialog boxes (See Chapter 4, Section 4.9 Options
Menu), MPL alows you to set certain options directly in the model file. Thisis accomplished by
using the keyword OPTIONS anywhere in the model file, followed by aline for each option entry.
For example, if you want to specify a different Input Directory for data files and change the model
type to nonlinear you can enter the following:

OPTIONS
DatafileInputDir="Data"
ModelType=Nonlinear

The available option entries you can set in the model file are listed below. Each entry is listed
with the name string that is used, the original name of the option, and then a short description.

PlainVarDefined: (Plain Variables Must be Defined) Specifies whether plain variables must be
defined in the Decision Variable section of the model or can be introduced as they appear in the
model. For larger models, requiring plain variables to be defined, can increase the maintainability
of the model.

Datafilel nputDir: (Data Files Input Directory) Selects the folder where MPL will search for
input datafiles. The default isthe current folder.

DatafileOutputDir: (Data Files Output Directory) Selects the folder where MPL will save
output datafiles. The default isthe current folder.

CheckDuplicateData: (Check Sparse Data For Duplicate Entries) Specifies whether sparse data
files are checked for duplicate index entries. In some cases the user may want to read in a data
file without receiving errors even if it has duplicate entries. When there are duplicate entries, the
last entry in the file will be used by MPL.

152

Chapter 5 Language Overview

UseQuickSort: (Use quicksort for sparse data) Specifies whether sparse data is sorted with
quicksort after it isread in. It is normally faster to use quicksort but if there is an invalid entry,
such as duplicates, in the data file M PL will not be able to pinpoint the problem line accurately.

ModeType: (Default model type) Specifies the default model type for MPL language.

Linear (1) Accept only models that are either linear or mixed integer.

Quadratic (2) Accept models that are quadratic, in addition, to the standard linear or
mixed integer models.

Nonlinear (3) Accept models that are nonlinear. For example, models that have variables
multiplied together or use nonlinear arithmetic functions such as LOG or
EXP on the variables.

NameGenType: (Name Generation) Chooses the method MPL uses to generate names for
vector variables and constraints.

Indexed (0) Generate names using the actual index elements.

Numeric (1) Generate names as numeric with prefix ‘C’ for variables and prefix ‘R’ for
congtraints.

Prefixed (2) Generate names as numeric with the prefix based on the vector name.

MaxVarLen: (Max variable length) Most LP solvers have a restriction on the length of variable
names. Since MPL, in most cases, sends the matrix directly through memory to the solver, the
variable names are normally not needed. If the are needed, the value set here helps you ensure
that the variable names generated are within limits.

MaxSubLen: (Max subscript length) This value decides how many characters of indexes are
retained in the generated variable name. This allows you to use long index names in the model,
but keep variable names concise in the generated input file.

DatabaseType: (Default) Chooses which of the supported databases is the default for the MPL
database connection. Valid entries are ODBC, Access, Excel, FoxPro, and Dbase.

DatabaseDirectory: (Directory) When the database type is either FoxPro or Dbase you can use
this option to specify the directory where the database files are stored.

DatabaseODBC: (ODBC Data Source) When the database type selected is ODBC this option
specifies which datasource, as defined in the ODBC control panel, should be used.

DatabaseAccess. (Database File *.mdb) When the database type selected is Access this option
specifies which database should be used. Please note that if you use any specia charactersin the
name you might have to enclose it with quotation marks.

For example, if you want to read data from the A ccess database planning.mdb enter the following
optionsin the model file:

OPTIONS
DatabaseType=Access
DatabaseAccess="planning.mdb"

153

Part Il The MPL Modeling Language

DatabaseExcel: (Workbook File *.xIs) When the database type selected is Excel or Excel4 this
option specifies which workbook should be used.

DatabaseUsername: (User) When you are working with databases that require a Username to
log in, this option can be used to specify it.

DatabasePassword: (Password) When you are working with databases that require a Password
tolog in, this option can be used to specify it.

ExcelWorkbook: (Workbook File *.xls) Allows you to specify the default Excel Workbook
filename when reading in Excel ranges.

For example, if you want to read Excel ranges from the Excel workbook file cutstock.xIs enter the
following options in the model file:

OPTIONS
ExcelWorkbook="cutstock.x1ls"

ExcelSheetname: (Worksheet name) When the Excel range data is not on the first default
worksheet, you can use this option to specify which sheet to read from.

Excel SkipOver Empty: When reading indexes from an Excel range, the default is to skip empty
cells. You can use this option to turn this Off causing MPL to stop reading at the first empty cell.

154

Chapter 6 Defining Sets and Indexes

CHAPTERG

DEFINING SETSAND INDEXES

The index section is used to define the domains of the model. The indexes are then used
throughout the model when objects like subscripted variables and data coefficients, summations
and structured constraints are used. Indexes encapsulate the problem dimensions and make it
easy to quickly adjust the problem size.

There are two basic types of indexes; numeric and named. The numeric indexes are used to give
each subscript item a numerical value. The named indexes are used to give each subscript item a
descriptive name.

155

Part Il The MPL Modeling Language

6.1 Numeric Indexes

Numeric indexes are specified within a range by entering the lowest value and the highest value
separated by two periods. Data constants and any legal integer formula, including integer
functions, can be used when specifying the numbers. Both numbers must be non-negative and the
second must be larger than the first. The following example defines an integer index with three
elements:

INDEX
product := 1..3;

After you have defined an index you can then use it to define data, variable, and constraint
vectors. For example, the following example would define a variable vector named Ship that
contains three e ements:

VARIABLES
Ship[product];

This definition will generate three variables (one for each product), named Shipl, Ship2, and
Ship3.

The name length of most LP solvers is limited to eight characters. Therefore, only the minimum
number of characters are used, for each numeric index, is normally used when building variable
and constraints namesin MPL.

It is not always desirable to have the default subscript length for all indexes in the model. You
can set a different length for each index by following the index definition with a colon and a new
length. Hereisan example:

INDEX

This definition sets the subscript length for the i index to 2.

156

Chapter 6 Defining Sets and Indexes

6.2 Named Indexes

Named indexes are specified by listing the subscript elements within parenthesis. Each item in
the list has a separate name that is then used when referring to the subscripts. Thisis aconvenient
way of assigning meaning to indexes and the vectors that use them. Hereisan example:

month := (January,February,March,April,May,June,July,
August,September,October,November ,December);

In most cases MPL sends the matrix to the LP solver directly through memory, which means that
the names are not used. But sometimes, thereis a need to generate either alog file or an input file
where the names would become useful. Because the name size of most LP solvers are limited to
eight characters, only the first three characters, for each named index, are normally used when
building variable and constraints names in MPL. The default number of characters used can be
set in the Max Subscript Length option in the MPL Language dialog box in the Options menu.
See Chapter 4.9 The Options Menu for more information.

To make sure there are no name conflicts, keep at least the first three characters of the named
subscripts distinct. If that is difficult, you can abbreviate the names by using the becomes
operator ‘- >'. To use the becomes operator insert ‘->" after the subscript list and place the other
list with shorter version of the names beneath. These abbreviated names are then used when
generating the input file. Hereisan example:

City := (SanDiego, LosAngeles, SanFrancisco)
-> (SD, LA, SF);

It is not aways desirable to have the same subscript length for al indexes in the model.
Therefore you can use a different length for each named index by following the index definition
with acolon and anew length. Here is an example:

INDEX
month := (January,February,March,April,May,June) : 4;

This definition sets the subscript length for the month index to 4.

If the index contains numeric values, but you do want them treated as a named index you can do
so by adding the keyword NAMED in front of the INDEX keyword. This is, for example,
necessary when you have product numbers that are all numeric, but you do not want them sorted
according to their numerical values.

157

Part Il The MPL Modeling Language

6.3 Alias Indexes

In MPL you can give a defined index another name. Thisis called an alias index and is used to
facilitate repeated use of the same index in a vector, for example, in transportation problems. For
instance:

INDEX

location := (A, B, C, D);
source = location;
dest = location;

This expression defines the source and dest indexes as an dlias of the location index and allows
you, for example, to define the following variable;

DECISION VARIABLES
Ship[source,dest];

6.4 Circular Indexes

When working with indexes that represent time periods you sometimes encounter situations
where you need to offset the index subscript value. For example, when you want to use a data
entry from the previous month, MPL alows you to do this by using a offset value with the
subscript such asin Inventory[month-1] .

When the offset value goes outside the defined range for the index, MPL by default omits that
vector entry. By defining an index as circular, you specify that when the offset value goes out of
range, it takes values instead from the opposite end.

Index are defined as circular by entering the keyword CIRCULAR after the index definition. For
example:

INDEX
day = (mon, tue, wed, thu, fri, sat, sun) CIRCULAR;
month = 1..12 CIRCULAR;

158

Chapter 6 Defining Sets and Indexes

6.5 Subsets of Indexes

Sometimes, you want to use only a few elements or subset of an index. MPL alows you to
declare a new index that selects certain elements of another underlying index. For example,
assume you have defined the following indexes:

INDEX
i
m

1..10
(Jan,Feb,Mar,Apr,May,Jun,Jul,,Aug,Sep,0ct,Nov,Dec) ;

Y ou can then use them to define these indexes as subsets of the original indexes:

JT1i] := (2,8,5);
HolidayMonth[m] := (Apr,Jul,Auq);
RepairMonth[m] WHERE (m >= Apr) AND (m <= Jun);

Here the underlying index for j isi and for HolidayMonth ism. Y ou can also define an index asa
list of numbers, i.e. an enumeration of numbersinstead of names. MPL treats this kind of index
as a subset index without an underlying index. For example:

k := (0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75) ;

159

Part Il The MPL Modeling Language

6.6 Function Indexes

In some cases, when working with indexes you want to have the ability to be able to map certain
index elements to elements of another index. In MPL thisis done with function indexes.

For example, you are creating a model that schedules trucks to certain routes, but their current
location is not where each route starts. Therefore, in the model we create two function indexes.

One that maps each truck to the city where

they are currently located and the other where we map

each route to the city of departure. In MPL this can be formulated as follows:

R6) ;

INDEX
truck := (T1, T2, T3, T4, T5, T6);
route := (R1, R2, R3, R4, R5,
city

Current[city];
Depart[city];

CurrentLoc[truck].Current :
(T1,Atlanta, T2,Atlanta,
T3,Atlanta, T4,Atlanta,
T5,Chicago, T6,Chicago);

DepartLoc[route].Depart :
(R1,Chicago, R2,Dallas,
R3,Denver, R4,Denver,
R5,NewYork, R6,NewYork);

DATA

Distance[Current, Depart] := (

VARIABLES

Assign[truck, route];

:= (Atlanta, Chicago, Dallas, Denver, NewYork);

0, 717, 783, 1406, 886,
717, 0, 937, 1023, 807,
783, 937, 0, 794, 1576,

1406, 1023, 794, 0, 1785,
886, 807, 1576, 1785, 0);

Now we can create an objective function that minimizes the total distance for each assigned truck

route as follows;

MIN TotalDistance

SUM(truck,route: Distance[CurrentLoc.Current, DepartLoc.Depart]

* Assign[truck,

route]);

160

Chapter 6 Defining Sets and Indexes

6.7 Set Operations on Indexes

When working with subsets of indexes, you sometimes want to create new indexes based on
previous ones. MPL allows you to use standard set operations such as difference, not, union, and
intersection to help define new indexes.

The set difference operation is specified by using the minus (-) symbol between two indexes. It
will subtract from the first index al the elements that are in the second index and create a new
index containing the remaining elements.

The not operation on index is specified by placing the keyword NOT in front of the index. It will
select al the elements from the parent index that are not defined in the given index.

The set union operation can be specified by placing either the plus symbol (+), the OR keyword
or the UNION keyword between two indexes. It merges all the elements from both of the indexes
into one large index.

The set intersection operation is specified by placing either the AND keyword or the
INTERSECTION keyword between two indexes. It creates a new index that contains only the
elements that are defined in both of the indexes.

Example of set operations:
INDEX
plants := (NewYork, Chicago, London, Paris);

OpenPlants[plants]
EuropePlants[plants]

(NewYork, London);
(London, Paris);

! Difference
ClosedPlants[plants] plants - OpenPlants;

(Chicago, Paris)

! Not
USPlants[plants] NOT EuropePlants;

(NewYork, Chicago)

! Union
OpenOrEurope[plants] OpenPlants OR EuropePlants;

(NewYork, London, Paris)

! Intersection
OpenAndEurope[plants] OpenPlants AND EuropePlants;

(London)

161

Part Il The MPL Modeling Language

6.8 Multi-dimensional Index Sets

Often, when formulating models with multiple indexes, some of the indexes are connected
together. For example, if your model has one index defined as plant, and another index defined
as machine, you might want to be able to create an index specifying which machines are available
in which plants. This can be donein MPL using multi-dimensional index sets. They are defined
in asimilar way to normal subset indexes, but instead of only a single domain index being placed
inside the brackets, you enter alist of domain indexes separated by commas.

INDEX
plant = (Atlanta, Chicago, Dallas);
machine = (Grind, Drill, Press);

PlantMachine[plant,machine] :=

(Atlanta.Grind,
Chicago.Drill,
Chicago.Press,
Dallas.Grind) ;

In the above example we created a two-dimensional index PlantMachine that contains, for each
plant, the machines that are available.

When referring to multi-dimensional indexes we sometimes call it the parent index and the
indexes it is derived from the domain indexes. When specifying which element pairs to include
in the parent index you can, as in the above example, list al the elements you want to include,
with each domain index element separated with a period so long as they are not numeric indexes.
Alternatively, you can also separate each domain index element with a comma. For clarity, you
can also group each parent index element with parentheses.

PlantMachine[plant,machine] :=

((Atlanta, Grind
(Chicago, Drill
(Chicago, Press
(

)
)
)
Dallas, Grind)

);
Instead of listing al the elements manually, you can aso use the WHERE command to specify
which elements are included in the multi-dimensional index. We will now, on the following

page, show several examples on how the WHERE command can be used when defining multi-
dimensional indexes.

162

Chapter 6 Defining Sets and Indexes

In the example below we want to create an index Winter Repair that contains all the monthsin the
Repair index which are during winter between November and March.

INDEﬁnth 1= (Jan,Feb,Mar,Apr,May,Jun,Jul ,Aug,Sep,0ct,Nov,Dec);
Repair[month] := (Jan,Mar,Jun,0Oct,Nov);
WinterRepair[month] :=
Repair[month] WHERE (month <= Mar) OR (month >= Nov);

! := (Jan, Mar, Nov);

In the next example we first define two indexes nodel and node2 that contains nodes that arein a
network and then use the WHERE command to create a two-dimensional index arcs that connects
together al the nodes except those that are the same.

INDEX
node1 := (n1,n2,n3,n4);
node2 := nodei;

arcs[nodel1,node2] WHERE (nodei <> node2);

When defining indexes you can also use the WHERE command to make the index dependent on
the values of a data vector. In the example below, we want to create an index that contains the
routes between the plants and the warehouses that have shipping costs below 2400.

INDEX
plant = (Atlanta, Chicago, Memphis);
warehouse := (Pittsburgh, Charlotte, Pittsburgh);
DATA
ShipCost[plant, warehouse] := (1200, 3000, 2300,
1800, 4200, 3300,
2700, 2100, 1900);
INDEX

BestRoutes[plant,warehouse] WHERE (ShipCost <= 2400);
! 1= (Atlanta.Pittsburgh, Atlanta.Memphis,

! Chicago.Pittsburgh,
! Dallas.Charlotte, Dallas.Memphis);

163

Part Il The MPL Modeling Language

6.9 Reading Index From External File

You can use data files when specifying the elements for indexes. Instead of the usual list of
elements, enter the keyword INDEXFILE followed by a filename inside parentheses. If you use
any characters in the filename, such as ‘-’ and ‘#’, that have special meaning to MPL, you can
enter them by including the filename in double quotes (*).

INDEX
product := INDEXFILE("product.dat");

The file is a free-format text file, in which the elements of the index are read in the order they
appear. Separate the elements with commas or spaces. Everything inside curly braces and
following an exclamation mark is treated as a comment.

Sometimes, the file you want to read the index elements from contains other columns of data.
MPL allows you to specify which column is chosen for the index by adding a comma and a
column number inside the parenthesis. For example, if the product index is stored in the first
column of the product.dat file you would enter:

INDEX
product := INDEXFILE("product.dat", 1);

Sample index file with one column for the product index and two data columns is shown below:

prodi, 123.55, 245,90
prod2, 347.00, 365.50
prod3, 223.22, 389.60
prod4, 439.50, 445.50

Reading subset and multi-dimensional indexes from an index file is done in the same way as for
normal indexes. The only difference is that each entry in the index file needs to contain the
elements for each of the domain indexes. The entry in the model fileisthe same way as before.

INDEX
FactoryMachine[factory,machine] := INDEXFILE("factmach.dat");

Here is a sampleindex file with two columns, one for factory and one for machine:

fac1, machi,
fac2, mach2,
fac2, mach3,
fac3, mach4,
fac3, mach5,

164

Chapter 6 Defining Sets and Indexes

6.10 Import Index from Excel Spreadsheet

MPL alows you to import the elements for an index directly from a Excel spreadsheet. In the
INDEX section, where you define the index, enter the keyword EXCELRANGE &fter the
assignment symbol (:=) followed by parentheses containing the Excel workbook filename and the
Excel range name you want to import from.

INDEX
cuts := EXCELRANGE("Cutstock.x1ls","CutsRange");

In the above example, MPL will open the Excel spreadsheet Cutstock.xls, locate the CutsRange,
and then read in the entries for the index cuts.

To make sure there are no name conflicts when sending the problem to the solver, keep at least
the first three characters of the named subscripts distinct. If that is difficult, you can abbreviate
the names by importing another range from the spreadsheet containing shorter names. To import
the short name range enter the keyword BECOMES followed by the range name inside the
parenthesis. Hereisan example:

INDEX
cuts := EXCELRANGE("Cutstock.xls", "CutsRange", BECOMES "CutsShort");

It is not aways desirable to have the same subscript length for al indexes in the model.
Therefore you can use a different length for each named index by following the index definition
with acolon and anew length. For example:

INDEX
cuts := EXCELRANGE("Cutstock.xls","CutsRange"):4;
This definition sets the subscript length for the month index to 4.

The EXCELRANGE command will read every cell in the range by default until an empty cell is
encountered. In some cases, you will want to read only a specific column from the range. MPL
alows you to specify which column to read by entering a comma and the column number after the
range name. For example:

INDEX
cuts := EXCELRANGE('Cutstock.x1s","CutsTable", 1);

Thiswill read only the first column of the CutsTable range.

Also note, that if you are reading multiple indexes and data vectors from the same Excel
spreadsheet, you can omit the workbook filename on al entries after the first one.

165

Part Il The MPL Modeling Language

6.11 Import Index from Database

MPL alows you to import the elements for an index directly from a database. In the INDEX
section, where you define the index, enter the keyword DATABASE after the assignment symbol
(:=) followed by parentheses containing the table name and the column/field name you want to
import from.

INDEX
depot := DATABASE("Depots","DepotID");

In the above example, MPL will open the database table Depots, locate the column DepotlD, and
then read in the entries for the index depot. In most cases the imported indexes are the key fields
for the table.

To make sure there are no name conflicts when sending the problem to the solver, keep at least
the first three characters of the named subscripts distinct. If that is difficult, you can abbreviate
the names by importing another column from the database table containing shorter names. To
import the short name column enter the keyword BECOMES followed by the column name inside
the parenthesis. Hereisan example:

INDEX
depot := DATABASE('"Depots", "DepotName", BECOMES "DepotID");

It is not aways desirable to have the same subscript length for al indexes in the model.
Therefore you can use a different length for each named index by following the index definition
with acolon and anew length. For example:

INDEX
depot := DATABASE("Depots","DepotID"):4;
This definition sets the subscript length for the month index to 4.

In some instances you do not want to create the index with al the elements that are in the table.
In that case, you can enter the keyword WHERE followed by a condition on one of the columns.
Hereisan example:

INDEX
depot := DATABASE("Depots", "DepotID", WHERE Region="NorthWest");

For further information on importing indexes please refer to Chapter 11.1: Import Indexes from
Database.

166

Chapter7 Data for the Model

CHAPTER 7

DATA FOR THE MODEL

In the data section you specify the data coefficients to be used in the model. These can be scalars,
vectors, and even arrays of multiple dimensions. By defining the data coefficients separately, the
actual model is free of numerical data and thus easier to maintain. Furthermore, by using the
import feature you can store the data in a separate file and retrieve it when generating the input
file.

Each data coefficient is given a separate name that is used throughout the model. There are two
different types of data objects that M PL recognizes; data constants or scalars that are mainly used
to aid readability and make the model easier to maintain; and data vectors which are used when
the coefficients come in lists or tables of numerical data. The following sections describe how
both are specified.

167

Part Il The MPL Modeling Language

7.1 Data Constants

Data constants or scalars are mainly used to aid readability and make the model easier to
maintain. Y ou can specify them in two different ways. by assigning them avalue in the model or
interactively by prompting the user for the value when the model fileis read.

To use the interactive method, place a question mark following the coefficient value.

Example:
DATA
InventoryCost = 8.8;
MaximumInventory = 12007?;

Here the InventoryCost is given the value 8.8 which will be used whenever the constant is
referred to in the model.

The value for Maximuminventory is prompted at runtime as in the Data Request dialog box like
the one shown below in Figure 7.1. 1t will then be used in the model like any other constant.

Data Request Dialog I

Pleaze enter yalue far 't axmuml nventang's

(i]4 I Cancel

Figure7.1: Data Constant Entered at Run-time

168

Chapter7 Data for the Model

Named data constants can be used almost anywhere in the model. This can be used to help make
the model more dynamic and easy to change. Here are some examples:

DATA
NrOfYears =10 ?;
December = 125
HolidayMonth = 7;
INDEX
i := 1..NrOfYears;
j := 1..December;
VARIABLES

Inventory[i,j];
Production[i,j];

BOUNDS
Inventory[i,December] > 200;
Production[i,HolidayMonth] < 100;
END

The value of the named data constant NrOfYears is prompted at run-time using the default value
of 10. It isthen used to define the index i. The HolidayMonth constant is used to enter a fixed
month for the Production variable.

Like with indexes and data vectors, MPL allows you to import data constant entries from
datafiles and Excel spreadsheets. Please note, that since data constants are not indexed they
cannot easily be imported from databases. To read from a datafile just enter the DATAFILE
keyword followed by the filename in parentheses. To read from an Excel spreadsheet, enter the
EXCELRANGE keyword followed by the workbook filename and the cell range in parentheses.
For example:

DATA
NrOfYears = DATAFILE("years.dat");
December = 12;
HolidayMonth = EXCELRANGE ("worksched.xls", "B5");

169

Part Il The MPL Modeling Language

7.2 Data Vectors

Data vectors are used when the coefficients come in lists or tables of numerical data. They can be
specified as lists of numbers in the model file or retrieved from an externa file. With both
methods you must specify the name of the data vector and the indexes that define the domain of
the vector. To specify the indexes used, list the index names in brackets immediately after the
vector name and separate them with commas.

The simplest way to define the values of the data vector is to enter them as a list of numbers
directly after an assignment symbol. Surround the list with parentheses and separate each number
by either space, comma, or both. To enter a zero value, you can aternatively enter only the
commato reduce typing.

DATA
Price[product]
ProdCapacity[product]

(105.09, 234,00, 800.00);
1000 (105, 42, 14);

Here price is a vector over one dimension product. Because there are three products, a list of
three numbers is given. There must be enough numbers to satisfy the size of the vector, but
additional values are allowed and simply ignored.

In ProductionCapacity 1000 is used as a multiplier. The actual values for the vector will be
(105000, 42000, 14000).

Alternatively, you can put a multiplier in front of the parentheses and it is then applied to each
number in the list. This feature reduces typing and increases the models readability.

As an additional feature, when defining a data vector, constant formulas can be used instead of
just numbers for the elements. This includes features such as products, fractions, and arithmetic
functions. Hereisan example:

A[i] := (2, -4+3, 2*SQR(3)+2, 1/(2+1), last(i));

When specifying tables of two or more dimensions, you can use just one set of parentheses for the
whole list or use new parentheses for each dimension.

Cli,j1 := (4,2,5,6, or Cli,j1 := ((4,2,5,6),
8,3,8,4, (8,3,8,4),
3,6,1,0); (3,6,1,0));

170

Chapter7 Data for the Model

7.3 Sparse Data Vectors

MPL allows you to choose between a dense or sparse storage for the specification of data vectors.
MPL is typically a little faster when it processes dense data as compared to sparse data, but
storage is needed for every element. Therefore, when you are working with large matrixes
containing relatively few nonzero elements, sparse storage become significantly more effective.

To define a sparse data vector, you surround the list of elements with brackets instead of the usual
parentheses. Inside the brackets you list each nonzero element preceded by its subscript:

A[i] := [2: 4.0, 5: 3.0, 6: -4.0] ;
ProdCost[plant, machine, product] := [

pi, mi1, A1, 73.30,
pi, mi1, A2, 52.90,
pi, mi2, A3, 65.40,
p1, mi3, A3, 47.60,

p2, m21, A1, 79.00,
p2, m21, A3, 66.80,
p2, m22, A2, 52.00,

p3, m31, A1, 75.80,
p3, m31, A3, 50.90,
p3, m32, Al, 79.90,
p3, m32, A2, 52.10,

p4, m41, A1, 82.70,
p4, m41, A2, 63.30,
p4, m41, A3, 53.80];

In most cases when you have larger data sets the data itself is normally not specified in the actual
model file but instead either is stored in an external datafile or a database table. See Chapter 7.5
Reading Data from External Datafiles and Chapter 7.6 Import Data from Database for further
information.

MPL also alows you to separately specify whether the data will be stored sparse or dense in
memory, independently of how it is defined in the model. Simply put either of the keywords
DENSE or SPARSE in front of the section keyword DATA.

171

Part Il The MPL Modeling Language

7.4 Data Arithmetic

In MPL previously defined data vectors can be used to construct new data vectors. Y ou construct
a data vector by placing an arithmetic formula, instead of the usual list of data elements, in the
DATA section. Here are some examples:

DATA
Ali,j1 =
B[i] = ...
Cli,j1 := A + B/3;
Total = SUM(i,j: A);

If the formula starts with a data vector, its type is used to decide whether the resulting vector is
dense or sparse. If the formula is a summation, the resulting vector is aways dense. If the
formula does not start with a data vector or a summation or you need to override the default type,
you can use the keywords DENSE() and SPARSE() to specify the type. For example, to specify
the C[i,j] vector as stored sparse, use:

Cli,j] := SPARSE(A + B/3)

7.5 Reading Data From External Files

MPL supports reading in data from external text files. Text files are mainly used when the data
for the model is stored locally, generated by other programs or by running SQL queries from a
database. The data can be read either in a dense format, where al numbers are specified, or in a
gparse column format, where only the numbers than have non-zero values are included. MPL can
also read single scalar numbers for data constants. The data file can be any free-format text file,
which gives the developer the ability to read the data from different sources without first requiring
a conversion to a standard format. Reading data from text files is one of the fastest ways
available to import datainto MPL.

When reading data from a text file, use the keyword DATAFILE followed by a filename inside
parentheses. If you use any characters in the filename, such as ‘-’ and ‘#’, that have specia
meaning to M PL, you can enter them by including the filename in double quotes (*).

Demand[product,month] := 1000 DATAFILE("demand.dat");

In our example, the demand vector has 36 values, 12 months times 3 products, which are stored in
the file demand.dat. Each number in the file is multiplied by 1000 asit isread. The followingis
an example of adata file with demand values for each product and month.

172

Chapter7 Data for the Model

{ Demand.dat }

! Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

50, 60, 70, 80, 90, 100, 110, 120, 120, 120, 110, 100
24, 30, 36, 42, 48, 52, 50, 48, 44, 40, 36, 32
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 13

Thefile is a free-format text file, in which numbers are read in the order they appear. Separate
the numbers with commas or spaces and make sure there are enough numbers to satisfy the size of
the vector. In order to use comments in the DATAFILE insert everything inside curly braces for
multi-line comments and following an exclamation mark for single line comments. See Chapter
5.2: Basic Input Elements for more information on inserting comments.

MPL allows you to read multiple data vectors and simple data constants from the same datafile.
Simply group them together in the data section and give the same filename inside the parentheses.
MPL will then continue reading the values from where it left off from the previous definition.

Sometimes, the data you need to read is sparse, meaning that not all the index entries have values.
In this case, to read the sparse data from an external file, use the keyword SPARSEFILE instead
of DATAFILE. MPL then expects both the subscripts and the values for each entry in the given
file. Hereisan example that shows how you can read a sparse datafile into a data vector:

ProdCost[machine, product] := SPARSEFILE("prodcost.dat");

Thefile ‘produce.dat’ could look something like:

machi, prodi, 73.30,
machi, prod2, 52.90,
machi, prod3, 65.40,
machi, prod4, 47.60,
mach2, prodi, 79.00,
mach2, prod3, 66.80,
mach3, prod2, 52.00,
mach3, prod3, 53.80

If the file you want to read the data elements from contains other columns of data, MPL allows
you to specify which column is chosen, by adding a comma and a column number after the
filename inside the parentheses.

ProdCost[machine, product] := SPARSEFILE("prodcost.dat", 4);

Thiswill read the production cost values from the fourth column of the datafile. Hereisasample
of the datafile produce.dat:

machi, prodi, 450, 73.30,
machi, prod2, 500, 52.90,
machi, prod3, 350, 65.40,
machi, prod4, 425, 47.60,
mach2, prodi, 355, 79.00,
mach2, prod3, 500, 66.80,
mach3, prod2, 344, 52.00,
mach3, prod3, 250, 53.80

173

Part Il The MPL Modeling Language

7.6 Import Data from Excel Spreadsheet

Optimization in Microsoft Excel has over the years become popular because of the built-in solver
in Excel. Spreadsheet optimization allows users to create models that are easy to use, enabling
the user to quickly update the data and solve the model. Spreadsheets are efficient at handling
and managing two-dimensional dense data (rows and columns) and single scalar values.

Excel has the Visual Basic programming language built in, which enables easy pre- and post-
processing of the data. The solution from the optimization can then be used to update the
spreadsheet, and to create graphs that visually represent the solution.

Excel provides some excellent user-interface capabilities for optimization models. MPL builds
on this by offering the ability to import and export data directly from Excel ranges. This alows
the devel oper to use an Excel spreadsheet for the user interface and data manipulation while using
MPL to specify the model formulation. The model can then be solved with any solver supported
by MPL with no limits on the size, speed or robustness of the solution.

Furthermore, MPL is available as a part of the OptiMax 2000 Component Library, which is
specialy designed to embed optimization models into application programs, such as Excel.
OptiMax 2000 allows MPL models to be linked directly with the Visual Basic for Applications
language in Excel enabling the developer to create large-scale optimization models that can be
solved directly from an Excel spreadsheet. Please contact Maximal Software for more details.

In the DATA section, where you define the data vector, enter the keyword EXCELRANGE after
the assignment symbol (:=), followed by parentheses containing the Excel workbook filename and
the Excel range name you want to import from.

To give an example of how data is imported from an Excel range, here is an MPL statement that
is used to read in the pattern cuts generated for a cutting stock model:

DATA
CutsInPattern[patterns, cuts] := EXCELRANGE("Cutstock.xls", "Patterns");

In the above example, MPL will open the Excel spreadsheet Cutstock.xls, locate the range
Patterns, and then retrieve the entries for the M PL data vector CutslnPattern.

In some cases, you will want to read only a specific column from the range. MPL allows you to
specify which column to read by entering a comma and the column number after the range name.

The EXCELRANGE command is used when the data is stored in a dense format in the
spreadsheet. In some instances it is better to store the data in a sparse column format where the
first columns store the values for the indexes followed by columns containing the data values. In
this case you use the EXCELSPARSE command to specify that the data is to be read in a sparse
format.

174

Chapter7 Data for the Model

For example:

DATA
CutWidths[cuts]
CutDemand[cuts]

EXCELSPARSE ("CutsTable", 2);
EXCELSPARSE ("CutsTable", 3);

In this example the Excel range CutsTable contains three columns. The first column stores the
values for the index Cuts followed by two columns containing the widths and the demand for
each cut. The column number 2 given means the second column in the range while 3 specifies
the third column in the range.

If the Excel range contains the data as an Excel List there will be an extra row at the top of the
range that contains the name of each column. MPL allows you to skip that row automatically by
using the EXCELLIST command instead of the EXCELSPARSE command.

Also note, that if you are reading multiple indexes and data vectors from the same Excel
spreadsheet, you can omit the workbook filename on all entries after the first one.

175

Part Il The MPL Modeling Language

7.7 Import Data from Database

MPL allows you import the elements for a data vector directly from a database. In the DATA
section, where you define the data vector, enter the keyword DATABASE after the assignment
symbol (:=), followed by parentheses containing the table name and the column/field name you
want to import from.

DATA
FactDepCost[factory,depot] := DATABASE("FactDep","TrCost");

In the above example, MPL will open the database table FactDep, locate the columns TrCost,
FactID, and Depotl D, and then read in the entries for the data vector FactDepCost.

In some instances you do not want to read all the data elements that are in the table. In that case,
you can enter the keyword WHERE followed by a condition on one of the columns. Here is an
example:

DATA
FactDepCost[factory,depot] :=
DATABASE ("FactDep", "TrCost" WHERE Region="NorthWest");

In this example we only want to read the transportation costs from the FactDep table where the
Region column contains the entry North\West.

For further information on importing data vectors, please refer to Chapter 11.2: Import Data
Vectors from Database.

176

Chapter 8 Formulating the Model

CHAPTER 8

FORMULATING THE MODEL

177

Part I1l The MPL Modeling Language

8.1 Declaring Decision Variables

The decision variables are the elements under control of the model developer and their values
determine the solution of the model. Decision variablesin MPL are defined as they come in the
input file. The name can be of any length. It starts with aletter, with the remainder consisting of
letters and digits. MPL is case sensitive by default so you need to be careful to distinguish
between upper and lower case letters. If you want MPL not to be case sensitive you can change
the default by selecting MPL Language Dialog Box in the Options menu. See Chapter 4.9: The
Options Menu for further details.

There are two types of decision variables. plain variables and vector variables also called
subscripted variable. A plain variable is setup as a single column in the matrix that is sent to the
LP solver. A vector variable, on the other hand, is setup as range of columns in the matrix.

The DECISION VARIABLES section is mainly used to define subscripted or vector variables, but
plain variables can also be defined here. Vector variables must be defined before they are used in
the model, but with plain variables it is optional. Plain variables can either be defined in the
Decision Variable section or be introduced as they come into the model. It is recommended for
larger models to define plain variables in the Decision Variable section in order to decrease the
chance of errors occurring in the model. If you want to require plain variables to be defined you
set the Plain Variables must be defined option in the MPL Language Dialog Box in the Options
menu.

Variable Names

For each vector variable, enter the name and then specify what indexes are to be used by listing
them inside brackets just after the name. For plain variables, enter just the name. Y ou can use an
optional semicolon to separate each variable definition.

Because variable names in most LP solvers are limited to eight characters and the subscripts for
vector variables have to be included, only the first few characters are used when variable names
are generated for solvers by MPL. To make sure there are no name conflicts, keep the first few
characters distinct or use the becomes operator ‘- >’ to enter a shorter version of the name. This
feature allows you to use long, descriptive names in your MPL model, and at the same time meet
your LP package requirements for short names.

DECISION VARIABLES
Inventory[product,month] -> Invt;
Production[product,month] -> Prod;

178

Chapter 8 Formulating the Model

The preceding definition results in the generation of 108 variables (3 times 36). As an example of
how these variables are generated, hereisalist of al the Inventory variables:

Invtidan Invt2dan Invt3Jdan
InvtiFeb Invt2Feb Invt3Feb
InvtiMar Invt2Mar Invt3Mar
InvtiApr Invt2Apr Invt3Apr
InvtiMay Invt2May Invt3May
Invtidun Invt2dun Invt3dun
Invtidul Invt2dul Invt3dul
InvtiAug Invt2Aug Invt3Aug
InvtiSep Invt2Sep Invt3Sep
InvtiOct Invt20ct Invt30ct
InvtiNov Invt2Nov Invt3Nov
InvtiDec Invt2Dec Invt3Dec

Even though you can use fairly long names for variables in MPL you might want to use longer
names or a description for documentary purposes. MPL alows you to do that by following the
definition with the keyword 1S and a text description. If the description contains spaces you will
need to enclose it within quotation marks.

DECISION VARIABLES
Production[product,month]
IS "Production of each <product> per <month>";

Integer Variables

If some of the variables in the model are integer you can define them by putting the keyword
INTEGER in front of the keyword VARIABLES. For binary variables use the keyword BINARY.

INTEGER VARIABLES
Production[product,month];

MPL alows you aso to define integer and binary variables at the end of the model. For more
information see Chapter 8.6 Integer and Binary Variables.

Initial Values for Variables

When working with nonlinear models it is sometimes useful to be able to specify the initial values
for the variables. In MPL you can enter the keyword INITIAL after the definition of the variable
followed by a constant value or a data vector containing the initial values.

DECISION VARIABLES
Production[product] INITIAL InitProd[product];

For more information on reading nonlinear modelsin M PL, see Option Settings in Chapter 5.2
Basic Input Elements.

179

Part I1l The MPL Modeling Language

Where Conditions on Variables

Sometimes you want to be able to limit the number of variables defined in a vector dependent on
a data vector. In this case you can use a WHERE data condition following right after the
definition of the vector. This will result in only those variables being created where the condition
IS met.

DECISION VARIABLES
Production[product,month]
WHERE (Demand[product,month] > 0);

Export Variable Values to Data Files

After optimizing the problem, MPL can export the variable values to separate data files which
can be used to report the solution back to the user. Inthe DECISSION VARIABLES section, where
you define the variable vector, enter the keyword EXPORT TO, followed by the keyword
SPARSEFILE and parentheses containing the filename you want M PL to export to.

Prod[i,j] EXPORT TO Sparsefile("prod.dat");
This will write the activity and the reduced cost values for each entry of the Prod variable vector

to atext file in the standard sparse format. Since thisfile is a standard sparse data file, MPL can
read these values back later into other models.

You can change which values will be exported by entering one or more of the following
keywords directly after the keyword EXPORT: Activity, ReducedCost, ObjectCoeff, ObjectLower,
ObjectUpper. If you want all of above entries you can use instead the ALL keyword.

Prod[i,j] EXPORT ALL TO Sparsefile("prod.dat");

MPL also alows you write solution values for variable vectors to data files in the same format as
isused in the standard M PL solution files.

Prod[i,j] EXPORT TO Solutionfile("prod.sol");

When exporting to text files using the solution file format all the options the Solution File Options
dialog box will have effect.

180

Chapter 8 Formulating the Model

Export Variable Values to Excel Spreadsheet

MPL can also export the variable values to an Excel spreadsheet where it can be used to report
the solution back to the user. Following the declaration of the variable vector, enter the keyword
EXPORT TO, followed by the keyword EXCELRANGE and parentheses containing the Excel
workbook name and the Excel range name you want to export to. For example:

DECISION VARIABLES
PatternCount[patterns]

EXPORT TO EXCELRANGE("Cutstock.xls","PatCount");

In the above example, MPL will open the Excel spreadsheet Cutstock.xls, locate the range
PatCount and then export the solution values for the variable vector PatternCount.

The EXCELRANGE command can also be used to export activity values for plain variables. If
the range give contains more than one cell, only the first cell will be used for the exported value.

Y ou can aso export the data in sparse column format where the first columns store the values for
the indexes followed by a column containing the variable values. In this case, you use the
EXCELSPARSE command to specify that the data is to be written in a sparse format. For
example:

DECISION VARIABLES
ExcessCuts[cuts]

EXPORT TO EXCELSPARSE("Cutstock.xls","CutsTable", 4);

In this example the Excel range CutsTable contains four columns, The first column stores the
values for the index Cuts followed by two columns containing the widths and the demand for
each cut. The activities values for the ExcessCuts variable vector will be stored in the fourth
column of the CutsTable range.

If the Excel range contains the data as a Excel List there will be an extra row at the top of the
range that contains the name of each column. MPL allows you to skip that row automatically by
using the EXCELLIST command instead of the EXCELSPARSE command.

If you are writing multiple variable vectors to the same Excel spreadsheet, you can omit the
workbook filename on all entries after the first one. Please note, that since variable exports are
performed at a different time than imports, you will need to specify the spreadsheet workbook
filename on the first export statement even if it is the same as the one you were importing from.
Alternatively, you can enter the name for the Excel workbook in the OPTIONS section. Please
refer to Chapter 4.9 for more details on the options section.

181

Part I1l The MPL Modeling Language

Export Variable Values to Database

After optimizing the problem, MPL can export the variable values to the database where it can be
used to report the solution back to the user. Following the declaration of the variable vector, enter
the keyword EXPORT TO, followed by the keyword DATABASE and parentheses containing the
table name and the column name you want to export to. For example:

DECISION VARIABLES
FactDepShip[factory,depot]

EXPORT TO DATABASE('FactDep","Shipment");

In the above example, MPL will open the database table FactDep, locate the columns Shipment,
FactID, and DepotID, and then export the solution values for the variable vector FactDepShip.
For further information on exporting variable values please refer to Chapter 11.3: Export
Variable Values to Database.

182

Chapter 8 Formulating the Model

8.2 Defining Macros

Macros are an important feature of the MPL modeling language. They can be used in severa
ways that can be helpful in maintaining your model, such as defining a specific part of the model
into a macro that will enable you to use it repetitively, thus making the model easier to maintain.
Macros can also be used to give complex expressions a distinctive name and then refer to these
complex expressions throughout the model by the macro. Finally, you can use them to eliminate
unnecessary constraints from the model and thereby reduce the size of the problem to be solved
by the LP package.

Y ou define each macro item with a name on the left side and a formula or an expression on the
right side. Whenever the macro name is encountered in the model, the formula is used instead.
The formula cannot be indexed. However, you can use summations and fixed vector items in the
formula. A semicolon is required after each macro definition.

MACROS
TotalRevenue = SUM(product,month: price * Sales) ;
TotalCost = SUM(product,month: InventoryCost * Inventory
+ ProductionCost * Production);
MODEL
MAX Profit = TotalRevenue - TotalCost ;

In this example the macros are used to give the above summations a descriptive name. The macro
named Revenues is defined as the sum of the revenues of all three products over the whole year.
The Total Cost macro is the total cost of the inventory storage plus the total cost of the production.
When these macros are encountered in the model, their respective summations they represent will
be placed into the model. See Chapter 9.9 Using Macros for more information on how to refer to
macros in the model.

After the model has been solved, M PL will create a solution file that contains the solution values
of the defined macros in the model. For example:

MACROS
Macro Name Values
TotalRevenue 1298181.8182
TotalCost 753615.1818

183

Part I1l The MPL Modeling Language

8.3 The Objective Function

The objective function is the first part of the model formulation and is required. It starts with the
keyword MAX or MIN depending on whether you want to maximize or minimize. You can aso
use the longer version of the keywords MAXIMIZE and MINIMIZE. The following diagram
shows the basic structure of the objective function.

MAX bj ective nanme = Formul a

The name of the objective function is optional. It can be of any length, but cannot contain spaces
or other delimiters. If you omit it, the name defaults to ‘Z’. An eguals sign follows the name.
Finally, you enter the formulafor the actual function.

Y ou can extend the objective function over many lines. When it is complete, mark the end with a
semicolon and/or the keyword SUBJECT TO.

Y ou can use a constant value in the objective function. MPL places the constant directly into the
generated objective function if the LP package supports that feature. If not, MPL will add the
constant to the solution after optimizing.

Examples:

MAX 3x1 + 5x2 ;

MIN Labor_Cost = 3.00 Shift1
3.45 Shift2
4.50 Extrat
5.18 Extra2
120000 ; ! fixed cost

+ + + +

MAXIMIZE Profit = Revenues - TotalCost ;

MINIMIZE Cost = SUM(products,months : InventoryCost) ;

184

Chapter 8 Formulating the Model

8.4 Specifying Constraints

The constraints for the model follow immediately after the objective function. Either the keyword
SUBJECT TO or a semicolon is required as a separator between the objective function and the
congtraints.

There are two types of constraints:

Plain constraints that are regular single constraints, similar to those LP packages accept in their
input files.

Vector constraints that are defined over indexes and MPL then expands to alist constraints when
generating the model.

Plain Constraints

Plain constraints are constraints that are defined without any indexes. They are normally used
with constraints containing plain variables and fixed vector variables. Plain constraints can aso
contain summations of vector variables as long as all the indexes for the variables are accounted
for. Thefollowing diagram illustrates the structure for plain constraints.

Constraint name : formula conparison fornula ;

Naming the Constraint

The name of the constraint is optional. It can be of any length, but must not contain spaces or
other delimiters. If you omit the name, it defaultsto ‘ci’, wherei is the number of the constraint.
The constraint name must be followed by a colon.

Using meaningful names for the constraints is a good modeling practice and makes the model
easier to work with. The constraint name you provide is used where applicable when M PL
solves the model or generates input files.

185

Part I1l The MPL Modeling Language

The Constraint Equation

The constraint name is followed by an equation, which is entered as two formulas, separated by a
comparison. The comparison between the formulas can be any of the following:

Lessthan or equal constraint: < <=
Equal constraint: =
Greater than or equal constraint: > >=

The reason there are two formulas in each constraint is so that variables can be entered on both
sides of the comparison. This can enhance the readability of the model. For exampleif avariable
has a negative coefficient it can be moved over to the other side of the comparison in order to
make it positive. When MPL reads in the model, it moves all variables to the left side, all
constants over to the right side, and changes signs where necessary.

If you refer to a variable more than once in a constraint, the coefficients will be added together in
the model. For more information on writing formulas, you can refer to Chapter 9 Building
Formulas.

Examples:
3 (Sb1 + Co1 + So1) = 2 (Sb2 + Co2 + So2) ;
Overtime : Over <= 50% * 170 Workforce

5
Production : SUM(shifts: Prod[shifts]) <= 3750 ;

Y ou can extend each constraint over many lines. Y ou must end each constraint with a semicolon
‘; " to separate it from the next constraint. Forgetting the semicolon is one of the more common
mistakes people make when formulating M PL models.

186

Chapter 8 Formulating the Model

Vector Constraints

Very often models contain constraints that are subscripted, called vector constraints. For
example, avector constraint can be defined in this way over a number of periods and products. A
vector constraint is entered by following the constraint name with alist of indexes inside brackets.
The index list can contain one or more indexes. When MPL parses the model, it will expand
each vector constraint to a list of plain constraints, based on the contents of the index list. A
vector congtraint is defined as shown in the diagram below:

Constraint name [index list] -> abbreviation

Naming Vector Constraints

The constraint name in MPL, which is required for vector constraints, can be of any length. The
name cannot contain any spaces or other delimiters. See Chapter 5.2 Basic Input Elements for
more information on names and list of delimiters.

In some cases you may want to use MPL to generate an input file for the LP package. Most LP
packages are limited to eight characters for names and therefore only the first few characters will
be used when the names are built by MPL. Therefore, to avoid name conflicts, it is necessary to
use the becomes operator ‘->' to abbreviate the name. This feature alows you to use long,
descriptive names in your MPL model, and at the same time meet your LP package requirements
for short names.

Example:

SUBJECT TO
InventoryBalance[product,month] -> Ibal:

Even though you can use fairly long names for constraints in MPL you might sometimes want to
use longer names or description for documentary purposes. MPL alows you to do that by
following the definition with the keyword 1S and a text description. [f the description contains
spaces you will need to enclose it with quotation marks.

Example of the IS command:

SUBJECT TO
InventoryBalance[product,month]
IS "Balance of Inventory for each <product> per <month>";

187

Part I1l The MPL Modeling Language

Using Subranges of Indexesin Constraints

If you do not want to generate constraints for all values of a particular index you can use a
subrange of theindex. Y ou can also use subranges when you want to use different constraints for
certain values of theindex, i.e. only the first index value.

Examples:

InventoryBalance[month=Jdan..Nov] :
InventoryBalance[month<=dun] :
InventoryBalance[month=Dec] :

The Constraint Equation

Aswith plain constraints, the constraint definition is followed by an equation, which is entered as
two formulas, separated by a comparison. The formulas in vector constraints can contain vector
variables, coefficients and summations.

Example:
InventoryBalance[product,period] -> 1InvB :
Inventory = 1Inventory[period-1] + Production - Sales ;

In the example above, each of the variables referred to is a vector variable defined over the
indexes product and period. When reading the model, MPL will map these variable indexes to
the same indexes used to define the constraint InventoryBalance. Each index for a referred
variable must be accounted for in either the constraint or an enclosed summation. For example, if
the Inventory variable had been defined with a third index, that could not be mapped, MPL will
report this with an error message.

Where Conditions on Constraints

Sometimes you want to be able to limit the number of constraints defined in a vector constraint
dependent on the contents of a data vector. In this case you can use a WHERE data condition
following right after the definition of the vector. This will result in only those constraints being
defined where the condition is met.

Example of where condition:

SUBJECT TO
InventoryBalance[product,month]
WHERE (month > Jan) : .

188

Chapter 8 Formulating the Model

Export Constraint Values to Data File

After optimizing the problem, MPL can export the constraint values to separate data files which
can be used to report the solution back to the user. Following the constraint declaration, enter the
keyword EXPORT TO, followed by the keyword SPARSEFILE and parentheses containing the
filename you want M PL to export to.

InvtBal[i,j] EXPORT TO Sparsefile("invtbal.dat");

This will write the dack and the shadow price values for each entry of the InvtBal constraint
vector to atext file in the standard sparse format. Y ou can change which values will be exported
by entering one or more of the following keywords directly after the keyword EXPORT: Activity,
Sack, ShadowPrice, RhsValue, RhsLower, RhsUpper. If you want al of above entries you can
use instead the ALL keyword.

MPL also alows you write solution values for constraint vectors to data files in the same format
asisused in the standard MPL solution files.

ProdCap[i,j] EXPORT TO Solutionfile("prodcap.sol");

When exporting to text files using the solution file format all the options the Solution File Options
dialog box will have effect.

Export Constraint Values to Excel Spreadsheet

MPL can also export the constraint values to an Excel spreadsheet where it can be used to report
the solution back to the user. Following the declaration of the constraint vector, enter the
keyword EXPORT TO, followed by the keyword EXCELRANGE and parentheses containing the
Excel workbook name and the Excel range name you want to export to. For example:

SUBJECT TO
CutReq[cuts]:

EXPORT ShadowPrice TO EXCELRANGE ("ShadowPrice") : ...

In the above example, MPL will open the Excel spreadsheet Cutstock.xls, locate the range
ShadowPrice and then export the shadow prices for the constraint vector CutReq.

The EXCELRANGE command can also be used to export solution values for plain constraints. If
the range give contains more than one cell, only the first cell will be used for the exported value.

189

Part I1l The MPL Modeling Language

Y ou can aso export the data in sparse column format where the first columns store the values for
the indexes followed by a column containing the constraint values. In this case, you use the
EXCELSPARSE command to specify that the data is to be written in a sparse format. For
example:

SUBJECT TO
CutReq[cuts]:

EXPORT ShadowPrice TO EXCELRANGE("'CutsTable", 5) : ...

In this example the Excel range CutsTable contains four columns, The first column stores the
values for the index Cuts followed by three columns containing the widths, the demand, and the
excess for each cut. The shadow price for the for the CutReq constraint vector will be stored in
the fifth column of the CutsTable range.

If the Excel range contains the data as a Excel List there will be an extra row at the top of the
range that contains the name of each column. MPL allows you to skip that row automatically by
using the EXCELLIST command instead of the EXCELSPARSE command.

If you are writing multiple constraint vectors to the same Excel spreadsheet, you can omit the
workbook filename on all entries after the first one. Please note, that since variable and constraint
exports are performed at a different time than imports, you will need to specify the spreadsheet
workbook filename on the first export statement even if it is the same as the one you were
importing from. Please refere to Chapter 4.9 for more details on the options section.

Export Constraint Values to Database

If you are using the Database Connection option you can export the constraint solution values
back to the database after solving the problem. This allows you to present the solution to the end-
user using the reporting capabilities of the database package.

In order to export constraint solution values follow the definition of the constraint with the
keyword EXPORT TO followed by the keyword DATABASE and parentheses containing the table
name and the column/field name you want to export to.

SUBJECT TO
FactoryCapacity[factory]
EXPORT ShadowPrice TO DATABASE("Factory","ShadowPrice"):

In the above example, M PL will open the database table Factory, locate the columns FactID and
ShadowPrice, and then export in the shadow price values for the constraint FactoryCapacity. For
further information on exporting constraint values please refer to Chapter 11.4: Export Constraint
Valuesto Database.

190

Chapter 8 Formulating the Model

8.5 Bounds on Variables

Most optimizers can handle upper and lower bounds on variables efficiently without making them
regular constraints. MPL allows you to enter bounds on variables in the BOUNDS section
following the constraint.

BOUNDS
X <= 4*12 ;
z_bounds : 2 <= z <= 8 ;
CloseInv : Inventory[December] = 20000;

Just as with constraints, you separate bounds with a semicolon. To make your formulation easier
to read, you can use bound names in the same way as constraints. The bound names can be of
any length, but cannot contain spaces or other delimiters.

Y ou can enter variable bounds in any of the following forms:

1) variable >= constant ; { lower bound }
2) variable <= constant ; { upper bound }
3) constant <= variable ; { lower bound }
4) constant >= variable ; { upper bound }
5) variable = constant ; { fixed variable }
6) constant = variable ; { fixed variable }
7) constant <= variable <= constant;

8) constant >= variable >= constant;

Thefirst six are the same input forms you would use for standard constraints. Forms 5 and 6 are
used to fix avariable to a constant value so it will not be changed during the optimization. Forms
7 and 8 can be used when a variable has both lower and upper bounds to make the expression
simpler and easier to read.

The constant values in bounds can be entered using standard coefficient arithmetic. For more
information, refer to Chapter 9.1: Coefficients for Variables.

Boundson Vector Variables

Bounds on vector variables can be entered with a bound name and a corresponding index list for
the bound, similar to the way vector constraints are specified.

Y ou can also enter the bound without a bound name and the index list. In thisinstance M PL will
look up the declaration of the variable for the index list.

191

Part I1l The MPL Modeling Language

If you want to use a subrange of an index, instead of the declared index you can enter it inside the
brackets.

BOUNDS
MaxInv[month<=Nov] : Inventory <= 90000 ;
Inventory[month=Dec] = 90000 ;

Sales <= Demand ;

Free Variables

MPL assumes that al decision variables are non-negative. Y ou can override that assumption, by
defining the variables as “free”, which will then make their values unrestricted. To define free
variables, use the keyword FREE followed by a list of the variables that are free. This free
section can be placed anywhere after the constraints section. The variables can be both plain and
vector variables.

FREE
Inventory[month] ;

In this example al the inventory variables will be declared as free variables.

Semi-Continuous Variables

MPL aso alows you to define semi-continuous variables for solvers that support that feature.
Y ou specify a variable to be semi-continuous by using the keyword SEMICONT followed by the
variable name. The semi-continuous section can be placed anywhere after the constraint section.

BOUNDS
MinMach <= MachineHours[machine] <= MaxMach;

SEMICONT
MachineHours[machine] ;

In this example, the MachineHours variable is defined as semi-continuous with a feasible range
which includes any value between its upper and lower bounds as well as zero.

192

Chapter 8 Formulating the Model

8.6 Integer and Binary Variables

MPL can handle both integer and binary variables. To define integer variables, use the keyword
INTEGER followed by list of the variables that are integer. The integer section can be placed
anywhere after the constraints section. The variables can be both plain and vector variables. For
more information on decision variables see Chapter 8.1 Declaring Decision Variables.

Binary variables are integer variables that can only have values of zero or one. Y ou define them
in the same way as integer variables, using the keyword BINARY instead.

INTEGER
Production[month,product] ;
BINARY
ShopOpen ;

MPL will direct the solver to use integer and binary variables if they are supported by the solver.

Special Ordered Sets of Variables

MPL allows you to define Special Ordered Sets (SOS) of variables in the model. For each set,
use one of the keywords SOS1, SOS2, or SOS3, and follow it with a list of the variables that
belong to the set. This section can be anywhere after the constraints section. The variables can
be either plain or structured. If you need to specify the reference row use the keyword
REFERENCE immediately after the SOS keyword.

S0S1
x1, x2, x3 ;

S0S2 REFERENCE Capacity;
Produce[product];

Please check if the solver you are using supports SOS by referencing the solver documentation.
MPL will generate the sets for the solver if they are supported, but will otherwise ignore them.

MPL aso supports specifying multiple SOS sets for subsets of a vector variable range. This can
be very useful when you have a vector variable with multiple indexes, but there is a separate set
for each element of one or more of the indexes. The indexes that are used in each set are
specified using the SET keyword as shown here below:

S0S1
s[i]: SET(k: x[i,K]);

This will create a separate SOS set for each i with each set containing the x variables for all the
elements of the k index.

193

Part Il The MPL Modeling Language

Chapter 9 Building Formulas

CHAPTER9

BUILDING FORMULAS

195

Part Il The MPL Modeling Language

9.1 Coefficients for Variables

Every variable has a coefficient in each constraint, which you can specify. If the variable is not
mentioned in the constraint the coefficient value is zero. If there is a variable, but no coefficient
is given, the default value is one. The coefficient can either be placed in front of the variable or
trailing it.

You can enter coefficients as ssmple numbers or as any combination of products, fractions,
percentages, and arithmetic functions. Parentheses containing constant expressions can also be
used in the denominators of the coefficients.

MPL evaluates those expressions when it reads the model file, and puts the results in the input
file. This capability enables you, for example, to enter fractions with complete accuracy. Named
data constants declared in the DATA section can be used as you would any other numbers.

Examples of coefficients:

4 { =4.0 }
1/8 { = 0.33333333333 }
1/(3+5) { =0.125 }
2 * InvtCost { =2*8.8=17.6 }
1.82 / 24.5% * 53 { = 285.55102041 }

In the fourth line it is assumed that the InvtCost is a named data constant which has been defined
as 8.8.

196

Chapter 9 Building Formulas

9.2 Using Arithmetic Functions

Arithmetic functions are available in MPL when specifying coefficient values. They can be used
in the model wherever you use coefficients.

The available functions are listed here bel ow:

Arithmetic functions:

ABS (X) Absolute value of x

EXP (x) Exponential of x

LOG(x) Natural logarithm of x

LOG10(x) 10 logarithm of x

PI() The value of Pi

POWER (x,n) Raises a number x to a power of n
RANDOM (n) Random generated value

SIGN(x) Sign of x

SQR(x) Square of x

SQRT(x) Square root of x

Trigonometric functions:

ACOS (x) Inverse cosine of x, cos'(x)

ACOSH (x) Inverse hyperbolic cosine of x, cosh'(x)
ASIN(x) Inverse sine of x, sin'(x)

ASINH(x) Inverse hyperbolic sine of x, sinh'(x)
ATAN (x) Inverse tangent of x, tan'(x)

ATANH (x) Inverse hyperbolic tangent, tanh'(x)
COS(x) Cosine of x, cos(x)

COSH Hyperbolic cosine of x, cosh(x)

SIN(x) Sine of x, sin(x)

SINH Hyperbolic sine of x, sinh(x)

TAN(x) Tangent of x, tan(x)

TANH (x) Hyperbolic tangent, tanh(x)

Integer functions:

CEIL(x) Next higher integer value of x

FLOOR(x) Next lower integer value of x

ROUND (x) Rounding to the nearest integer value of x
TRUNC (x) Truncating to the nearest integer value of x

Data vector functions:

MAX (A) Maximum value of a data vector A
MIN(A) Minimum value of a data vector A
AVG (A) Average value of a data vector A

197

Part Il The MPL Modeling Language

The arithmetic functions expect a constant value (which can be a coefficient formula)or a
datavector as argument, and return areal number. The functions operate on real numbers, except
NRT, LOG, and LOG10 that take only positive numbers, EXP that takes only values less than
40, PI that has no arguments, and RANDOM that takes either no argument (returns real number
between 0 and 1) or whole numbers (returns a whole number less than argument). You can also
set a new seed value for the RANDOM function by adding seed=number after the argument. The
integer functions expect a constant value as argument and return a whole number which can be
used in subscript formulas. The data vector functions expect a defined data vector as argument
and return areal number.

Examples of functions:

ATAN(3.1415) ;
SOR(183/2);
RANDOM (100, seed=42) ;

AVG (Demand) ;

9.3 Using Variables in Formulas

The decision variables are the elements under control of the model developer and their values
determine the solution of the model. Decision variablesin MPL are defined as they come in the
input file. The name can be of any length. It starts with aletter, with the remainder consisting of
letters and digits. MPL is case sensitive by default so you need to be careful to distinguish
between upper and lower case letters. If you want MPL not to be case sensitive you can change
the default by selecting MPL Language in the Options menu. See Chapter 4.9: The Options
Menu for further details.

There are two types of decision variables: plain variables and vector variables (some-times called
subscripted variables). A plain variableis setup as a single column in the matrix that is sent to the
LP solver. A vector variable, on the other hand, is setup as range of columns in the matrix. The
DECISON VARIABLES section is used to define the vector variables. See Chapter 8.1
Declaring Decision Variables for further details.

The most important thing to remember when referring to vector variables is that all the indexes
defined for the vector must be accounted for in the domain, either by the constraint specification,
the enclosing summation, or the subscript.

Vector variables can be referred in the model in a number of ways. The quickest is to enter the
vector without the indexes and let MPL figure it out from the definition. Another way isto write
the vector as it was defined, with all the indexes listed, for example Inventory| product,month] .
The order of theindexesis actually irrelevant; M PL gets the correct order from the definition.

198

Chapter 9 Building Formulas

Sometimes the index of the constraint and the index of the vector may have to differ by some
offset, for example, when the inventory for each month depends on the inventory of the previous
month. Y ou can enter this by using an offset value, which can be specified as a constant, a data
vector or an index. To specify the offset value, the appropriate index is followed by either a plus
or minus sign and the slide value. For example:

Inventory = 1Inventory[month-1] + Production - Sales;
When generated, the last constraint would look like this:
InvtiDec = 1InvtiNov + ProdiDec - SaleiDec;

In the constraint for the month of December, the November subscript is used for the initial inven-
tory. This method works for any integer offset value, and the relevant index is the only one that
must be specified. Entries that fall out of bounds are ignored. For example, the constraint for
January would be;

Invtidan = Prodidan - SalesidJan;

Vaues of index variables can also be fixed or set to a specific value, rather than range over the
index domain. Simply use the value in place of the index variable. In that case, the order of the
indexes becomesimportant. Asarule, when afixed value is used, all indexes should be specified
in the same order as when the vector was defined. For example:

Inventory[1,December] = 20000;

Another way to implement fixed values is to use subindexes in the constraint specification with a
range of asingle value. For more details see Chapter 8.4: Jpecifying Constraints.

199

Part Il The MPL Modeling Language

9.4 Formula Terms

The building block of the objective function and the constraints is a formula which specifies the
coefficients to the variables. Variables that are not mentioned will automatically have a
coefficient of zero.

When you are working with the objective function or a simple constraint, the formula term
consists of a variable and its associated coefficient, or just a single constant. The coefficient can
either be placed in front of the variable or trailing it. These terms are then added together to make
aformula.

Examples of formulas:

200 Shift1ProdA + 400 Shifti1ProdB
50% * 170 Workforce - HoursOvertime
3x + y/3 - 67.33%*47% z + 1.32/(45%+10%)

Terms in structured constraints consist of coefficients, up to eight data vectors, and a decision
vector. For example, the following terms for the vector variable Inventory are legal:

8.8 Inventory
InvtCost * Inventory
12%/2 * InvtCost * InvtCount * Inventory

Note that the multiplication performed is a element wise multiplication, not a matrix
multiplication. When the vectors being multiplied have the same set of index variables, the result
is what you would expect. However, when the index variable sets are not identical, the vectors
are expanded and replicated in the missing dimensions.

200

Chapter 9 Building Formulas

For example, if Cost and Sales are defined by:

DATA
Cost[product]
Sales[month]

(1,2,3);
(12,16,18,20);

the vectors are first expanded to:

(12,12,12)
(16,16,16)
(18,18,18)
(20,20,20)

Cost = Sales =

and then multiplied element by element to obtain:

(12, 24, 36)
(16, 32, 48)
(18, 36, 54)
(20, 40, 60)

Cost * Sales =

When two or more variables share the same coefficient i.e. the coefficients have a common
divisor, you can factor them out using parentheses. This will be explained better in the
Parentheses section later in this chapter.

Simple terms are valid in structured constraints and get expanded appropriately. Sums and
macros are also valid terms and are discussed in later sections in this chapter.

201

Part Il The MPL Modeling Language

9.5 IF/IIF Conditions on Formula Terms

In some cases, aterm is not included in aformula or you need to choose between two terms based
on some data values. In those instances, you can use either an IF THEN ELSE condition, or |I1F
(Immediate IF) function to specify when each term should be included. For example, if you only
want to include variable vector Produce, if the corresponding data vector value for cost is greater
than zero, you can enter this as follows:

. IF (Cost[product] > 0) THEN Produce[product] ENDIF + ...

The same term can be entered using the IIF function statement which sometimes is more
readable:

. IIF(Cost[product] > 0, Produce[product]) + ...

When you are choosing between two terms based on a data value, you can use the ELSE
statement to specify the alternative term. For example:

InvtBal[prod, month]:
IF (month = 1) THEN StartInvt[prod] ELSE Invt[month-1] ENDIF + ...

Or, alternatively, using the I1F function statement:

InvtBal[prod, month]:
IIF(month = 1, StartInvt[prod], Invt[month-1]) + ...

9.6 Where Conditions on Formula Terms

Sometimes it is necessary to make a term formula, dependent on some data values. MPL offersa
feature called the WHERE condition, which means that certain terms are included only where a
condition on the data is met. The WHERE command is similar to the IF/IIF statements and is
often more readable, especially in cases where there is no ELSE term.

202

Chapter 9 Building Formulas

For example, assume that you have a data vector A[i,j] filled with sparse data and you only want
the following constraint where the values are greater than zero. Y ou would write:

constr[i,j] WHERE (A[i,j] > 0.0) : ...

The same rule applies when you want to use the WHERE condition on formula terms:

+ x[i] EXCEPT WHERE (b[i] = 1.0) + ...

In this example the variable X[i] is used wherever b[i] is not equal to one. The EXCEPT keyword
inverts the set of values.

9.7 Referring to Indexes in Formulas

Indexes can be used in formulas as any other data element. Asin previous versions, all indexes
must be accounted for in the underlying index list (sum or constraint specification). Here are two
examplesto illustrate this:

DATA
A[i,j] := DENSE(10*(i-1)+j);

MAX z = SUM(i: i*x[1]);

Furthermore, the integer functions FIRST(index), LAST(index), and COUNT(index) are available.
They provide the first subscript, the last subscript, and the number of subscripts, respectively, of
the given index and can be used both in formulas and in subscript arithmetic.

INDEX

i =1..10;

i = 1..last(1i);

k[i] := (first(i), last(i));
DATA

A[i] := i;

B[1i] := DENSE(count(i)-i+1);

203

Part Il The MPL Modeling Language

9.8 Using Parentheses

When two or more variables share the same coefficient, i.e. the coefficients have a common
divisor, you can factor them out using parentheses. With parentheses the model formulation be-
comes both simpler and easier to work with.

The parentheses contain decision variables and even full-fledged formulas. Those formulas can,
in turn, have more parenthesized expressions, so nested parentheses are allowed. You can enter
coefficientsin front of the parentheses.

Examples of parentheses:

1/30 (PrA + 2 PrB) { = 0.0333 PrA + 0.0666 PrB }
5 (x + 10 (y + 2z)) { = 5x + 50y + 100z }
1/(3 + 7) x {=0.1x}

Four main rules apply when you use parentheses. Parenthesized expressions cannot be;

1. Multiplied together.

2. Multiplied by avariable.

3. Used in adenominator if they contain variables.
4. Followed by a coefficient.

These rules ensure that the problem formulation stays linear.

Examples of illegal parentheses:

(15 + 200) (5x + 3y) { Rule 1 1}
(15 + 200) x1 { Rule 2 1}
1/ (x + 200) Prod1 { Rule 3 1}
(x +y) /3 { Rule 4 1}

204

Chapter 9 Building Formulas

9.9 Summing Vectors Over Index Values

Summations are used when you want to sum vector terms over some indexes. This consists of
using the keyword SUM, the parentheses containing the list of indexes summed, and the
summation formula.

Both variable and data vectors can be included in the summation formula. The vectors can be
added and subtracted, and parentheses and other summations are alowed within the sum. This
example shows how sums are used:

MaxProd : SUM(month : Production) < 1200;

The above constraint means that sum of the Production variables for all months has to be less
than 1200. The resulting constraint in the input file generated, is.

MaxProd : Proddan + ProdFeb + ProdMar + ProdApr
+ ProdMay + Proddun + ProdJul + ProdAug
+ ProdSep + ProdOct + ProdNov + ProdDec < 1200;

Now assume that you have three products and want to limit the production for each. Then the
constraint would be;

MaxProd[product] : SUM(month: Production) < ProdCapacity;

This summation generates three constraints, one for each product. The Production vector is now
defined over the indexes product and month. The constraint for a given product contains the sum
of the Production variables for all months, but with the product fixed.

The main rule when using sums is that all declared indexes of a vector term must be accounted
for, either by the sum indexes, the constraint indexes, or by afixed subscript.

When summing over a single vector, you can omit the list of index variables. MPL automatically
uses the dimension of the vector when it expands the sum.

205

Part Il The MPL Modeling Language

9.10 Using Macros

Macros can be used in severa ways that can be helpful in maintaining your model; such as
defining a specific part of the model into a macro that will enable you to use it repetitively, thus
making the model easier to maintain. Macros can aso be used to give complex expressions a
distinctive name and then refer to these complex expressions throughout the model by the macro.
Finally, you can use them to eliminate unnecessary constraints from the model and thereby reduce
the size of the problem to be solved by the LP package.

A defined macro can be used in the formula of a constraint as aterm. The macro is expanded as
it isreplaced by the expression it represents. Macro terms can be preceded by coefficients.

Example:
MACROS
Revenues = SUM(product,month: price * Sales) ;
TotalCost := SUM(product,month: InventoryCost * Inventory
+ ProductionCost * Production);
MODEL
MAX Profit = Revenues - TotalCost;

Macros are helpful to aid readability by giving complex expressions a distinctive name. They are
also used to eliminate unnecessary constraints from the model and thereby reduce the size of the
problem to be solved by the LP package. See Chapter 8.2 Defining Macros for more information.

206

Chapter 9 Building Formulas

9.11 Abort If Conditions

The ABORT IF conditions are used when you want to make sure that a certain item in the MPL
model is defined correctly. They can be a very important tool to validate your model especially
when importing indexes and data from external sources.

In the example below, M PL will stop and display an error message because the index Top3Plants
does not contain 3 el ements.

INDEX
plants := (Atlanta, Chicago, Dallas, NewYork, SanDiego);

Top3Plants[plants] := (Atlanta, Chicago, Dallas, SanDiego);

ABORT IF NOT (count(Top3Plants) = 3)
MESSAGE "The number of plants in Top3Plants must be 3";

In the example below, we are checking if two subset indexes, which should be mutualy
exclusive, have any common elements. As both indexes contain the city Dallas, MPL will stop
and issue the error message.

INDEX
EastCoast[plants] :
WestCoast[plants] :

(Atlanta, Chicago, Dallas, NewYork);
(Dallas, SanDiego);

ABORT IF FORSOME(plants IN EastCoast: plants IN WestCoast)
MESSAGE "One of the EastCoast plants is also in WestCoast";

Y ou can also use the ABORT IF condition to check if the values of the data vectors are within the
alowed range. For example, in the example below, the capacity for each plant must be at least
200.

DATA
Capacity[plants] := (120, 300, 250, 400, 500);

ABORT IF FORSOME(plants: Capacity[plants] < 200)
MESSAGE "Capacity for each plant must be at least 200);

207

Part Il The MPL Modeling Language

Chapter 10 Advanced Indexing Techniques

CHAPTER 10

ADVANCED INDEXING

TECHNIQUES

209

Part I1l The MPL Modeling Language

10.1 Set Membership with the IN Operator

The IN operator in MPL alows you to select one of the domain indexes from a multidimensional
index. For example, if you have a multidimensional index that specifies which machines are
available in which plants, you can use the IN operator to sum over all the machinesin each plant.

INDEX
plant = (Atlanta, Chicago, Dallas);
machine = (Grind, Drill, Press);
product = (p1,p2,p3,p4);
PlantMach[plant,machine] := (Atlanta.Grind, Atlanta.Press,
Chicago.Drill, Chicago.Press,
Dallas.Grind);
SUBJECT TO

PlantCapacity[plant] :

SUM(machine IN PlantMach: Prod[machine]) < MaxCapacity[plant];

In the above example, we sum together how much is produced with each machine and then make
sure that the total production is limited to the maximum capacity at each plant.

We can aso use the IN operator to join together two multi-dimensional indexes. For example, say
that you also have an index that defines which products are produced by which machine. You
can then use the IN operator, in conjunction with the WHERE condition, to create a new index
that contains which products can be produced in which plants.

INDEX
MachProd[machine,product] := (Grind.p1, Grind.p4,
Drill.p2, Drill.p3, Drill.p4,
Press.pi, Press.p3);

PlantProduct[plant,product] WHERE

FORSOME (machine: machine IN PlantMach = machine IN MachProd);

! 1= (Atlanta.p1, Atlanta.p3, Atlanta.p4,
! Chicago.p1, Chicago.p2, Chicago.p3, Chicago.p4,
! Dallas.p1, Dallas.p4);

In the example on the previous page, we join the plants and the products together through the
machine index. This is done by MPL going through each plant.machine pair in the PlantMach
index and matching the machine to the machine.product pair in the MachProd index. This will
give us a new index PlantProduct which contains, for each plant, the products that can be
produced at that plant. If you are familiar with relational databases and view the indexesin M PL
as columns, then you will notice that this operation is the same as the natural join operation in
databases.

210

Chapter 10 Advanced Indexing Techniques

When formulating the model with a lot of sparsity, you can use the IN operator to let MPL
quickly skip index elements that are not needed. For example, say you want to define a produce
variable for each plant, machine, and product, but you only want to include those variables that
are members of the two parent indexes PlantMach and MachProd. This can be accomplished in
MPL by using the IN operator when you are listing the domain indexes for the variable. For
example:

DECISION VARIABLES
Produce[plant, machine IN PlantMach, product IN MachProd];

MPL will now include a machine index element only in the Produce variable if the
plant.machine pair is in the PlantMach index and then a product index element only if the
machine.product index isin the MachProd index. Thiswill result in the total number of variables
defined to be much smaller and speed up the parsing time for the rest of the model considerably,
especially for large, sparse models.

211

Part I1l The MPL Modeling Language

10.2 Set Domain Index with the Dot Operator

Sometimes, when working with multi-dimensional indexes, you need to be able to refer to the
underlying domain index. This can be accomplished in MPL by using the dot operator. Hereis
an example:

INDEX
FromNode := (n1,n2,n3,n4);
ToNode = FromNode;

ni, n2, n2, n2, n2, n3, n3, n4);
Arcs WHERE (FromNode <> ToNode) ;

Arcs[FromNode , ToNode]
Ards2[FromNode, ToNode]

DECISION VARIABLES
Ship[Arcs] WHERE (Arcs.FromNode <> Arcs.ToNode);

END

In the above example, we want the Ship variable to contain all the elements of the index Arcs,
where the FromNode is not the same as the ToNode.

212

Chapter 10 Advanced Indexing Techniques

10.3 Set subsets with the OVER operator

The OVER operator can be used in summations and other underlying index lists. This is useful,
for example, when you need to sum over a subset of a multi-dimensional index that contains

certain domain index element. Hereisan example:

INDEX
depot
factory := ...
FactDepot[factory,depot] := ...

SUBJECT TO
DepotCapacity[depot]:

SUM(FactDepot OVER factory: Ship[FactDepot]) <= DepotCap[depot];

In this example we need to sum over the factories that ship to the depot and make sure that the
total amount shipped is less than the capacity for the depot. Notice that in this example the Ship
variableis defined with the FactDepot index.

213

Part I1l The MPL Modeling Language

10.4 Subscript Arithmetic with Conditional
Indexes

Sometimes, you do not want to use every element of a given index when expanding vectors. In
MPL you can accomplish this by using conditional. This feature allows you to set conditions on
the indexes in the index list that are based on current values of the other indexes. The following
example explains this better:

SUM(i,j<i: formula)

The above condition defines a double sum over the indexes i and j with the additional condition
that it only sums the values where j is less than i, i.e., the lower triangular matrix, excluding the
diagonal. The conditions can aso contain more complex subscript arithmetic. For example:

constr[i,k=2i+3] : ...

This example generates a constraint for all i and k where k isequal to 2i+3. The other constraints
are still generated, but they do not contain any terms and are therefore specified as empty con-
straints. MPL will not send the empty constraints to the solver.

Please note that conditional indexes are also alowed in the definition part when you are defining
data and variable vectors. However, these conditions do not have any effect until the vectors are
used in the model formulation. For example, when you define the data vector A[i,j<=i] in the
DATA section, the list of numbers that follows must also contain values for the elements where |
isgreater thani. The condition is not used until the data vector is referred to later in the model.

Y ou can put a condition on every index in vectors, summations, and constraints. Be sure to keep
in mind that this powerful tool can easily make the model very complex and, therefore, harder to
maintain.

214

Chapter 10 Advanced Indexing Techniques

10.5 Direct Assignment of Subscripts

Sometimes, when formulating models, the use of indexes is too complicated for any of the
previously mentioned indexing techniques. In those instances, you can, in most cases, use the
direct assignment of subscripts. This allows you to give areferred index whatever subscript value
you need, instead of having to work from the subsets of the original index. Direct assignments
are entered, following the index, with an assignment symbol (:=) and an index formula.

To give you an example, when formulating transshipment problems, you frequently encounter
congtraints similar to this one:

Continuity[Kk] :

Prod[k] + SUM(i: Ship[i,j:=k]) = SUM(j: Ship[i:=k,j]) + Sales[k];

In the above example, we want to sum on the left-hand side, how much is shipped to location k,
and on the right-hand side, how much is shipped from location k. Since the Ship variable is
defined over theindexesi and j, we use direct assignment to assign them the value of k.

Sometimes you need afull-fledged formulato specify the subscripts for the index.

SUM(i: x[i,j:=last(i)-i+1])

In this example, direct assignment is used to let the subscript j decrease as the subscript i
increases.

Assignment of subscripts can also be used to perform multiplication of matrixes and vectors as
shown here below:

=
n

-y

w

! Transpose of matrix A
B[j,1] := A[i,]l;

! Perform matrix multiplication
AmultB[i,i2] := SUM(j: A[i,j] * B[j,1i:=12]);

215

Part I1l The MPL Modeling Language

Chapter 11 Database Connection

CHAPTER 11

DATABASE CONNECTION

Importing data from a variety of corporate database systems into optimization models is
frequently an essentia requirement for optimization projects. One of the advanced features of
MPL is the database connection option that directly links MPL with relational databases and
other data sources. This option enables the model developer to gather both indexes and data
values from various data sources and import them directly into the model. After the model has
been optimized, the solution output can be exported back into the database. This, along with the
run-time features of MPL, alows the model developer to easily create customized end-user
applications for optimization using the built-in data entry and reporting capabilities of the
database.

The database connection in MPL has the ability to access data from many different sources, such
as databases, Excel spreadsheets, externa data files, and the Internet. This gives the model
developer the flexibility to choose the most efficient and convenient way to incorporate the data
into the model. Among the data formats that are supported by MPL are: Microsoft Access and
Excel, ODBC, Paradox, FoxPro, DBase, SQL Server, and Oracle.

217

Part I1l The MPL Modeling Language

Relational databases are designed to store and retrieve structured data enabling the user to access
corporate data such as plants, products, machines, and etc., on the symbolic level. The purpose of
the modeling language is to take this structured data and generate a mathematical matrix from the
model that the optimization solver can process.

ModLang

One dlternative to using a modeling language is to write a customized matrix generator in a
programming language. This kind of programming is very difficult and causes the resulting
application to be highly dependent on specific methods and libraries, of both the database and the
solver. MPL offers clear benefits to this approach, because with the database connection it can
automatically map the columns of the database tables to the indexes and data vectors of the model
without involving any programming. This gives the model developer unprecedented flexibility
and expressive power and the ability to focus mainly on formulating the model and connecting the
datainstead of programming.

In the following sections, we will describe each import and export operation. Refer to the
Database Options dialog box in Chapter 4.9: The Options Menu to select the database you will
be using.

218

Chapter 11 Database Connection

11.1 Import Indexes from Database

MPL alows you to import the elements for an index directly from a database. In the INDEX
section, where you define the index, enter the keyword DATABASE after the assignment symbol
(:=) followed by parentheses containing the table name and the column/field name you want to
import from.

INDEX
depot := DATABASE("Depots","DepotID");

In the above example, MPL will open the database table Depots, locate the column DepotlD, and
then read in the entries for the index depot. In most cases the imported indexes are the key fields
for the table which are underlined in the following examples.

The Depots Table:

Depotl D Capacity

Atlanta 400000
Chicago 50000
NewY ork 70000
Dalas 100000

The column name defaults to the name of the index so if it is the same you do not have to specify
it. In the example below the column name in the database table is DepotlD which is the same as
the index DepotlD.

INDEX
DepotID := DATABASE("Depots');

MPL supports multiple databases. The default database is specified in the Database Options
dialog box in the Options menu. See Chapter 4.9 The Options Menu for more information.

219

Part I1l The MPL Modeling Language

MPL can import from more than one database in the same run. If you need to import an index
from table in a database other than the default, you can do so by specifying the database name
before the name of the table. In the example below, MPL will read in the factory index from
Access, instead of the default database.

INDEX
factory := DATABASE (Access, "Factory","FactID");

MPL also alows you to import subset indexes from database tables.

INDEX
FactoryDepot[factory,depot] := DATABASE("FactDep");

The above statement will open the database table FactDep and locate the columns for factory and
depot and then read in the entries for FactoryDepot.

The FactDep Table:
FactlD Depotl D TrCost Shipment
Houston Chicago 3200 0
Houston Dallas 5100 0
Segttle Atlanta 2800 0
Sedttle Chicago 6800 0
Segttle NewY ork 4700 0
Sesattle Ddllas 5400 0

Notice that MPL automatically uses the same name as default for the columns FactlD and
DepotlD, asin the original tables the indexes were defined from. If an index column does have a
different name than in the origina table, you can specify it following the table name by first
entering the index name followed by an equa sign and the column name.

INDEX
FactoryDepot[factory,depot]
DATABASE ("FactDep" ,factory

"Factory",depot="Depot") ;

This means if you are consistent in naming the columns in different tables you do not have to
specify them each time you refer to themin MPL.

220

Chapter 11 Database Connection

11.2 Import Data Vectors from Database

MPL allows you import the elements for a data vector directly from a database. In the DATA
section, where you define the data vector, enter the keyword DATABASE after the assignment
symbol (:=), followed by parentheses containing the table name and the column/field name you
want to import from.

Example:

DATA
FactDepCost[factory,depot] := DATABASE("FactDep","TrCost");

In the above example, MPL will open the database table FactDep, locate the columns TRCost,
FactlD, and Depotl D, and then read in the entries for the data vector FactDepCost.

The FactDep Table:
FactlD Depotl D TrCost Shipment
Houston Chicago 3200 0
Houston Dallas 5100 0
Sesattle Atlanta 2800 0
Sedttle Chicago 6800 0
Sesattle NewY ork 4700 0
Sesttle Dallas 5400 0

Notice that MPL automatically uses the same name as the default for the index columns FactID
and DepotID asin the original tables that the indexes were defined from. If an index column does
have a different name than in the original table, you can specify it following the table name by
first entering the index name, followed by an equal sign and the column name.

DATA
FactDepCost[factory,depot] :=

DATABASE ("FactDep", "TrCost",factory="Factory",depot="Depot");

221

Part I1l The MPL Modeling Language

This means if you are consistent in naming the columns in different tables you do not have to
specify them each time you refer to them in MPL.

The column name defaults to the name of the data vector, so if it is the same you do not have to
specify it. In the example below the column name in the database table is TrCost which is the
same as the data vector TrCost.

DATA
TrCost := DATABASE("FactDep");

In some instances you do not want to read all the data elements that are in the table. In that case,
you can enter the keyword WHERE followed by a condition on one of the columns. Here is an
example:

DATA
FactDepCost[factory,depot] :=
DATABASE ("FactDep", "TrCost" WHERE Region="NorthWest");

In this example we only want to read the transportation costs from the FactDep table where the
Region column contains the entry North\West.

MPL can import from more than one database in the same model. The default database is
specified in the Database Options dialog box in the Options menu. If you need to import a data
vector from table in a database other than the default, you can do so by specifying the database
name before the name of the table. Alternatively, you can use the OPTIONS keyword to specify
another database to import from.

In the example below, MPL will read in the data vector DepotCustCost from Access instead of
the default database.

DATA
DepotCustCost := DATABASE (Access, "DepCust","TrCost");

222

Chapter 11 Database Connection

11.3 Export Variable Values to Database

After optimizing the problem, MPL can export the variable values to the database where it can be
used to report the solution back to the user. In the DECISION VARIABLES section, where you
define the variable vector, enter the keyword EXPORT TO after the defined variable, followed by
the keyword DATABASE and parentheses containing the table name and the column/field name
you want to export to.

Example:
DECISION VARIABLES
FactDepShip[factory,depot]

EXPORT TO DATABASE ("FactDep", "Shipment");

In the above example, M PL will open the database table FactDep, locate the columns Shipment,
FactlD, and Depotl D, and then export the solution values for the variable vector FactDepShip.

Here is an example of the FactDep table after the solution values have been exported.

The FactDep Table:
FactlD Depotl D TrCost Shipment
Houston Chicago 3200 210
Houston Dallas 5100 0
Sesattle Atlanta 2800 455
Sedttle Chicago 6800 0
Sesattle NewY ork 4700 328
Sesttle Dallas 5400 189

Notice that MPL automatically uses the same name as the default for the index columns FactlD
and DepotlD, asin the original tables the indexes were defined from.

223

Part I1l The MPL Modeling Language

If an index column does have a different hame than in the original table you can specify it
following the table name by first entering the index name followed by an equal sign and the
column name.

DECISION VARIABLES
FactDepShip[factory,depot]
EXPORT TO DATABASE("FactDep","Shipment"
factory="Factory",
depot="Depot");

This means, if you are consistent in naming the columns in different tables, you do not have to
specify them each time you refer to themin MPL..

The column name defaults to the name of the data vector so if it is the same you do not have to
specify it. In the example below, the column name in the database table is FactDepShip which is
the same is the data vector FactDepShip.

DECISION VARIABLES
FactDepShip[factory,depot]
EXPORT TO DATABASE("'FactDep");

MPL supports multiple databases for both importing and exporting data. The default database is
specified in the Database Options dialog box in the Options menu. If you need to export a
variable vector to table in a database other than the default, you can do so by specifying the
database name before the name of the table.

In the example below, MPL will export the solution values of the variable vector FactDepShip
from Paradox instead of the default database.

DECISION VARIABLES
FactDepShip[factory,depot]
EXPORT TO DATABASE (Paradox, "FactDep", "Shipment");

224

Chapter 11 Database Connection

MPL also alows you to export variable values other than the activity. You can export the
reduced costs, the upper and lower ranges for the objective function, as well as the objective
function coefficient values. Y ou can change which values will be exported by entering one of the
following keywords directly after the keyword EXPORT: Activity, ReducedCost, ObjectCoeff,
ObjectLower, ObjectUpper. For example, if you want to export the reduced cost for a variable
enter the following:

DECISION VARIABLES
FactDepShip[factory,depot]
EXPORT ReducedCost TO DATABASE("FactDep", "ReducedCost");

If you need to export more than one value for a variable vector you can do so by entering multiple
export statements after the variable definition.

MPL offers three different options on how the database table is updated by the EXPORT
statement. The first one, which is the default, searches through the database and for each record
locates the corresponding value in the solver solution and updates the database entry with it. This
option minimizes the changes done to the database table since only the existing values are
updated, but can sometimes be slow especially on SQL type databases.

The second option isto use the REFILL keyword right after the EXPORT keyword to specify that
the whole database table should be emptied and then refilled with the entries from the solver
solution. Since this takes out the necessity to search the table this can often lead to faster export
timesfor larger tables.

Thethird option isto use the CREATE keyword right after the EXPORT keyword to specify that
the database table should be created and then filled with the entries from the solver solution. This
option is mainly useful when exporting to the database table for the first time.

225

Part I1l The MPL Modeling Language

11.4 Export Constraint Values to Database

Just as exporting variable values, MPL can aso export the constraint values to the database. You
will need to define constraint vectors in the CONSTRAINTS section with the keyword EXPORT
TO followed by the keyword DATABASE and parentheses containing the table name and the
column/field name you want to export to.

Example:

SUBJECT TO
FactoryCapacity[factory]
EXPORT ShadowPrice TO DATABASE("Factory","ShadowPrice") :

In the above example, M PL will open the database table Factory, locate the columns FactID and
ShadowPrice, and then export in the shadow price values for the constraint FactoryCapacity.

Here is an example of the Factory table after the shadow price values have been exported.

The Factory Table:
FactlD Capacity ShadowPrice
Houston 320000 120.9384
Sesttle 73000 0.0

Notice that MPL automatically uses the same name as the default for the index column FactID,
as in the origina tables the factory index was defined from. If an index column does have a
different name than in the original table you can specify it following the table name by first
entering the index name followed by an equal sign and the column name.

SUBJECT TO
FactoryCapacity[factory]
EXPORT ShadowPrice TO DATABASE("Factory","ShadowPrice"
factory="Factory"):

This means, if you are consistent in naming the columns in different tables, you do not have to
specify them each time you refer to them in MPL.

226

Chapter 11 Database Connection

MPL supports multiple databases for both importing and exporting data. The default database is
specified in the Database Options dialog box in the Options menu. If you need to export a
constraint vector to table in a database other than the default, you can do so by specifying the
database name before the name of the table.

In the example below, MPL will export the shadow price of the constraint vector
FactoryCapacity from FoxPr o instead of the default database.

SUBJECT TO
FactoryCapacity[factory]
EXPORT ShadowPrice TO DATABASE (FoxPro,"Factory", "ShadowPrice");

MPL also allows you to export constraint values other than the shadow price. Y ou can export the
slack values, the upper and lower ranges for the right-hand-side as well as the right-hand-side
values. You change which values will be exported by entering one of the following keywords
directly after the keyword EXPORT: Activity, Sack, ShadowPrice, RhsValue, RhsLower,
RhsUpper. For example, if you want to export the slack for a constraint enter the following:

SUBJECT TO
FactoryCapacity[factory]
EXPORT Slack TO DATABASE("Factory","Slack");

If you need to export more than one value for a variable vector you can do so by entering multiple
export statements after the variable definition.

MPL offers three different options on how the database table is updated by the EXPORT
statement. The first one, which is the default, searches through the database and for each record
locates the corresponding value in the solver solution and updates the database entry with it. This
option minimizes the changes done to the database table since only the existing values are
updated, but can sometimes be slow especially on SQL type databases.

The second option isto use the REFILL keyword right after the EXPORT keyword to specify that
the whole database table should be emptied and then refilled with the entries from the solver
solution. Since this takes out the necessity to search the table this can often lead to faster export
timesfor larger tables.

Thethird option isto use the CREATE keyword right after the EXPORT keyword to specify that
the database table should be created and then filled with the entries from the solver solution. This
option is mainly useful when exporting to the database table for the first time.

227

Part I1l The MPL Modeling Language

PART IV

A MPL TUTORIAL

Session 1.
Session 2
Session 3:
Session 4.
Session 5:
Session 6:
Session 7:

Running MPL on a Sample Model
Formulating a Simple Product-Mix Model
Introducing Vectors and Indexes

Planning Model with Multiple Time Periods
Planning Model with Multiple Plants

Allow Shipments Between Plants

Using Sparse Datain MPL Models

229

Part IV AMPL Tutorial

Tutorial Overview

Tutorial Overview

In this chapter we will introduce you to the MPL Modeling System through a tutorial. This tutorial
contains multiple sessions with a series of models, gradually increasing in difficulty; in order to
explain how to formulate linear programming models. This tutoria is specifically designed for
teaching optimization modeling the way it is being applied in the corporate world. By the end of
this chapter, you should have a working knowledge of MPL and how to formulate models. The
tutorial contains the following sessions:

« Session 1: Running MPL on a Sample Model

Session 1 introduces you to the MPL Modeling System, and how you can use the
Integrated Model Development Environment to solve optimization problems. We
show you how to start the MPL application and load a sample model, solve the model
using one of the available optimizers, and then view the solution. Information on how
to access the on-line help system in MPL will aso be outlined. The purpose of this
session is to give you an overview on how to solve models in MPL and to get you
acquainted with the program. If you are already familiar with MPL and graphical user
interfaces, such as Windows, you can go on to the next session, without losing
continuity.

« Session 2: Formulating a Simple Product-Mix Model in MPL

In session 2, you will be introduced to the process of formulating linear programming
models, by identifying the decision variables, the objective function and the constraints
for the model. The session contains a description of a simple product-mix model, with
two variables and three constraints. The purpose of this session is to have you use
MPL through an example, by creating a ssmple model in order to understand the basic
steps of formulating a model. Then you will solve the model and analyze the solution
that is generated.

« Session 3: Introducing Vectors and Indexes in MPL Models

In session 3, you will learn the basics of how to use indexes and vectors to formulate
models. You will see how indexes make it easy to quickly adjust the problem size.
You will then find out how to use vectors to define model elements, such as data,
variables, and congtraints in a more efficient manner using the indexes. Finaly, you
will see how to use summations and macros on the vectors in your model formulation.

231

Part IV A MPL Tutorial

« Session 4: A Production Planning Model with Multiple Time Periods

In session 4, you will expand the model from the previous session, to include multiple
time periods. A new index is introduced into the model to define time periods, and
then you will update the various vectors in the model that are affected to account for
the new index. You will become familiar with a new kind of constraint, called a
balance constraint, that is used to connect together the production, sales and inventory
variables for the model.

« Session 5: Upgrade the Planning Model to Include Multiple Plants

In session 5, you will encounter a model that has multiple plants available to produce
the products. You will take the model from the previous session, and upgrade it to
include another index plant, which will represent all of the plants. You will then go
through the model, step by step, and update al the variables and constraints to account
for the new index. Finaly, you will learn how to use external data files to store data
that becomes too large to be included in the actual model file.

« Session 6: Upgrade the Model to Allow Shipments Between Plants

In session 6, you will take the model from the previous session and upgrade it to allow
shipments between the plants. This means that each plant can sell the products and
maintain inventory independently, instead of doing it from a single source. To fulfill
the demand in the most efficient manner it is necessary to be able to ship the products
between the plants. Finally, you will learn how to use where conditions to remove the
vector elementsthat are not valid, such as shipping back to the same location.

« Session 7: Using Sparse Data in MPL Models

In session 7, you will take the model from the previous session and add multiple
machines for each plant. This will introduce a sparsity into the model, since not all
machines are available in al the plants. You will use a new feature, a sparse data
vector, to represent which machines are available in which plant. You will learn
different ways on how to define sparse data vectors in MPL, including using the IN
operator and sparse data files.

232

Session 1 Running Sample Model

SESSION 1:

Running MPL on a Sample M odel

In this session, you will go through a series of steps to learn how to run MPL on a sample model.
By the end of the session, you will be able to start MPL, load and solve the model, and view the
solution. At that point, you will learn how you can change option settings for MPL through
dialog boxes. A brief outline of our MPL Help System is also covered at the end of this session.
Y ou will now go through each step in detail using the formulation of a sample model.

233

Part IV A MPL Tutorial

1.1 Your First MPL Session

There are four simple steps you need to be familiar with in order to solve modelsin MPL:

o Start MPL

e Load the model file
» Solve the model

* View the solution

Step 1. Start the MPL Application

Starting MPL is simple in Windows. When you installed MPL, the installation program created
an entry in the Start menu under Programs for MPL for Windows. If MPL has not been installed,
please refer to Chapter 2 for information on how to install the software. To start MPL, click the
Sart button from the task bar that appears along the bottom of the screen and select Programs |
MPL for Windows.

Mew DOffice Dacument

/-1 Open Offcs Document

[T Ancessories
7 Intemnet
Documents b - Mavimal Saftwars.
Ee.ef: Gettings b Miciasoh Dffice.

= Puogrsm s
? " 77 Soltware Development
& tep T Statllp

— . = Windows Apps
e RAPL for ‘wWind
i M5-DOS Prompt
— — @ ‘windows Explarer
- ¥ Microsoft Wiord - DocumerTT

HStart

S ow D B OSWE o de s W

Figure T1.1: MPL for Windowsin the Start Menu

234

Session 1 Running Sample Model

Step 2: Load the Model File into MPL

After starting MPL, the next step is to load a mode file in the model editor. The MPL
application comes with several sample models that are installed in the Mplwin4 directory. MPL
models are stored as standard text files and typically have the file extension *.mpl’. The model we
are using in this session is called Modell.mpl and is stored along with other models for this
tutorial in a separate folder called Tutorial.

1. Choose Open from the File menu to display the Open dialog shown below.

2. Double click on the Tutorial folder name to go down to the folder where the model file
Model1.mpl is stored.

Open

Lok, jr; I £ Tutarial

E'?j Bakery2 mpl

. mp
[Planning.mpl
E'?j Planningd.ripl
[Planning.mpl
Ej Planmningt. mpl
E'?j Planning?_mipl

File narme: IMndeH .mpl Open

Files of tupe: IMF‘L fileeg [*.mpl) j Cancel

i

Help

Figure T1.2: The Open File Dialog Box

3. The Open dialog now lists all the MPL model filesin the Tutorial folder. Click on the
filename Model1.mpl to select the model file and then press Open to open the file.
Alternatively, you can open the file directly by double clicking on it in the list of files.

235

Part IV A MPL Tutorial

Thiswill open anew model editor window containing the formulation for the model.

w MPL for Windows 4.1
File Edt Search Project Bun “iew Graph Options “indow Help

EEEREREERE R AR EEEEL

E Modell_mpl = M=l &3
TITLE
Production_Planning;
INDEX
product := {A1, A2, A3);
nonth = {Jan, Feb, Har, fApr};
DATA
Price[product] = (1208.88, 1608.808, 115.88);
Demand[product, month] = DATAFILE(''Demand.dat™);
FrodCost[product] = (73.308, 52.90, 65.40);
ProdRate[product] = (688, 658, 708);
ProdDaysfAvail[month] = (23, 20, 23, 22);
InutCost[product] = (3.50, 4.60, 3.00);
InvtCapacity = §88;
UARIABLES
Produce[product, month] -» Prod;
Inventory[product, month] -> Inuvt;
Sales[product, month] -» Sale;
HACROS
TotalRevenue := SUM{product, month: Price = Sales);
TotalProdCost := SUM({product, month: ProdCost = Produce);
il

| Main madel file: Modelt.mpl | ames | Modiied | Salved

Figure T1.3: Model Editor Window with the Model1.mpl model file

Step 3: Solve the Model

In this tutoria you will be using the CPLEX solver, but if you have another solver installed that
is supported by M PL, you can use that one instead.

When you run MPL for the first time after installing it, MPL will automatically try to locate any
solvers that you have available. Y ou can see which solvers have been set up for MPL by going to
the Run menu. Each solver found will be listed in the menu with the word Solve in front of it.

If you do not have any solvers available you will see the item No Solversin the Run menu. In this
case, refer to Chapter 2.3: Setting up Solvers for MPL for information on how to add solvers to
MPL. The rest of this tutorial will assume that you have successfully installed CPLEX or some
other solver and it has been set up correctly.

236

Session 1 Running Sample Model

The next step is to solve the model that you have loaded into the model editor. To solve the
model follow these steps:

1. Choose Solve CPLEX from the Run menu to solve the Model1 model.

2. While solving the model, the Satus Window is displayed to provide you with
information about the solution progress.

Statuz Window

Dptimal solution found

- MainFle ——— Lines — Memony — Time -
tdadelt.mpl 49 1087 K. 031

= Model

‘anables: 36 Nonzeras: E9
Conzstraints; 20 Integers:]
- Solver— [terations Objective Function
Phase 1: i 0.0000
Tatal 24 2B247R2 B27R

Wiew I

Figure T1.4: The Status Window

The Status Window provides you with information such as the number of lines read, the number
of variables and constraints encountered, and how much memory has been used. While the
optimizer is solving the model, the number of iterations and the current value of the objective

function are also shown. The figure above shows the Status Window after the model has been
solved.

237

Part IV A MPL Tutorial

Step 4: View the Solution

MPL automatically sends the solution to afile with same name as the modé file, but with the file
extension ‘.sol’. Use the following steps to view the solution file Model1.sol that was generated
for the model you just solved:

1. Press the View button at the bottom of the Satus Window, which appeared
on the screen during the solving process. Thiswill open a View Window containing the
solution file as shown below:

2 View File: Modell _sol =]

MPL Hodeling System - Copyright {c) 1988-20881, Haximal Software, Inc.

HODEL STATISTICS

Problem name:

Production_Planning

Filename: Hodel1.mpl
Date: August 18, 2861
Time: 89:55

Parsing time: 8.29 sec
Solver: CPLEX
Objective value: 19974 .7 0000080
Iterations: 21

Solution time: 8.82 sec
Constraints: 20

Variables: 36

Honzeros: 69

Density: 18 %

SO0LUTION RESULT

Optimal solution found

Figure T1.5: View Window with the Solution File Model1.sol

2. You can quickly browse through the solution using the scroll bars on the right. Note
that the details of the solution are provided including the optimal solution value for the
objective function, values for the decision variables and for the constraints.

3. When you are finished browsing through the solution you can press the (X) button in
the upper right hand corner to close the View Window.

238

Session 1 Running Sample Model

Step 5: Using the Model Definitions Tree Window

MPL aso alows you to view al of the defined items from the model formulation in a
hierarchical tree window called the Model Definitions Window. Each branch corresponds to a
section in the model.

If the tree window is not open, you can open it by choosing Model Definitions from the View
menu. While working in MPL it is normally a good idea to leave the tree window open at all
times. MPL will automatically update its contents every time you solve your model.

The tree window provides easy access to the different areas of the model and alows you to
quickly view selected parts of the solution for the model. To use the tree window do the
following:

1. Make sure the tree window is open by choosing Model Definitions from the View
menu.

k- Model Definitions M= E3
EB TITLE Production_Planning
== INDEX

ol product

|e

----- % Price{product]

----- & Demand[product month)
----- & ProdCostproduct]

----- @ ProdR ate[product]

..... & ProdDaystoyvailmanth]
----- @ InvtCost{product]

----- @ InviCapacity

E-{£= YARIABLES

----- @ Produce[product month)
----- @ Inventorn]product month)
----- % Sales[product month]
B MACROS

----- & TotalRevenue

----- & TotalProdCost =l

Wiew | Gato |

FigureT1.6: The Model Definitions Tree Window

2. Under the header VARIABLES in the tree window, you will see three variable names
listed, Produce, Inventory, and Sales; which are the variables for the model. In front of
each section header, there is a small box containing either a plus or aminus sign. This
box alows you to quickly expand and collapse each branch of the tree.

239

Part IV A MPL Tutorial

3. Now select the variable Produce and press the View button at the bottom of the
window. Thiswill open a new View Window with the solution values for the Produce
variable only.

h View Decision Yariable: Produce

UARIABLE Produce[product,month] :

product month Activity Reduced Cost
A1 Jan S5017.5824 a.980008
A1 Feb 1272.5275 a.980008
A1 Mar 639.5684 a.980008
Al Apr 8.00688 8.0808088
A2 Jan L580.08080 8.0808088
A2 Feb t4a0.8080 8.0808088
A2 Har 6580.08080 8.0808088
A2 Apr 7280.00080 8.0808088
A3 Jan S4A0.A0080 8.86080
A3 Feb G700.80080 8.86080
A3 Har 83538462 8.86080
A3 Apr FoLh6 1538 8.86080

FigureT1.7: View Window with the Solution Valuesfor the Produce Variable

240

Session 1 Running Sample Model

1.2 Using the Help System in MPL

MPL offers the user an extensive help system containing useful information on how to use
the software.

Accessing the Available Help Topicsfor MPL

To open the main help system window for MPL, go to the Help menu and choose Topics. This
will display the help window, shown below, where you can select the help topic you wish to read.

The MPL Help Topics dialog box contains three tabs; the Contents tab, the Index tab, and the

Help Topics: MPL for Windows Help

S

(] MPL Model Development Environment
|dzing the MPL Ervironment
tenu Commands
Buthan B ar
@ Dialog Boxes

':Ell MPL Modeling Language
2] Stucture of the Madel File
Sample Model File
@ The Defirition Part
@ The Mode! Part
@ Bazic Input Elements
@ Building a Farmula
@ Advanced Indexing Techniques
@ [atabaze Connection
@ Character Set

Figure T1.8: The Help Contents Window for MPL

Find tab, giving you different ways of accessing help.

The Contents tab, shows all the available topics in the help system in a hierarchical tree structure.
The Index tab, enables the user to access alist of all the keywords in the help file or to perform a
search for a specific keyword. The Find tab, enables the user to find a help topic by searching for
specific words or phrases in the text. The Find database is built the first time you select the Find
tab through the Find Setup Wizard.

241

Part IV A MPL Tutorial

L ooking Up Context Sensitive Help for Dialog Boxes

One of the most beneficial features in Windows is the context sensitive help for dialog
boxes. This feature enables you to quickly get specific help information about the dialog box
item you are interested in. To learn how to use the context sensitive help in MPL follow these
steps:

1. Toopenadiaog box choose MPL Language from the Options menu. Thiswill display
the MPL Language Options dialog box.

2. Click on the question mark button [in the upper right corner of the dialog and then
release the mouse button. The cursor will change to a (?) which you can use to point to
an itemyou are interested in..

3. Move the mouse across the dialog and click on the Max subscript length item. A small

window will pop up with a short explanation of the item you selected as shown here
below.

MPL Language Options

- MPL language-options ——— - Sendlog information to;——
¥ Case sensitive [Message window
v Plain variables must be defined W Logfile

= Detault Model Type

' Linear Models i Honlinear Models
" Quadratic Maodels [T Estended Maonlinear Models
— Data filez

Input Directony: | J
&l

Dutput Dirsctony: I
¥ Check sparse data for duplicate entries

¥ Usze quicksort for sparse data

— Mame Generation

% |ndesed names bax variable length: !3

- .
Numeric names Waw subscrint lenathe [7
Max subscript length

Decides how many characters of indexes are retained
in th d wariabl The default value is 3

Figure T1.9: Context Sensitive Help for Dialog Box

Y ou can also display the context sensitive help by pressing the right mouse button on the item in
the dialog box and then select What' s This? from the pop up menu.

242

Session 2 Formulating a Smple Model

SESSION 2:

Formulating a Simple

Product-Mix Model

In this session you will be introduced to the formulation of linear programming models through a
simple product-mix problem called Better Bread Bakery.

The purpose of this session isto introduce to you the basic concepts of

» Decision variables
+ Objective function
» Constraints

Y ou need to identify these concepts when formulating linear programming models.

243

Part IV A MPL Tutorial

The first step when formulating a model is to identify and give names to the decision variables.
Decision variables are the elements of the model that the decision maker controls and those values
determine the solution of the model!.

The next step is to determine the objective function in terms of the decision variables. The
objective function is where you specify the goal you are trying to achieve. The goal can either be
to maximize or to minimize the value of the objective function. We sometimes use the phrase that
we want to optimize the model. This means we want to find the values for the decision variables
which gives either the maximum or the minimum value of the objective function. In many cases,
the objective function has a monetary value, for example to maximize profit or minimize cost,
athough thisis not always the case.

Constraints are the real world limitations on the decision variables. A constraint restricts or
constrains the possible values which the variable can take. An example of a constraint could be,
for example, that certain resources, such as machine capacity or manpower, are limited.

244

Session 2 Formulating a Smple Model

2.1 Problem Description: A Simple Product-Mix
Model

The Better Bread Bakery is famous for its breads. They make two kinds. “ Sunshine”, a white
bread and “Moonlight”, alarge dark bread.

The market for the famous breads is endless. Every Sunshine loaf sold brings a profit of $0.05 and
each loaf of Moonlight breads brings a profit of $0.08. There is afixed cost of running the bakery
of $4000 per month, regardless of the amount of bread baked.

The bakery is divided into two departments: baking and mixing, with limited capacity in both
departments.

In the baking department there are ten big ovens, each with a capacity of 140 baking sheets per
day. It is possible to put ten loaves of Sunshine on each of these baking sheets, or 5 of the larger
Moonlight breads. Y ou can make any combination of the two breads on the baking sheets. Just
keep in mind that each Moonlight loaf takes twice the space of a Sunshine loaf.

The mixing department can mix up to 8000 loaves of SQunshine per day and 5000 loaves of
Moonlight bread. There are two separate automatic mixers so there is no conflict between making
the two kinds of dough.

Since the market for both types of breads is unlimited, the management of BBB has decided to
find the best product mix. The question is how many loaves of each type of bread should be
baked each day to produce the highest profit, given the physical limitations of the bakery.

We will now show you how to identify the decision variables, the objective function and the
congtraints for this model and then enter the formulationin MPL.

245

Part IV A MPL Tutorial

2.2 Formulating the Model

Identify the Decision Variables

For our bakery, the decision variables correspond to the number of loaves of each type made
daily. To make the formulation easier to read, it is a good idea to give the decision variables
names, which alow you to identify what they represent in the real world. Use two decision
variables, named Sun and Moon, and agree that they have the following meanings:

un = The number of loaves of Sunshine bread produced per day
Moon = Number of loaves of Moonlight bread produced per day

Now you want to determine the values for these two decision variables in order to maximize the
bakery’s profit.

Identify the Objective Function

In our example the goal is to maximize the daily profit. We make a profit of $0.05 on each
Sunshine loaf, so the total daily production of Sunshine bread yields $0.05 multiplied by the value
of the Sun variable for profit.

For the Moonlight production, the corresponding yield is $0.08 multiplied by the value of the
Moon variable. We call the values $0.05 and $0.08 the coefficients for the corresponding decision
variables in the objective function. To get the total contribution towards profit in a day, we add
the contributions from the two bread types. From that, we subtract the fixed cost of $4000 divided
by 30 daysin a month, to obtain the net daily profit. This leads to the following quantity we want
to maximize:

Profit = 0.05 Sun + 0.08 Moon - 4000/30

We have now defined the objective function for this particular problem. The solver uses the
objective function as the criteria to determine which solution is optimal.

246

Session 2 Formulating a Smple Model

Identify the Constraints

The first constraint in the baking department is somewhat complicated since there is an
interaction between the bread types. It is possible to put either ten Sunshine breads or five
Moonlight breads on each baking sheet. It is also possible to use any combination of the two. The
expression 1/10 Sun + 1/5 Moon gives us the total usage of baking sheets. If you measure the
capacity of each oven as the number of baking sheets which it can handle per day (10 x 140), you
can express the constraint as:

1/10 Sun + /5 Moon <= 10 x 140
We express the constraints which were given by the mixing department like this:

Sun <= 8000
Moon <= 5000

Summing up the Formulation

We have now defined the variables the objective function, and all of the constraints. Thisis the
formulation of the linear programming problem as shown below:

Max

Profit = 0.05 Sun + 0.08 Moon - 4000/30
Subject to

1/10 Sun + 1/5 Moon <= 10 x 140

un <= 8000
Moon <= 5000

Once you have your formulation, most of the work is done. As you are about to see, MPL accepts
itsinput in aform very similar to what you have just written down.

247

Part IV A MPL Tutorial

2.3 Solving the Model in MPL

Step 1. Start MPL and Create a New Model File

1. Start the MPL application.
2. Choose New from the File menu to create a new empty model file.

3. Choose Save As from the File menu and save the file as Bakery2.mpl.

Step 2: Enter the Model Formulation for the Bakery Model

Y ou are now ready to enter the model into the MPL. The model editor in MPL is a standard text
editor which allows you to enter the model and perform various editing operations on the model
text. Inthe model editor, enter the following model formulation:

TITLE BetterBreadBakery;
MAX

Profit = 0.05 Sun + 0.08 Moon - 4000/30 ;
SUBJECT TO

1/10 Sun + 1/5 Moon <= 10 * 140 ;

Sun <= 8000 ;
Moon <= 5000 ;

END

Notice that there is one small difference between the formulation in the previous step and the file
shown here. Thereisasemicolon ;' after the objective function and after each constraint. This
allows MPL to separate the constraints.

The spacing used between entries and lines in MPL is not rigid. It is recommended, when
entering the model, to use spaces and extra lines to make the model formulation easier to read and
understand. MPL isonly concerned with the actual text in the model file.

When you have finished entering the model choose Save from the File menu to save the model.

248

Session 2 Formulating a Smple Model

Step 3: Check the Syntax of the Model

After you have entered the formulation in the model editor, you can check the model for syntax
errors. If MPL finds a mistake in the formulation it will report it in the Error Message window
showing the erroneous line in the model, along with a short explanation of the problem. The
cursor is automatically positioned at the mistake in the model file, with the offending word
highlighted.

To check the syntax at the model choose Check Syntax from the Run menu. If there are no errors
found MPL will respond with a message stating that the syntax of the model is correct. If there
isan error in the model MPL will display the Error Message window.

If you did not have any errors in your formulation (congratulations!) you may still want to see
how the error messages work. We are going to introduce an error in the model and see how the
error messagesin MPL can help you correct it.

1. Inthe modd editor remove the semicolon at the end of the first constraint as follows:

SUBJECT TO

1/10 Sun + 1/5 Moon <= 10 * 140 ! note the missing semicolon

Sun <= 8000 ;
Moon <= 5000 ;

2. Choose Check Syntax from the Run menu. MPL will go through the model and find
the missing semicolon when it is parsing the second constraint displaying the following

error message:

MPL Error Message

| Sun <= 8000;

A minor mistake was found in line T5:

5. | expected to see a semicolon '} after the previous constraint, but found
instead ‘o=

Help I

Figure T2.1: The Error Message Window

249

Part IV A MPL Tutorial

The reason MPL did not notice the missing semicolon until it reached the second
congtraint is because it thinks 10* 140 is a coefficient for the Sun variable in the line
below.

3. When you press the OK button you are returned to the model editor. The cursor will
automatically be positioned at the location where MPL found the error which in our
caseisat the ‘<=" in the second constraint.

4. Now you can reenter the semicolon for the first constraint and if you check the syntax
again, MPL will report back with message that the syntax is correct.

250

Session 2 Formulating a Smple Model

Step 4: Solve the Model

The next step is to solve the Bakery2 model. Solving the model involves several tasks for MPL,
including checking the syntax, parsing the model into memory, transferring the model to the
solver, solving the model and then retrieving the solution from the solver and creating the solution
file. All these tasks are done transparently to the user when he chooses the solve command from
the menus. To solve the model follow these steps:

1. Choose Solve CPLEX from the Run menu or press the Run Solve @ button in the
Toolbar.

1. While solving the model the Status Window; appears providing you with information
about the solution progress.

Status Window E

DOptimal solution found

- MainFile —— Lines — Memomw — Time
Baken2. mpl 18 REZK 007
- Model

Wariables: 2 Monzeros: 4
Constraints; 3 Integers: 0
= Solver— [terations Objective Funchion -
Phase 1: 0 0.0000
Total 3 S5, BEEY

Wi I

Figure T2.2: The Status Window for the Bakery2 model

If everything goes well MPL will display the message “Optimal Solution Found”. If there is an
error message window with a syntax error please check the formulation you entered with the
model detailed earlier in this session.

251

Part IV A MPL Tutorial

Step 5: View and Analyze the Solution

After solving the model MPL automatically creates a standard solution file containing various
elements of the solution to the model. This includes among other things the optimal value of the
objective function, the activity and reduced costs for the variables, and slack and shadow prices
for the constraints. This solution file is created with the same name as the mode file but with the
extension .sol. In our case the solution file will be named Bakery2.sol.

After you have solved the model you can display the solution file in a view window by pressing
the View button at the bottom of the Status Window. This will display the view window shown
below.

" 1
&h View File: Bakery2 sol [_[O]
MPL HModeling System - Copyright {c) 1988-2861, Haximal Software, Inc. :j

HODEL STATISTICS

Problem name: BetterBreadBakery
Filename: Bakery2.mpl
Date: August 18, 2861
Time: 89:57

Parsing time: .81 sec
Solver: CPLEX

Objective value: a6 . 666666667
Iterations: 3

Solution time: 8.19 sec
Constraints: 3

Uariables: 2

Honzeros: 4

Density: 67 %

SOLUTION RESULT

Optimal solution found

MAX Profit = 5066667

Figure T2.3: View Window with the Bakery2.sol Solution File

The View Window stores the solution file in memory, allowing you to quickly browse through the
solution using the scroll bars. A full listing of the solution file is shown on the next page.

252

MPL Modeling System -

Copyright (c) 1988-2001,

Session 2 Formulating a Smple Model

Maximal Software, Inc.

MODEL STATISTICS
Problem name:

Filename:
Date:

Time:

Parsing time:

Solver:
Objective value:
Iterations:
Solution time:

Constraints:
Variables:
Nonzeros:
Density:

SOLUTION RESULT

BetterBreadBakery

Bakery2.mpl
April 17, 1998
17:29

0.04 sec

CPLEX
506.666666667
3

0.14 sec

oMW

Optimal solution found

MAX Profit

DECISION VARAIBLES

PLAIN VARIABLES

Variable Name

CONSTRAINTS

PLAIN CONSTRAINTS

Constraint Name

= 506.6667

Activity Reduced Cost

8000.0000 0.0000

3000.0000 0.0000
Slack Shadow Price

0.0000 -0.4000

0.0000 -0.0100

2000.0000 0.0000

253

Part IV A MPL Tutorial

The first part of the solution file contains various statistics for the model, such as the filename,
date and time the model was solved, which solver was used, the value of the objective function
and the size of the model.

The next part of the solution file contains the solution results. Here you can see if the solution
that was found was optimal or if it was unbounded or infeasible. It also shows you the name and
optimal value of the objective function. In our case the profit for the bakery is equal to $506 per

day.

In the DECISSON VARIABLES section you get alist of the variables in the model, Sun and Moon.
Y ou will see that for Sun bread the solution suggests that you produce 8000 loaves per day, which
is the same amount as the capacity of the mixing department for the Sun bread. For the Moon
bread the solution suggests that we produce 3000 loaves per day, which is less than the maximum
capacity of 5000 Moon loaves per day in the mixing department.

In the CONSTRAINTS section the solution file lists all of the constraints for the model. In our
model we had three constraints, one for the ovens in the baking department, and two constraints
in the mixing department for each type of bread. Since the slack for the first constraint is zero
this means that the ovens in the baking department are running at full capacity. In asimilar way,
the mixers for the Sun bread are running at full capacity, but the mixer for the Moon bread has a
slack of 2000.

Therefore, since the ovens in the bakery department are shared between the two types of breads,
the solver has chosen to produce as much of the Sun bread as possible, then use the rest of the
capacity to produce the Moon bread.

254

Session 3 Introducing Vectors and Indexes

SESSION 3:

Introducing Vectorsand I ndexes

In MPL Models

MPL allows you to concisely express multitudes of vectors, data, and constraints, with intuitive
and flexible expression formats. In Session 2, you were introduced to plain variables, the
objective function and plain constraints. In this Session we introduce several new model elements
that are necessary for constructing models for larger problems.

The model you were using in Session 2 was small, involving only two variables. Real world
models have hundreds or thousands of variables and constraints, and sometimes extend to
millions of variables. MPL allows the user to set up a model using Indexes, Data Vectors, Vector
Variables, and Vector Constraints to define the problem in a concise, easy-to-read way.

255

Part IV A MPL Tutorial

3.1 New Concepts in this Session

Indexes as the Domains of the Model

Indexes define the domains of the model, encapsulate the problem dimensions, and make it easy
to quickly adjust the problem size. Once you have defined the indexes for a model, use them to
define data, variable, and constraint vectors.

The realm of subscripted variables and constraints is where a modeling language, such as MPL,
can allow dramatic productivity, since it alows the model developer to formulate the model in a
concise, easy to read manner, using indexes and vectors. Examples of indexes include:

e products
* months
e plants

Data, Variable, and Constraint Vectors

Vectors are basically aggregations of elements in the model that share common characteristics and
purpose. Once you have defined the indexes in a model, you can use them to define vectors that
contain the data, variables and constraints for the model. This allows you to work in a more
condensed way, as you don’t have to type every element each time you need it.

Data Vectors are used when the coefficients for the problem come in lists or tables of numerical
data. When an index is defined there is one value for each element of the index and the data
vectors allow you to group collections of data together in the model. This data can either be
specified as lists of humbers in the model file, or retrieved from an externa file, which will be
covered in the next session. Examples of data vectors, in a production model with a ‘ product’
index, include;

» Pricefor each product
« Production cost for each product
« Demand for each product

Variable Vectors can be defined in a similar way as data vectors, to form a collection of variables
defined over acertain index. Examples of variable vectorsinclude:

» How much to produce of each product
« Inventory level of the product in each month
« How much to ship between locations or plants

256

Session 3 Introducing Vectors and Indexes

Constraint Vectors are defined over indexes, which MPL expands to a collection of simple
constraints when generating the model. A vector constraint can be defined in this way, over a
number of indexes such as periods and products. Examples of constraint vectors include:

« Limit of production to capacity

e Limit how much you sell to what the demand is.

Data Constants

Data Constants are used in the model to aid readability, and make the model easier to maintain.
They are assigned a specific value, but not defined over a specific index.

Using Summations over Vectors

One of the operations usually done on vectors is to sum or add all the values for each element of
the vector. Thisisdonein MPL by using the keyword SUM surrounding the vector expression to
be added together. The expression is prefixed by a list of indexes, over which the sum hinges.
The sum expression normally contains a single variable vector per term, possibly multiplied by
one or more data vectors.

SUM(product: Price * Sales);

SUM(product, month: ProdCost * Produce);

257

Part IV A MPL Tutorial

3.2 Problem Description: A Product-Mix Model
with Three Variables

You are now going to create a model formulation to see how indexes and vectors are used in
MPL. We formulated a small product-mix model for a bakery that contained two products and
three constraints. In this example, you are going to do a similar model, but this one will include
three products, which will be called A1, A2 and A3. For these three products you are going to
create an index, and then create a variable vector that represents how much of each of these
products need to be produced.

Given the definitions of these new terms, indexes and vectors, you are going to apply them to a
sample model. The product-mix model is a question of how to distribute production capacity
between products, and to determine the production level, given the demand.

The selling price for each product is fixed. $120.00 for A1, $100.00 for A2, and $115.00 for A3.
There is aso a limit on the maximum demand for each product 4300 for Al, 4500 for A2, and
5400 for A3.

The production rate is measured by how many items of each product are produced each day. In
this problem, you have atotal of 22 production days available. The production cost is different for
each product. The production rate and production cost for each product is given in the table
below:

Production Al A2 A3
Production Cost $73.30 $52.90 $65.40
Production Rate 500 450 550

258

Session 3 Introducing Vectors and Indexes

3.3 Formulation of the Model in MPL

The next step is to take the problem described in the previous session, and formulate it into the
MPL model. To see an overview of the Planning3 model to be created, afull listing of the model
formulation, is shown below.

TITLE

Production_Planning3;
INDEX

product := (A1, A2, A3);

DATA
Price[product]
Demand[product]
ProdCost[product]
ProdRate[product]

(120.00, 100.00, 115.00);
(4300, 4500, 5400);
(73.30, 52.90, 65.40);
(500, 450, 550);

2

ProdDaysAvail 2;
VARIABLES
Produce[product] -> Prod;
MACROS
TotalRevenue = SUM(product: Price * Produce);
TotalCost = SUM(product: ProdCost * Produce);
MODEL
MAX Profit = TotalRevenue - TotalCost;
SUBJECT TO

ProdCapacity -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

BOUNDS
Produce <= Demand;

END

259

Part IV A MPL Tutorial

3.4 Enter the Model in MPL Step-by-Step

Step 1. Start MPL and Create a New Model File

Y ou will now go through entering a simple model, step by step, to allow you to understand model
formulation as you set it up.

1. Start the MPL application.
2. Choose New from the File menu to create a new empty model file.

3. Choose Save As from the File menu and save the file as Planning3.mpl.

Step 2: Specify a Title for the Model

The title is optional, but a convenient place to name the model. The title will be used in the
solution file to identify the model. Y ou should now have an empty editor window where you can
enter the MPL formulation. To enter the title for the Planning3 model, type in the following text
in the model editor:

TITLE
Production_Planning3;

Step 3: Define an Index for all the Products in the Model

Thefirst section in an MPL model is usually the INDEX section where you define the indexes for
the model. In this example, you have three products, Al, A2, and A3 for which you are creating
an index called product. In the model editor, directly below the title, add an INDEX section with
adefinition for the product index as follows:

INDEX
product := (A1, A2, A3);

260

Session 3 Introducing Vectors and Indexes

Step 4: Define the Data for the Model

The next section in MPL is usually the DATA section where you define the Data Vectors and
Data Constants for the model. The first data vector you will enter, contains the prices for each
product, which were given in the problem description.

In the model editor, directly below the index definition, add a DATA section with a definition for
the data vector Price followed by the index [product] inside brackets:

DATA
Price[product] := (120.00, 100.00, 115.00);

Following the declaration, you enter an assignment symbol ‘: =" and then a list of numbers
containing the prices for each product. Surround the list with parentheses and separate each
number by either a space, comma or both. There should be a semicolon after each data vector
definition to separate it from the other definitions in the model.

The problem description also listed data for the demand, production cost and production rate.
There is a certain demand for each product, an amount it costs to produce, and an upper limit on
how many of each product you can produce per day. To enter this data into MPL add the
following definitions to the DATA section directly below the Price data vector:

Demand[product]
ProdCost[product]
ProdRate[product]

(4300, 4500, 5400);
(73.30, 52.90, 65.40);
(500, 450, 550);

The problem description also listed how many production days there are available. Add the
following data constant definition for the production days available directly below the ProdRate
data vector:

ProdDaysAvail = 22;

Step 5: Define a Variable Vector for How Much to Produce of each
Product

Usually, the next section will be the VARIABLES section where you define the variables for the
model. In the problem description, you were asked to determine how much to produce of each
product. To do this you need to define a vector variable named Produce over the index product.
In the model editor, directly below the data definitions, add the VARIABLES section with a
definition for the Produce vector variable as follows:

VARIABLES
Produce[product] -> Prod;

261

Part IV A MPL Tutorial

The name that appears after the ‘- >’ (read becomes) sign is an optional abbreviation of the vector
name used to offset the name size limitations of most LP solvers. This allows you to use long and
descriptive names for the variables in your model.

Step 6: Define the Objective Function as Total Revenue
Subtracted by Total Production Cost

In the problem description, you were asked to maximize the profit for the company, which is
represented as Total revenue - Total cost. The total revenue is calculated by multiplying the price
for each product by how much of that product is produced. In the same fashion, the total cost is
calculated by multiplying the production cost for each product by the amount produced. These
summations will be used to define the objective function for the model.

When entering summations for the objective function it is useful to define them separately as
macros, to make the model easier to read. Y ou can then, in the model, refer to these summations
using the macro names. In the model editor, directly below the variable definition, enter the
following macro definitionsin the MACROS section.

MACROS
TotalRevenue = SUM(product: Price * Produce);
TotalCost = SUM(product: ProdCost * Produce);

The model part in MPL is where you define the actual objective function and the constraints for
the model. You will be using the macros, defined above, to create the objective function by
referring to the macro names where you need to use the summations. Since you are maximizing
the profit in this model, the name of this objective function will be Profit. In the model editor,
enter the keyword MODEL to note the start of the model part, followed by the definition for the
objective function:

MODEL

MAX Profit = TotalRevenue - TotalCost;

The formula for the objective function is quite simple, as we are using macros to contain to actual
summations. This results in the objective function determining how to maximize profit by
computing the difference between the revenues and total cost.

262

Session 3 Introducing Vectors and Indexes

Step 7: Enter a Constraint for the Production Capacity

Following the objective function you will define the constraints for the model in the SUBJECT
TO section. In the problem description, you were given the production rate defined as how many
items of each product you can produce each day. As well as how many production days are
available. Since thislimits how many items you can produce you will need to create a production
capacity constraint called ProdCapacity, for each product.

In the model editor, add the SUBJECT TO heading, followed by the constraint definition:

SUBJECT TO
ProdCapacity -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

In the summation, you divide the number of items produced by the production rate to receive the
total number of days used to produce each product. The total production days must be less than
the days available for production.

Step 8: Enter an Upper Bound for the ‘Produce’ Variable

The BOUNDS section is used to define the upper and lower bounds on the variables in the model.
Bounds are similar to constraints but are limited to only one variable. In the problem description,
we specified that the total number of items produced must be less than the demand. Therefore,
enter the following upper bound on the Produce variable in the BOUNDS section.

BOUNDS
Produce <= Demand;

END

Please note that in most linear programming models all variables have an implied lower bound of
zero. These lower bounds are handled automatically by MPL and do not have to be specified
unless they are nonzero.

At the end of the model enter the keyword END to note the end of the model. After you have
finished entering the model, you should save it by choosing Save from the File menu.

263

Part IV A MPL Tutorial

3.5 Solve the Model and Analyze the Solution

Solve the Model

The next step is to solve the Planning3 model. Solving the model involves several tasks done
automatically by MPL, including checking the syntax, parsing the model into memory,
transferring the model to the solver, solving the model and then retrieving the solution from the
solver and creating the solution file. All these tasks are done transparently to the user when he
chooses the solve command from the menus. To solve the model do the following steps:

1. Choose Solve CPLEX from the Run menu or press the Run Solve @ button in the
Toolbar.

1. While solving the model the Status Window appears providing you with information
about the solution progress.

Status Window E

DOptimal solution found

- MainFile —— Lines — Memomw — Time
Plariing3.rpl 36 895K 022
- Model

Wariables: 3 Monzeros: 3
Constraints; 1 Integers: 0

= Solver— [terations Objective Funchion -
FPhaze 1. 0 [.0000
Total 3 S4456E. 6364

Wi I

Figure T3.1: The Status Window for the Planning3 model

If everything goes well MPL will display the message “Optimal Solution Found”. If there is an
error message window with a syntax error please check the formulation you entered with the
model detailed earlier in this session.

264

Session 3 Introducing Vectors and Indexes

View and Analyze the Solution

After solving the model MPL automatically creates a standard solution file containing various
elements of the model solution. This includes, among other things, the optimal value of the
objective function, the activity and reduced costs for the variables, and slack and shadow prices
for the constraints. This solution file is created with the same name as the model file, but with the
extension .sol instead. In our case the solution file is named Planning3.sol.

After you have solved the model you can display the solution file in a view window by pressing
the View button at the bottom of the Status Window. This will display the view window shown
below.

1 View lile: Planning3.sol

MPL HModeling System - Copyright (c) 1988-2061, Haximal Software, Inc.

HODEL STATISTICS

Problem name: Producton_Planning3
Filename: Planning3.mpl
Date: fiugust 18, 2681
Time: 89:59

Parsing time: 8.57 sec
Solver: CPLEX

Objective value: 544566636364
Iterations: 3

Solution time: 8.12 sec
Constraints: 1

Variables: 3

Honzeros: 3

Density: 188 %

SOLUTION RESULT

Optimal solution found

HAX Profit = SLL566 6364

Figure T3.2: View Window with the Planning3.sol Solution File

The View Window stores the solution file in memory, allowing you to quickly browse through the
solution using the scroll bars. A full listing of the solution file for the Planning3 model is shown
here on the next page.

265

Part IV A MPL Tutorial

MPL Modeling System - Copyright (c) 1988-2001, Maximal Software, Inc.

MODEL STATISTICS

Problem name: Producton_Planning3
Filename: Planning3.mpll
Date: April 18, 1998
Time: 09:59

Parsing time: 0.57 sec
Solver: CPLEX
Objective value: 544566 .636364
Iterations: 3

Solution time: 0.12 sec
Constraints: 1

Variables: 3

Nonzeros: 3

Density: 100 %

SOLUTION RESULT

Optimal solution found

MAX Profit = 544566 .6364
MACROS

Macro Name Values

TotalRevenue 1298181.8182

TotalCost 753615.1818

DECISION VARAIBLES

VECTOR Produce[product]

product Activity Reduced Cost

A1 4300.0000 4.3100

A2 1611.8182 0.0000

A3 5400.0000 11.0636
CONSTRAINTS

PLAIN CONSTRAINTS

Constraint Name Slack Shadow Price

266

Session 3 Introducing Vectors and Indexes

The first part of the solution file contains various statistics for the model such as the filename,
date and time the model was solved, which solver was used, the value of the objective function
and the size of the model.

The next part of the solution file contains the solution results. Here you can see if the solution
that was found was optimal, or if it was unbounded or infeasible. It also shows you the name and
optimal value of the objective function.

In the MACROS section of the solution file you get alist of al of the macros defined in the model
along with the solution values for them. For example, in our Planning3 model, the total revenue
is $1.298 million and the total cost is $754,000. This corresponds with the profit of $545,000,
which is the value of the objective function.

In the DECISSON VARIABLE section you get a list of al the variables in the model, both vector
variables and plain variables. In our case, we have a single vector variable Produce defined over
the index product. You will see that for products A1 and A3 the solution suggests that you
produce 4300 and 5400 units respectively. This is the same amount as the demand for those
products. On the other hand, product A2 is suggested to produce 1611 units which is less that the
demand. Clearly we did not have the capacity to produce enough to fulfill the demand for all of
the products and the model chose products Al and A3 to fulfill the demand.

By the way, you might have noticed that the value for A2 in the solution output is actualy
1611.8182 units instead of 1612. This results from the fact that all variables in Linear
Programming models are by default continuous. In this model it does not matter very much and
we can just round it up to the nearest number 1612, but if it did, you could have restricted the
variable to take only integer values by specifying it as an integer variable in the model.

In the CONSTRAINTS section the solution file lists all of the constraints for the model, again both
plain and vector constraints. In our model we had a single plain constraint called ProdCapacity.
Since the dlack for the constraint is zero this means that we are running at full capacity. The
shadow price tells you what the marginal cost would be if you needed to reduce the limit of the
constraint by one unit. Since the production capacity constraint has production days as the unit,
reducing the days available by one day the profit would decrease by $21,195.

267

Part IV AMPL Tutorial

Session 4 Planning Model with Multiple Time Periods

SESSION 4:

A Production Planning M odel with

Multiple Time Periods

You will now expand the model from the previous session to include multiple time periods. A
new period index is introduced into the model to cover these time periods and you will then
update the various vectors that have been affected to account for the new index.

269

Part IV A MPL Tutorial

4.1 New Concepts in this Session

Period Indexes

In order to update your model to include a multiple period, you will need to create an index that
represents that time period. This type of index is called a period index. After you have defined
the period index, you can then use it to update data, variable and constraint vectors to include a
specified time period. Examples of period indexes might include:

* months
e Quarters

. years

Sales and Inventory Variables

When you are upgrading a model from a single period to multiple periods, the sales for a specific
period may differ from the amount produced in that same period. Asaresult, anew variableis
needed that represents how much needs to be sold, and a new variable that represents the
inventory level for each period.

In many cases, there is a fixed cost per period involved with storing inventory. In other cases,
however, the cost might not be connected to the actual storing of the inventory, but rather with the
stocking and removing of the products from the inventory storage, through the labor costs
involved. This means you would need to add more variables to the model, one for stocking the
products, and another for removing them from the inventory.

Inventory Balance Constraints

Asitisnot possible to sell more of the products than you have on hand, the inventory variable is
used to connect the production variables to the sales variables. This is done through a type of
congtraint, typically called a balance constraint. Balance constraints are used to ensure that
guantities going into an entity equal the quantities going out.

270

Session 4 Planning Model with Multiple Time Periods

A typical inventory balance constraint, stipulates that the total production, plus the inventory level
from the previous period, equals the total amount sold, plus how much you leave in the inventory.
An example of an inventory balance constraint is:

produce + Inventory[month-1] = sales + Inventory

In this case, the entity being balanced is the inventory. The Inventory[month-1] is a notation used
in MPL to represent the previous period. When you are working with an inventory where a cost
needs to be applied to the stocking and removing of the inventory, you will need to define two
balance constraints. For example:

Produce + OutInvt = Sales + PutInvt

PutInvt + Inventory[month-1] = OutInvt + Inventory

If you think of the plant as an entity, then in the first constraint we are balancing what goes into
the plant with what goes out. In the same manner, the second constraint balances what goes into
and what goes out of the inventory.

Initial and Ending Inventory

In many cases the model developer needs to specify a specific initial or ending inventory for the
planning period. MPL by default excludes entries like Inventory[month-1] for month equal to
zero. There are several ways you can specify a starting inventory, for example you can enter the
constraint in two parts as follows:

INDEX
month := (Jan, Feb, Mar, Apr)

DATA
StartInvt := 450

SUBJECT TO
InitInvt[month=dJdan]:
produce + StartInvt = sales + Inventory

InvtBal[month>Jdan]:
produce + Inventory[month-1] = sales + Inventory

Thiswill create a balance constraint for the month of January with starting inventory of 450 units.
There are other ways of including a starting inventory in MPL that does not require you to
duplicate the constraint, for example with subindexes, but this is the simplest way to formulate
these kind of constraints.

271

Part IV A MPL Tutorial

4.2 Problem Description: A Multi-Period
Production Planning Model

In this session, you will create the new model formulation for a multi-period production planning
model. You will use the model you created in session 3, and make the necessary additions and
updatesto it.

In this new problem, you have a planning period of four months, from January to April. Y ou need
to create an index that contains the four months mentioned, and then update the rest of the model
accordingly, by adding the index to the defined vectors.

As in the problem in session 3, the sdlling price for each product is still $120.00, $100.00, and
$115.00, respectively. Now, instead of having a single demand for each product, you have a
separate demand for each product and each month, as given in the table below:

Product Demand Jan Feb Mar Apr
Al 4300 4200 6400 5300
A2 4500 5400 6500 7200
A3 5400 6700 7800 8200

The production rate and the production cost remain the same, asin given in the table in session 3.
Notice that the production days available are different for each month with 23 days for January,
20 for February, 23 for March, and 22 for April.

Y ou will be introducing inventory into the model, therefore, you have the inventory cost for each
product with Al - $3.50/month, A2 - $4.00/month, and A3 - $3.00/month, respectively.

Each product takes up the same space, but the total inventory capacity is now 800 units per
month.

272

Session 4 Planning Model with Multiple Time Periods

4.3 Formulation of the Model in MPL

Listed below is the entire model formulation for Planning4. As you can see the model has
expanded somewhat from session 3. The additions to the model are highlighted in boldface in
order to make it easy for you to see the changes.

TITLE

Production_Planning4;

INDEX
product
month

DATA
Price[product

Demand[product, month]

ProdCost[product]
ProdRate[product]

(A1, A2, A3);
(Jan, Feb, Mar, Apr);

]

(120.00, 100.00, 115.00);
(4300, 4200, 6400, 5300,
4500, 5400, 6500, 7200,
5400, 6700, 7800, 8200);
(73.30, 52.90, 65.40);

(500, 450, 550);

ProdDaysAvail[month] (23, 20, 23, 22);
InvtCost[product] (3.50, 4.00, 3.00);
InvtCapacity 800;

VARIABLES
Produce[product, month] -> Prod;
Inventory[product, month] -> Invt;
Sales[product, month] -> Sale;

MACROS
TotalRevenue = SUM(product, month: Price * Sales);
TotalProdCost = SUM(product, month: ProdCost * Produce);
TotalInvtCost = SUM(product, month: InvtCost * Inventory);
TotalCost = TotalProdCost + TotalInvtCost;

MODEL
MAX Profit = TotalRevenue - TotalCost;

SUBJECT TO

ProdCapacity[month] -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

InvtBal[product, month] -> IBal:
Produce + Inventory[month-1] = Sales + Inventory;

MaxInventory[month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

BOUNDS

Sales <= Demand;

END

273

Part IV A MPL Tutorial

4.4 Enter New Elements to the Model Step-by-
Step

Step 1. Start MPL and Create a New Model

1. Start the MPL application.
2. Choose File| Open and open the model from the previous session Planning3.mpl.

3. ChooseFile| Save Asto save it as a new model file Planning4.mpl.

Step 2: Change the Title for the Model
Change the title for the model to reflect that you are working with the Planning4 model:

TITLE
Production_Planning4;

Step 3: Add the Index ‘month’ to the Model

In this example, there is a planning period of four months represented by an index called month.
Thisindex will have four elements Jan, Feb, Mar, and Apr, to represent the four month planning
period. Add the following definition for the month index, that is shown in boldface, to the
INDEX section:

INDEX
product :
month

(A1, A2, A3);
(Jan, Feb, Mar, Apr);

274

Session 4 Planning Model with Multiple Time Periods

Step 4: Update the ‘Demand’ Data Vector to Include the ‘month’
Index

In the DATA section, most of the data definitions are the same as in session 3. One of the data
vectors;, Demand, needs to be upgraded to include the month index, as it now has different data
values for each month. The values for this vector are given in the table in the problem description
earlier in this session. Add the index month to the declaration for the Demand data vector,
followed with alist of data values as shown below:

DATA
Price[product]
Demand[product, month]

(120.00, 100.00, 115.00);
(4300, 4200, 6400, 5300,
4500, 5400, 6500, 7200,
5400, 6700, 7800, 8200);

Step 5: Update the ‘ProdDaysAvail’ Data Constant to a Data Vector
over the Index ‘month’

The data constant ProdDaysAvail now has a different value for each month, as does the Demand
data vector. This means it needs to be upgraded from a data constant to a one dimensional data
vector, with the month as the index. Using the list of production days available, found in the
problem description earlier in this session, update the ProdDaysAvail as follows:

ProdCost[product]
ProdRate[product]
ProdDaysAvail[month]

(73.30, 52.90, 65.40);
(500, 450, 550);
(23, 20, 23, 22);

Step 6: Add Data Vectors for Inventory Cost and Inventory
Capacity

The problem description defined a cost for each product stored in inventory and a limit on how
much can be stored in the inventory. Therefore, in order to represent this, add one more data
vector to the model; InvtCost, and also a new data constant, InvtCapacity. At the end of the
DATA section add the following definitions:

InvtCost[product]
InvtCapacity

(3.50, 4.00, 3.00);
800;

275

Part IV A MPL Tutorial

Step 7: Add Inventory and Sales Variables to the Model

With this model there are two new variables, Sales and Inventory, that need to be introduced into
the model. The Sales variable is used to represent how much of each product is sold each month.
The Inventory variable is used to represent how much of each product is stored, each month. The
Produce variable needs to be upgraded to include the index month as different amounts of each
product are produced, each month. In the model add the following definitions to the VARIABLES
section:

VARIABLES
Produce[product, month] -> Prod;
Inventory[product, month] -> Invt;
Sales[product, month] -> Sale;

Asin the previous model, the name that appears after the *- >’ (read becomes) sign is an optional
abbreviation of the vector name. Thisis used to offset the variable name size limitations of many
LP solvers.

Step 8: Add the Inventory Cost to the Objective Function

In the model from the previous session, the total revenue and the total production cost were
included in the objective function. Now you need to update this objective function with the
index; month, and add an entry for the total inventory cost. As in the previous session, you will
continue to use macros to represent each summation.

When calculating the total revenue, you will now use the Sales variable instead of the Produce
variable and add the index month to the summation. For the total production cost, you will aso
need to upgrade the summation to include the month index. The total inventory cost will be
defined, as the inventory cost, times the inventory level, for each product and month.

To make changes in the MACROS section, replace the Produce variable with the Sales variable,
update the total revenue and the total production cost summations to include the month index, and
add a new macro definition for the total inventory cost as follows:

MACROS
TotalRevenue = SUM(product, month: Price * Sales);
TotalProdCost = SUM(product, month: ProdCost * Produce);
TotalInvtCost = SUM(product, month: InvtCost * Inventory);
TotalCost = TotalProdCost + TotalInvtCost;

Please note that the macro for the total production cost has been renamed to TotalProdCost.
Another new macro; TotalCost, has been added where you can sum together these two macros to
get the total cost.

276

Session 4 Planning Model with Multiple Time Periods

This allows the objective function definition to remain unchanged:

MODEL

MAX Profit = TotalRevenue - TotalCost;

Step 9: Update the Production Capacity Constraint for Multiple
Months

In the production capacity constraint, add the index month to the constraint definition and the rest
of the constraint remains the same.

SUBJECT TO
ProdCapacity[month] -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

Please note that in MPL you do not have to enter each index subscript when referring to the data
and variable vectors. This means you can easily add more indexes to constraints without having
to change how you refer to each vector.

Step 10: Add an Inventory Balance Constraint to the Model

The addition of the Inventory variable to the model needs to include a standard inventory balance
congtraint. This constraint ranges over each product and each month, specifying that the
production, plus the inventory from the month before, is equal to the amount sold, plus the
inventory for the current month. Add the following InvtBal constraint below the previous
ProdCapacity constraint:

InvtBal[product, month] -> IBal:
Produce + Inventory[month-1] = Sales + Inventory;

When entering previous time periods, as in this case, the month before, MPL allows you to use
expressions such as [month-1] .

277

Part IV A MPL Tutorial

Step 11: Add an Inventory Capacity Constraint to the Model

There is a limit on how much inventory space is available. Therefore, you need to add an
inventory capacity constraint to the model. In the problem description, you were given that each
product takes up an equal amount of space in inventory and that you can add, or sum over, al of
the products to get the total inventory space used. Add the following constraint definition to the
model:

MaxInventory[month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

Step 12: Update the Maximum Demand Upper Bound to use the
‘Sales’ Variable

In the maximum demand upper bound you need to update it to include the Sales variable instead
of the Produce variable as shown below:

BOUNDS
Sales <= Demand;

After you have finished entering the model, you should save it by choosing Save from the File
menu.

278

Session 4 Planning Model with Multiple Time Periods

4.5 Solve the Model and Analyze the Solution

The next step isto solve the Planning4 model, by choosing Solve CPLEX from the Run menu. |If
you have entered the data correctly, MPL will display the message Optimal Solution Found. [f
there is an error message window, with a syntax error, please check the formulation you entered
with the model detailed earlier in this session.

After solving the model M PL, automatically creates a standard solution file named Planning4.sol.
Y ou can display the solution file in a view window by pressing the View button at the bottom of
the Satus Window. A full listing of the solution file is shown below:

MPL Modeling System - Copyright (c) 1988-2001, Maximal Software, Inc.

MODEL STATISTICS

Problem name: Production_Planning4
Filename: Planning4.mpl
Date: April 18, 1998
Time: 22:52

Parsing time: 0.15 sec
Solver: CPLEX
Objective value: 2246007 .27273
Iterations: 26

Solution time: 0.04 sec
Constraints: 20

Variables: 36

Nonzeros: 69

Density: 10 %

SOLUTION RESULT

Optimal solution found

MAX Profit = 2246007.2727

MACROS
Macro Name Values
TotalRevenue 5386045.4545
TotalProdCost 3139078.1818
TotalInvtCost 960.0000
TotalCost 3140038.1818

279

Part IV A MPL Tutorial

DECISION VARIABLES

VARIABLE Produce[product,month]

product month Activity Reduced Cost
Al Jan 4300.0000 0.0000
Al Feb 4200.0000 0.0000
Al Mar 4409.0909 0.0000
Al Apr 3545.4545 0.0000
A2 Jan 1800.0000 0.0000
A2 Feb 0.0000 -3.6667
A2 Mar 0.0000 -4.7889
A2 Apr 0.0000 -0.7889
A3 Jan 5720.0000 0.0000
A3 Feb 6380.0000 0.0000
A3 Mar 7800.0000 0.0000
A3 Apr 8200.0000 0.0000

VARIABLE Inventory[product,month]

product month Activity Reduced Cost
Al Jan 0.0000 -0.2000
Al Feb 0.0000 -2.4900
Al Mar 0.0000 -3.5000
Al Apr 0.0000 -123.5000
A2 Jan 0.0000 -4.0000
A2 Feb 0.0000 -4.0000
A2 Mar 0.0000 0.0000
A2 Apr 0.0000 -108.0000
A3 Jan 320.0000 0.0000
A3 Feb 0.0000 -2.0818
A3 Mar 0.0000 -3.0000
A3 Apr 0.0000 -110.8545

VARIABLE Sales[product,month]

product month Activity Reduced Cost
Al Jan 4300.0000 4.3100
Al Feb 4200.0000 1.0100
Al Mar 4409.0909 0.0000
Al Apr 3545.4545 0.0000
A2 Jan 1800.0000 0.0000
A2 Feb 0.0000 0.0000
A2 Mar 0.0000 0.0000
A2 Apr 0.0000 -4.0000
A3 Jan 5400.0000 11.0636
A3 Feb 6700.0000 8.0636
A3 Mar 7800.0000 7.1455
A3 Apr 8200.0000 7.1455

280

Session 4 Planning Model with Multiple Time Periods

CONSTRAINTS

CONSTRAINT ProdCapacity[month]

month Slack Shadow Price
Jan 0.0000 -21195.0000
Feb 0.0000 -22845.0000
Mar 0.0000 -23350.0000
Apr 0.0000 -23350.0000

CONSTRAINT InvtBal[product,month]

product month Slack Shadow Price
A1l Jan 0.0000 115.6900
A1l Feb 0.0000 118.9900
A1l Mar 0.0000 120.0000
A1l Apr 0.0000 120.0000
A2 Jan 0.0000 100.0000
A2 Feb 0.0000 100.0000
A2 Mar 0.0000 100.0000
A2 Apr 0.0000 104.0000
A3 Jan 0.0000 103.9364
A3 Feb 0.0000 106.9364
A3 Mar 0.0000 107.8545
A3 Apr 0.0000 107.8545

month Slack Shadow Price

Jan 480.0000 0.0000

Feb 800.0000 0.0000

Mar 800.0000 0.0000

Apr 800.0000 0.0000
END

281

Part IV A MPL Tutorial

According to the solution, the profit is now $2.2M which is considerably higher than in the
Planning3 model, as we are now working with four months. This comes from a total revenue of
$5.4M and a total cost of $3.1M, most of which is the production cost, as we keep very low
inventory just for January.

If you look at the Produce variable in the solution, you will notice that we are producing products
Al and A3 for the whole planning period, although not always up to the full demand. Product A2,
on the other hand, only produced 1800 units in January, as we do not have enough capacity to
produce all three of the products.

In January, the model decided to produce an extra 320 units A3, above the required demand, in
order to put enough into inventory satisfy the demand in February.

282

Session 5 Planning Model with Multiple Plants

SESSION 5:

A Production Planning M odel with

Multiple Plants

When formulating a model for larger companies, you will often encounter models that are not
limited to a single plant. In this session, you will create a production planning model that includes
multiple plants. You will take the model from the previous session and upgrade it to include
another index, plants, which will represent all of the plants that are available in order to produce
the products. You will then go through the model, step by step, and update al the variable
vectors and constraints to account for the new index.

283

Part IV A MPL Tutorial

5.1 New Concepts in this Session

Plants and other Location Indexes

Location indexes are quite common when formulating production planning models. One example
of alocation index, would be to represent the plants where the company produces the products for
the company. Other examples would include warehouses, factories, distribution centers, etc.

It is common, when working with models that include location indexes, that shipping is allowed
between the locations. These models are often called transportation or distribution models and
will be covered in later sessions.

External Data Files

When formulating small models it is acceptable to |eave the data definitions inside the model. As
soon as you start working with multi-dimensional models, this becomes difficult to manage, and it
is necessary to move the data into separate data files. Keeping the data separate from the model,
enhances the readability of the model and make the data easier to maintain.

The model you are creating in this session has multiple indexes, product, month, and plant, and
data vectors such as Demand, that are two-dimensional and could be moved into a separate data
file. In the model, instead of listing all the data elements for the data vector, you can use the
keyword DATAFILE and then the name of the data file as shown here below:

demand[product, month] := DATAFILE(“Demand.dat") ;

284

Session 5 Planning Model with Multiple Plants

5.2 Problem Description: A Production
Planning Model with Multiple Plants

In this session, you will create a new model formulation for the production planning model to
include multiple plants as well as the multiple periods that were introduced in session 4. What
you want to decide is how much to produce of each product, for each month, in each plant, as
well as how much to sell and store in inventory, for each month, in each plant.

In this new problem you are going to have four different plants p1, p2, p3, and p4. Any of these
plants can produce all three of the products. Create an index called plants that contains the four
different plants and then update the model accordingly by adding the index to the applicable
vectors.

As in the previous session, the selling price stays the same for each product, $120.00, $100.00,
and $150.00, respectively. The product demands also remain the same as in the previous session.
Refer to the demand table in session 3 for the necessary data.

Now that you have multiple plants the production cost for each product is different for each plant.
Thisdataisin the table below.

Production Cost Al A2 A3
plant 1 $73.30 $52.90 $65.40
plant 2 $79.00 $52.00 $66.80
plant 3 $75.80 $52.10 $50.90
plant 4 $82.70 $63.30 $53.80

The production rate for each product is also different for each plant as shown in the table below:

Production Rate Al A2 A3
plant 1 500 450 450
plant 2 550 450 300
plant 3 450 350 300
plant 4 550 400 350

285

Part IV A MPL Tutorial

5.3 Formulation of the Model in MPL

Listed below is the entire model formulation for Planning5. The additions to the model are
highlighted in boldface in order to make it easy for you to see the changes from the model in
session 4.

TITLE
Production Planning5;
INDEX
product := (A1, A2, A3);
month = (Jan, Feb, Mar, Apr);
plant = (p1, p2, p3, p4);
DATA

Price[product]
Demand[product, month]
ProdCost[plant, product]
ProdRate[plant, product]
ProdDaysAvail[month]
InvtCost[product]

(120.00, 100.00, 115.00);
DATAFILE("Demand.dat");
DATAFILE ("ProdCost.dat");
DATAFILE ("ProdRate.dat");
(23, 20, 23, 22);

(3.50, 4.00, 3.00);

InvtCapacity 800;

VARIABLES
Produce[plant, product, month] -> Prod;
Inventory[product, month] -> Invt;
Sales[product, month] -> Sale;

MACROS
TotalRevenue = SUM(product, month: Price * Sales);
TotalProdCost = SUM(plant, product, month: ProdCost * Produce);
TotalInvtCost = SUM(product, month: InvtCost * Inventory);
TotalCost = TotalProdCost + TotalInvtCost;

MODEL
MAX Profit = TotalRevenue - TotalCost;

SUBJECT TO

ProdCapacity[plant, month] -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

InvtBal[product, month] -> IBal:
SUM(plant: Produce) + Inventory[month-1] = Sales + Inventory;

MaxInventory[month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

BOUNDS
Sales <= Demand;

END

286

Session 5 Planning Model with Multiple Plants

5.4 Enter New Elements to the Model Step-by-
Step

Step 1. Start MPL and Create a New Model

1. Start the MPL application.
2. Choose File| Open and open the model from the previous session Planning4.mpl.

3. ChooseFile| Save Asto save it as a new model file Planning5.mpl.

Step 2: Change the Title for the Model
Change the title for the model to reflect that you are working with the Planning5 model:

TITLE
Production_Planning5;

Step 3: Add the Location Index ‘plant’ to the Model

In this model, you have four different plant locations which you will represent by creating. Create
a new index which you will call plant. Thisindex will have four elements pl, p2, p3, and p4 to
represent each period of the four month planning period. Add the following definition for the
plant index to the INDEX section:

INDEX

product := (A1, A2, A3);
month = (Jan, Feb, Mar, Apr);
plant := (p1, p2, p3, p4);

287

Part IV A MPL Tutorial

Step 4. Change the definition of the ‘Demand’ Data Vector to Read
Data from an External Data File

In this session, you are going move the data values for the two-dimensional data vectors to
external data files. When working with data vectors that have two dimensions or higher, it is
often a good idea to move the data values to an external data file instead of listing al of the
numbers directly in the model file. This keeps the data separate from the model, enhances the
readability of the model, and makes the data easier to maintain.

The first data vector you want to move to an external datafile is the Demand data vector. In the
DATA section, use the Cut command from the Edit menu to remove the list of numbers for the
Demand vector and then enter the keyword DATAFILE and the filename Demand.dat in its place
asfollows:

DATA
Price[product]
Demand[product, month]

(120.00, 100.00, 115.00);
DATAFILE("Demand.dat");

Step 5: Create the Data File Demand.dat

The next step is to create the data file Demand.dat. First, open a new model editor window by
choosing New in the File menu. If you used the Edit | Cut command in the previous Step 4 to
remove the data values, they are now in the Clipboard and you can use the Edit | Paste command
to place the data back into the data file. Otherwise, you can use the demand data table from the
problem description in session 3 to enter the data values into the data file as follows:

Demand.dat - Demand per month for each product

Demand[product,month]:

5400, 6700, 7800, 8200
The lines that start with exclamation marks are comments used to enhance the readability. The

numbers in the data file can be separated by comma or space or both. After you have entered all
of the data save the file as Demand.dat in the Tutorial folder.

288

Session 5 Planning Model with Multiple Plants

Step 6: Upgrade the ‘ProdCost’ and ‘ProdRate’ Data Vectors to
Include the ‘plant’ Index

Two of the data vectors, ProdCost and ProdRate, need to be upgraded to include the plant index.
The ProdCost data vector is now defined over two domain indexes, plant and product, and will
given data values from an external datafile. The ProdRate data vector will also be given values
from adatafile. Inthe model editor, add the index plant, to the declaration of both the ProdCost
and the ProdRate data vectors, and follow it with the data filenames ProdCost.dat and
ProdRate.dat respectively asfollows:

ProdCost[plant, product]
ProdRate[plant, product]
ProdDaysAvail[month]
InvtCost[product]
InvtCapacity

DATAFILE("ProdCost.dat");
DATAFILE("ProdRate.dat");
(23, 20, 23, 22);

(3.50, 4.00 3.00);

800;

Step 7: Create the Data Files for the ‘ProdCost’ and ‘ProdRate’
Data Vectors

Now open a new editor window by selecting File | New in the menu to enter the datafile. Typein
the data from the Production Cost table in the problem description as follows:

ProdCost.dat - Cost per item produced

ProdCost[plant, product]:

Again, the lines that contain exclamation marks are comments used to enhance the readability.
After you have entered all of the data save the file using the name ProdCost.dat.

289

Part IV A MPL Tutorial

For the production rate create a new data file called ProdRate.dat using the values from the table
in the problem description.

ProdRate.dat - Items produced per day

ProdRate[plant, product]:

550, 400, 350

Step 8: Update the ‘Produce’ Variable to Include the ‘plant’ Index

In order to determine how much you want to produce of each product, for each plant, that you
need to add the plant index to the vector definition of the Produce variable as follows:

VARIABLES
Produce[plant, product, month] -> Prod;
Inventory[product, month] -> Invt;
Sales[product, month] -> Sale;

Step 9: Add the ‘plant’ Index to the ‘TotalProdCost’ Summation

Since the Produce vector variable now includes the new index, plant, the calculation of the total
production cost in the MACROS section needs also to be updated to include the plant index:

MACROS
TotalRevenue = SUM(product, month: Price * Sales);
TotalProdCost = SUM(plant, product, month: ProdCost * Produce) ;
TotalInvtCost = SUM(product, month: InvtCost * Inventory);
TotalCost = TotalProdCost + TotalInvtCost;

The objective function itself does not change as you are using the same macros as in the previous
session.

290

Session 5 Planning Model with Multiple Plants

Step 10: Add the ‘plant’ Index to the ‘ProdCapacity’ Constraint

The change for the production capacity constraint is very smple. Add the index plant to the
production capacity declaration and the rest of the constraint remains the same.

SUBJECT TO
ProdCapacity[plant, month] -> PCap:
SUM(product: ProdRate / Produce) <= ProdDaysAvail;

Step 11: Add Summation of the ‘Produce’ Variable Over the ‘plant’
Index to the Inventory Balance Constraint

You can now produce the products in any of the four plants, therefore, you need to update the
inventory balance constraint to include a summation, over al of the plants, of the Produce
variable vector.

InvtBal[product, month] -> IBal:
SUM(plant: Produce) + Inventory[month-1] = Sales + Inventory;

After you have finished entering the model, you should save it by choosing Save from the File
menu.

291

Part IV A MPL Tutorial

5.5 Solve the Model and Analyze the Solution

Since we have added more indexes to the model, the number of variables has increased
considerably. Typically, when working with larger models, the model developer wants to include
only the variables that have nonzero values. MPL has a number of options dialog boxes in the
Options menu where you can change the default behavior of the program. One of the dialog
boxes is the Solution File Options Dialog Box where you can adjust what is included in the
solution file. To change the default to include nonzero values in the solution file only, do the

following:

1. From the Options menu choose Solution File to open the Options Dialog Box shown here
below:

Solution File Options EE

¥ Generate solution file: Filerame: 20
I Use MPS names Nurober width: 16
V¥ Muorizera values orily Dl !4_
[| Zemo values as dot

— Solution File Contents
Header: Salution: [™ Compute ranges
V¥ System Inta v Wanisble Yalues [Objective Fanges
v Salver ko v Reduced Cost [Obijective Cosff
v Model Infa IV | Slack Walues [~ RHS5 Fanges
v Salution |nfo v Shadow Frices [RHS Yalues

Cancel Help

Figure T5.1: The Solution File Options Dialog Box

2. Turn the Nonzero Values Only check box On by clicking on it.
3. Closethedialog box by pressing the OK button.

After changing the Nonzero values only option, the next step is to solve the model by choosing
Solve CPLEX from the Run menu. If everything goes well MPL will display the message
“Optimal Solution Found”. If there is an error message window with a syntax error please check
the formulation you entered with the model listing detailed earlier in this session.

292

Session 5 Planning Model with Multiple Plants

As the models you are working with become bigger you tend to look at only certain parts of the
solution instead of the whole solution file. Thistime, instead of listing the whole solution file, we
are going to use the model definitions tree window to view only the parts of the solution we are
interested in.

The Model Definitions Window allows you to see al of the defined items from the model
formulation in a hierarchical tree where each branch corresponds to a section in the model. While
in MPL it is normally a good idea to |eave the tree window open at al times. MPL will then
automatically update its contents every time you solve your model. To look at the Model
Definitions Window for the Planning5 model choose Model Definitions from the View menu.

& Model Definitions M[=] 3

EB TITLE Production_Planning5 =
E-{== INDEX

..... & FPrice(product]

..... @ Demand(product, month]

----- @ ProdCost[plantproduct]

----- @ ProdR atelplant product]

..... & ProdDapzdvailmonth)

----- @ InvtCost[product]

----- @ InvtCapacity

== VARIABLES

----- % Produce[plant praduct,month)
----- % Inventony[product, month]

----- % Sales[product month]
B MACROS

----- % TotalRevenue

----- % TotalProdCost =l

Wiew | Goto |

Figure T5.2: The Modéd Definitions Window for Planning5

From the tree window you can select any of the defined items in the model to look at the actual
values for that item. For example, to look at the values for the Produce variable, either double
click on the Produce item in the tree, or aternatively select it and then press the View button.
Thiswill display aview window containing only the values for the Produce variable.

293

Part IV A MPL Tutorial

VARIABLE Produce[plant,product,month]

plant product month Activity Reduced Cost
pi Al Jan 4300.0000 0.0000
pi Al Feb 4200.0000 0.0000
pi Al Mar 6400.0000 0.0000
pi Al Apr 5300.0000 0.0000
p2 A2 Jan 4500.0000 0.0000
p2 A2 Feb 5400.0000 0.0000
p2 A2 Mar 6500.0000 0.0000
p2 A2 Apr 7200.0000 0.0000
p3 A3 Jan 5400.0000 0.0000
p3 A3 Feb 6000.0000 0.0000
p3 A3 Mar 6900.0000 0.0000
p3 A3 Apr 6600.0000 0.0000
p4 A3 Feb 700.0000 0.0000
p4 A3 Mar 900.0000 0.0000
p4 A3 Apr 1600.0000 0.0000

If you look at the activity values for the Produce variable you will see that this time we are
fulfilling the demand for all the products since we now have enough capacity. The model decides
which plants are used for which products. For example, plant pl is used to produce product Al,
plant p2 is used to produce product A2, and plants p3 and p4 are used to produce product A3.

If you go to the tree window again and open up a window for the ProdCapacity constraint you
will get the following solution values.

CONSTRAINT ProdCapacity[plant,month]

plant month Slack Shadow Price
p1 Jan 14.4000 0.0000
p1 Feb 11.6000 0.0000
p1 Mar 10.2000 0.0000
p1 Apr 11.4000 0.0000
p2 Jan 13.0000 0.0000
p2 Feb 8.0000 0.0000
p2 Mar 8.5556 0.0000
p2 Apr 6.0000 0.0000
p3 Jan 5.0000 0.0000
p4 Jan 23.0000 0.0000
p4 Feb 18.0000 0.0000
p4 Mar 20.4286 0.0000
p4 Apr 17.4286 0.0000

Thereisagreat dea of slack for each plant and month in the production capacity constraint. This
can be interpreted to mean that we could produce a lot more of the products, but it is not
necessary as we are aready fulfilling the demand. Since the production capacity constraint uses
production days as the unit of measure, the slack values represent how many days per month each
plantisidle.

294

Session 6 Allow Shipments Between Plants

SESSION 6:

Upgradethe M odel to Allow

Shipments Between the Plants

In session 5, you encountered a model for a production company that used multiple plants to
produce their product. What you should note about that model was that while each of the
different plants could be used to produce the products individualy, all the selling and inventory
was handled collectively, as a single source, for the whole company. You will now upgrade that
model to allow each plant to sell the products, and maintain inventory individually. Furthermore,
in order to fulfill the demand in the most efficient manner, the products can be shipped between
the plants as needed.

To upgrade the model you will include the two new alias indexes, toplant, and fromplant, which
will represent the locations you will be shipping to and from. Y ou will aso update the Inventory
and Sales variables to include the plant index, as each plant can now sell the products and
maintain inventory independent of each other.

295

Part IV A MPL Tutorial

6.1 New Concepts in this Session

Transportation Models

Models that allow shipping between locations are sometimes called transportation or distribution
models. Typically, in transportation models, you have sources with certain availability,
destinations with certain requirements, and you need to ship the products from the sources to the
destinations. In some cases, you have transportation models with multiple levels. For example,
there can be shipments from plants to depots, and then from the depots to retail stores.

Transshipment Models

Another group of distribution models is transshipment models. These models typically arise
when you have multiple locations that both produce the goods and also act as demand centers.
Since there are no specific sources and destinations, you can ship from any one location to any of
the other locations.

Alias Indexes

Alias indexes are useful when you need to define a vector, which uses the same index more than
once, as a subscript. When shipping products between plants you need to create a variable vector,
representing how much to ship between the plants. Since the source plants and the destination
plants come from the same set of plants, you need two alias indexes for the plants. The first alias
index is needed to represent the source plants, and the second to represent the destination plants.

Using Where Conditions on Vector Variables

Sometimes, when working with multi-dimensional vector variables you will encounter cases
where not all elements of the vector are valid or have a meaning. For example, in transshipment
models it would make no sense to ship a product from a certain plant back to that same plant. In
these cases, you can use a WHERE condition on the variable to remove unnecessary elements.

296

Session 6 Allow Shipments Between Plants

For example, in a transshipment model you can eliminate the possibility of shipping to the same
location by defining the variable as follows:

VARIABLES
Ship[fromplant,toplant]
WHERE (fromplant <> toplant);

In this case, the condition (fromplant <> toplant) removes all of the vector elements where the
source plant is the same as the destination plant.

In some cases, elements need to be excluded that are not based on the values of the indexes. They
then must be based on some data vector in the model. Typically, you have a cost vector assigned
to the shipping containing how much it costs to ship between the plants. For those plants, if
shipping between is not feasible, you can enter a specia value for the cost, such as a zero, to be
used to identify them. Then, in the variable definition, you can use this data vector to exclude the
shipping routes that are not feasible as follows:

VARIABLES
Ship[fromplant,toplant]
WHERE (ShipCost[fromplant,toplant] > 0);

Plant Balance Constraints

When working with transshipment models you need to ensure that the amount of products
shipped to a plant plus how much is produced and pulled from inventory is equal to how much is
shipped from the plant plus how much is sold and put back into inventory. In short, everything
that goes into the plant must be equa to everything that goes out of the plant. This kind of
constraint is typically called a plant balance constraint. Here is an example of a smple plant
balance constraint:

PlantBal[plant, product, month]:
Produce + Inventory[month-1]
+ SUM(fromplant: Ship[fromplant, toplant:=plant])

Sales + Inventory
+ SUM(toplant: Ship[fromplant:=plant, toplant]);

Y ou will notice that this constraint is similar to the inventory balance constraint you encountered
in previous sessions. The only difference is that now you have to take into account that we are
shipping to and from each plant by entering a summation over each plant for the Ship variable.

297

Part IV A MPL Tutorial

The index assignment 'toplant:=plant’, in the first summation, allows us to specify that the toplant
subscript should take the value of the plant subscript for the PlantBal constraint. This summation
adds together al the shipments from each of the plants to the particular plant in that constraint. In
similar manner, the index assignment ‘fromplant:=plant’, in the second summation, specifies that
the fromplant subscript should take the value of the plant subscript.

6.2 Problem Description: Additions to Allow
Shipments Between Plants

In this session, a new model will be created where each plant now acts as a separate demand
center for the products and can aso keep inventory. You will use the model you created in
session 5 and make the necessary additions and updatesto it.

Since each plant can sell the products, we now have a different demand for each plant, as well as
for each product, and each month. The demand is given in the table below:

Demand Table

Plant Product Jan Feb Mar Apr
Al 4300 4200 6400 5300

pl A2 4500 5400 6500 7200
A3 5400 6700 7800 8200

Al8 5100 6200 5400 7600

p2 A2 6300 7100 5200 6300
A3 4800 6500 5000 7200

Al 4100 6100 4700 5800

p3 A2 5300 5200 5700 4100
A3 4200 4100 5200 6300

Al 4300 4100 5300 4500

p4 A2 5300 6400 4200 6200
A3 5600 5200 3800 4100

298

Session 6 Allow Shipments Between Plants

This data has three dimensions, plants, products, and months. In linear programming modelsit is
quite typical to have data with multiple dimensions, possibly up to eight or more. In the next
session, we will update the demand data to include one more dimension; machines, creating a

four dimensional vector.

The inventory capacity is now different for each plant. We have four capacity values, one for
each plant, 800, 400, 500 and 400 respectively.

Since we now have multiple plants, each of which can maintain inventory, we now have different
inventory costs for each plant and each product. The new cost values for the inventory are shown
here below:

Inventory Cost Al A2 A3
pl $8.50 $7.00 $6.50
p2 $9.80 $9.80 $9.80
p3 $7.50 $7.50 $7.50
p4 $9.30 $8.00 $6.50

Finally, since we are allowing shipments between the plants there are certain costs involved for
shipping a product, as shown in the table below:

Shipping Cost pl p2 p3 p4
pl - $15.00 $21.00 $13.00
p2 $16.00 - $12.00 $12.00
p3 $14.00 $17.00 - $15.00
p4 $21.00 $13.00 $10.00 -

As you can see there are no values in the table where the source plant is same as the destination
plant as there is no benefit in shipping back to the same plant.

299

Part IV A MPL Tutorial

6.3 Formulation of the Model in MPL

The following is the entire model formulation for Planning6. As you can see the model has
expanded somewhat from session 5.

TITLE
Production_Planning6;

INDEX
product = (A1, A2, A3);
month = (Jan, Feb, Mar, Apr);
plant = (p1, P2, p3, p4);
fromplant := plant;
toplant = plant;

DATA

Price[product]

Demand[plant, product, month]
ProdCost[plant, product]
ProdRate[plant, product]
ProdDaysAvail[month]
InvtCost[plant, product]
InvtCapacity[plant]
ShipCost[fromplant, toplant]

(120.00, 100.00, 115.00);
DATAFILE ("Demand6.dat");
DATAFILE ("ProdCost.dat");
DATAFILE ("ProdRate.dat";
(23, 20, 23, 22);

DATAFILE ("InvtCost.dat");
(800, 400, 500, 400);
DATAFILE ("ShipCost.dat");

VARIABLES
Produce[plant, product, month] -> Prod;
Inventory[plant, product, month] -> Invt;
Sales[plant, product, month] -> Sale;

Ship[product, month, fromplant, toplant]
WHERE (fromplant <> toplant);

MACROS
TotalRevenue = SUM(plant, product, month: Price * Sales);
TotalProdCost := SUM(plant, product, month: ProdCost * Produce);
TotalInvtCost := SUM(plant, product, month: InvtCost * Inventory);
TotalShipCost := SUM(product, month, fromplant,toplant: ShipCost * Ship);
TotalCost = TotalProdCost + TotalInvtCost + TotalShipCost;

MODEL
MAX Profit = TotalRevenue - TotalCost;

SUBJECT TO

ProdCapacity[plant, month] -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

PlantBal[plant, product, month] -> PBal:
Produce + Inventory[month-1]
+ SUM(fromplant: Ship[fromplant, toplant:=plant])
Sales + Inventory
+ SUM(toplant: Ship[fromplant:=plant, toplant]);

MaxInventory[plant, month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;
BOUNDS
Sales < Demand ;
END

300

Session 6 Allow Shipments Between Plants

6.4 Enter New Elements to the Model Step-by-
Step

Step 1. Start MPL and Create a New Model
1. Start the MPL application.

2. Choose File| Open and open the model from the previous session Planning5.mpl.

3. ChooseFile| Save Asto save it as a new model file Planning6.mpl.

Step 2: Change the Title for the Model
Change the title for the model to reflect that you are working with the Planning6 model:

TITLE
Production_Planning6;

Step 3: Add Alias Indexes for the Source and Destination Plants to
the Model

In this session, you are going to expand the model to allow shipments between the plants. Alias
indexes are useful when you need to define a vector, which refers to the same index more than
once, as a subscript. Aliasindexes are an exact copy of a previously defined index.

In this case, you are creating a vector variable representing how much to ship between the plants.
Which means you need two alias indexes to represent the source, and destination plants. Add the
following definitions for two new alias indexes that you will call fromplant and toplant at the end
of the INDEX section:

INDEX

product = (A1, A2, A3);

month = (Jan, Feb, Mar, Apr);
plant = (p1, p2, p3, p4);
fromplant = plant;

toplant = plant;

301

Part IV A MPL Tutorial

Step 4: Update the ‘Demand’ Data Vector to Include the ‘plant’
Index

We now have different demand for each plant the definition for the Demand data vector needs to
be upgraded to include the plant index. In the model editor, add the index plant to declaration of
the Demand data vector and change the file name to Demand6.dat.

DATA
Price[product]
Demand[plant, product, month]

(120.00, 100.00, 115.00);
DATAFILE ("Demand6.dat") ;

Since the Demand vector has now three indexes the data file for it needs to be updated.
Therefore, you are creating a new data file called Demand6.dat using the data values from the
table in the problem description given earlier in this session. Enter the data values to the datafile
asfollows:

Demand6.dat - Demand for each product and each plant

!
!
1
! Demand[plant,product,month]:
!
1
!

Iplant 1:
4300, 4200, 6400, 5300,
4500, 5400, 6500, 7200,
5400, 6700, 7800, 8200,

Iplant 2:
5100, 6200, 5400, 7600,
6300, 7100, 5200, 6300,
4800, 6500, 5000, 7200,

Iplant 3:
4100, 6100, 4700, 5800,
5300, 5200, 5700, 4100,
4200, 4100, 5200, 6300,

Iplant 4:
4300, 4100, 5300, 4500,
5300, 6400, 4200, 6200,
5600, 5200, 3800, 4100

When you have three dimensional data in data files you list the data values in same order as the
indexes were defined for the data vector in the model. For example, in the above Demand6 data
file the leftmost index is the plant index followed by the product and the month index.

302

Session 6 Allow Shipments Between Plants

Step 5: Upgrade the ‘InvtCost’ Data Vector and the ‘InvtCapacity’
Data Constant to Include the ‘plant’ Index

Since you can now store inventory at each plant you need to update the inventory cost and the
inventory capacity data to include the plant index. In the model editor, add the index plant to the
declaration of the InvtCost data vector and the InvtCapacity data constant. Then, for the InvtCost
data vector remove the list of numbers and replace it with the keyword DATAFILE and the file
name ‘InvtCost.dat. For the InvtCapacity data constant remove the single value 800 and replace it
with the list of four values, one for each plant, taken from the problem description earlier in this
session.

InvtCost[plant, product]
InvtCapacity[plant]

DATAFILE("InvtCost.dat");
(800, 400, 500, 400);

Next you need to create a new datafile called * InvtCost.dat’ using the cost values from the
inventory cost table in the problem description. Enter the data values into the data file as follows:

InvtCost.dat - Inventory cost per item a month

InvtCost[plant,product]:

Step 6: Add a Data Vector to Include Shipping Costs

There are certain costs involved in shipping products between plants. In the model editor, add a
new data vector called ShipCost defined over the two alias indexes fromplant and toplant
followed by the keyword DATAFILE and the file name ShipCost.dat.

ShipCost[fromplant, toplant] := DATAFILE("ShipCost.dat");

Next, you need to create a new data file called ShipCost.dat containing the cost figures for
shipping between the plants provided in the problem description. Enter the data values for the
datafile asfollows:

303

Part IV A MPL Tutorial

ShipCost.dat - Shipping costs from plant to plant

ShipCost[fromplant, toplant]

0, 15.00, 21.00, 13.00,

16.00, 0, 12.00, 12.00,
14.00, 17.00, 0, 15.00,
21.00, 13.00, 10.00, 0

Step 7: Add a Variable Vector for Shipments Between Plants

We are allowing shipping between the plants, therefore, you need to create a new variable that
decides how much is to be shipped of each product per month. This variable vector will be
defined over the alias indexes fromplant and toplant as well as the product and the month index.
Add the following definition for the Ship variable vector to the VARIABLES section:

Ship[product, month, fromplant, toplant]
WHERE (fromplant <> toplant);

Since we do not want to ship a product from a plant back to the same plant we are using a
WHERE condition to remove all of the vector elements where the source plant is the same as the
destination plant.

Step 8: Add the Total Shipping Cost to the Objective Function

In the MACROS section add a new macro definition for the total shipping cost called
Total ShipCost and update the Total Cost macro to include the new macro as follows:

TotalShipCost := SUM(product, month, fromplant, toplant: ShipCost * Ship);
TotalCost = TotalProdCost + TotalInvtCost + TotalShipCost;

Note that the actual objective function definition does not need to be changed as the Total Cost
macro contains al the changes.

304

Session 6 Allow Shipments Between Plants

Step 9: Upgrade the Inventory Balance Constraint to a Plant
Balance Constraint by Adding the ‘Ship’ Variable

Since we now have shipments allowed between the plants, you need to upgrade the inventory
balance constraint from the previous model to a plant balance constraint. First, change the name
of the constraint from InvtBal to PlantBal and add the index plant to the declaration. Next, since
the constraint is now declared over the index plant we do not have to sum over the index plant for
the Produce variable anymore.

PlantBal[plant, product, month] -> PBal:
Produce + Inventory[month-1]
+ SUM(fromplant: Ship[fromplant, toplant:=plant])

Sales + Inventory
+ SUM(toplant: Ship[fromplant:=plant, toplant]);

On the left hand side, where we bring together everything that is going into the plant, add a
summation to add together all the shipments from each of the other plants to the current plant.
Inside the summation, enter the Ship variable with the destination plant, taking the value of the
current plant index.

On the right hand side, where we bring together everything that is going out of the plant add
another summation to add together al the shipments from the current plant to each of the other
plants. Inside the summation enter the Ship variable with the source plant this time taking the
value of the current plant index for the constraint.

305

Part IV A MPL Tutorial

6.5 Solve the Model and Analyze the Solution

The next step is to solve the Planningé model by choosing Solve CPLEX from the Run menu. |If
everything goes well MPL will display the message “Optimal Solution Found”. If there is an
error message window with a syntax error please check the formulation you entered with the
model detailed earlier in this session.

You will use the Model Definitions Window again as in session 5 to look at the parts of the
solution that we are interested in. To open the Model Definitions Window for the Planning6
model choose Model Definitions from the View menu.

& Model Definitions

S [=] E3

Wit |

=-{= TITLE Production_Planning6

E-{£= IHDEX
----- & product
..... & month
..... & plant
----- & toplant
----- & fromplant

E-E= DATA
----- @ Price[product]
----- @ Demand[plantproduct manth]
----- @ ProdCost[plant,product]
----- @ ProdR ate[plant, product]
..... & ProdDaystoyvailmanth]
----- @ InvtCost{plant product]
----- @ InvtCapacity[plant]

ShipCost[framplant toplant]

El-{£= YARIABLES

@ Produce[plant product,maonth]

@ Inventary[plant, product manth)

@ Salez[plant product,month]

& Ship[product, manth, framplant toplant]

Goto |

|+

E

Figure T6.1: The Model Definitions Window

for the Planningé model

To look at the values for the Produce variable, either double click on the Produce item in the tree
or aternatively select it and then press the View button. This will display a window containing
only the values for the Produce variable shown on the next page.

306

Session 6 Allow Shipments Between Plants

VARIABLE Produce[plant,product,month]

plant product month Activity Reduced Cost
pi A1l Jan 4300.0 0.0
pi A1l Feb 4200.0 0.0
pi A1l Mar 6400.0 0.0
pi A1l Apr 5300.0 0.0
pi A2 Jan 1080.0 0.0
pi A3 Jan 5400.0 0.0
pi A3 Feb 5220.0 0.0
pi A3 Mar 4590.0 0.0
pi A3 Apr 5130.0 0.0
p2 Al Jan 5100.0 0.0
p2 Al Feb 6200.0 0.0
p2 Al Mar 5400.0 0.0
p2 Al Apr 7600.0 0.0
p2 A2 Jan 6177.3 0.0
p2 A2 Feb 3927.3 0.0
p2 A2 Mar 5931.8 0.0
p2 A2 Apr 3681.8 0.0
p3 Al Jan 4100.0 0.0
p3 Al Feb 6100.0 0.0
p3 Al Mar 4700.0 0.0
p3 Al Apr 5800.0 0.0
p3 A3 Jan 4166.7 0.0
p3 A3 Feb 1933.3 0.0
p3 A3 Mar 3766.7 0.0
p3 A3 Apr 2733.3 0.0
p4 Al Jan 3850.0 0.0
p4 Al Feb 2828.6 0.0
p4 Al Mar 5300.0 0.0
p4 Al Apr 4500.0 0.0
p4 A3 Jan 5600.0 0.0
p4 A3 Feb 5200.0 0.0
p4 A3 Mar 4677.3 0.0
p4 A3 Apr 4836.4 0.0

As you can see the production is now distributed between the different plants in a more cost
effective manner. Certain products are clearly better to produce at particular plants due to taking
into account the production cost and the shipping cost. For example, product A2 is produced in
plants p1 and p2, but not p3 and p4, while product A3 is produced in plants pl, p3 and p4.
Product Al is most economically produced in al of the plants.

307

Part IV A MPL Tutorial

If you go to the tree window again and open up a window for the Ship variable you will get the

following solution values:

VARIABLE Ship[product,month,fromplant,toplant] :

product month fromplant toplant Activity
A2 Mar p2 p4 331.8
A3 Mar p4 p3 877.3
A3 Apr p4 p3 736.4

Reduced Cost

Asyou can see the model proposes that we ship product A2 from plant p2 to plant p4. In the same
manner, product A3 is shipped from plant p4 to p3. Clearly, plants p2 and p4 have extra capacity
at lower cost that can be used to produce goods that plants p4 and p3 need.

308

Session 7 Formulating Models with Sparse Data

SESSION 7:

Formulating Models With

Sparse Datain MPL

Often, when working with large models, the data for the model tends not to be dense; as in the
previous models we worked on, but rather in a sparse format. Dense data can be perceived in the
same manner as spreadsheet data. Ordinarily, it is used for data vectors with not more than two
dimensions, where every column and every row isfilled with data.

Sparse data, on the other hand, typically involves multiple dimensions, but does not necessarily
contain values for every combination of the indexes. Sparse data is usually stored in a table
format, where each column represents an index or a data value. When working with large sparse
data sets it is common to work with the data in a table format as this allows you to easily skip
certain combinations of the index, that are not valid, by omitting them in the table.

309

Part IV A MPL Tutorial

7.1 New Concepts in this Session

Equipment Indexes

Sometimes, when formulating production planning models, the decision involves which machines
to use to produce the products. As all of the machines are not available in every plant, this
introduces a sparsity into the model. When we define the data and the variable vectors for the
model, we will then utilize that sparsity to ensure that the size of the model does not become too
large. This can be accomplished, either by using a standard WHERE command on a data vector,
or by using the IN operator to connect the relevant indexes.

Using the IN Operator

The IN operator in MPL allows you to select one of the domain indexes from a multi-dimensional
index. For example, if you have a multi-dimensional index that specifies which machines are
available in which plants, you can use the IN operator to sum over al the machines for that
particular plant.

INDEX
plant = (p1, P2, P3, p4);
machine = (m11, m12, m13, m21, m22, m31, m32, m41);

PlantMach[plant,machine] :=
(p1.m11, p1.m12, p1.m13,
p2.m21, p2.m22,

p3.m31, p3.m32,
p4.m41);

In the above example, we have defined a multidimensional index called PlantMach that connects
the plants to the corresponding machines.

The PlantMach index can then be used, selectively, to choose only the machines that are available
in aparticular plant. For example:

SUBJECT TO
PlantCapacity[plant] :

SUM(machine IN PlantMach: Produce[machine]) <= MaxCapacity[plant];

In the above example, we sum together how much is produced on each machine at that particular
plant. Then we make sure that the total production islimited to the maximum capacity.

310

Session 7 Formulating Models with Sparse Data

Index Files

Just as you can store the data in external data files, you can aso store indexes in external index
files. Index files allow you to store the elements of an index in afile instead of specifying them
directly in the model. When you are defining an index with an index file use the keyword
INDEXFILE with afilename instead of the usual list of elements. For example:

INDEX
product = INDEXFILE("Product.idx");
month = INDEXFILE("Month.idx");
plant = INDEXFILE("Plant.idx");

Theindex file is just a standard text file containing a list of the index elements for the particular
index. You can separate the elements in the file with either a comma, a space, or both. For
example here is a sample index file for the product index:

! Product.idx - 1Index element for the product index

A1, A2, A3

Sparse Data Files

Generaly, when working with sparse models, the data involved is quite large and comes from
other applications, such as corporate or desktop databases. In previous sessions, the data was
typed into the model file or stored in a dense data file. When working with large data sets, you
need a more efficient method to import the data into MPL from other applications. For this
purpose, MPL has the ahility to read the data from a sparse data file. This file alows you to
enter the data in a standard table format, which is closer to the actua characteristics of the data,
for example, from arelational database. An example of a sparse datafile could be as follows:

ProdCost[plant, machine, product] := SPARSEFILE("ProdCost.dat");

The file ProdCost.dat contains the data in column oriented format with the indexes listed in the
first three columns and the corresponding data value at the end of each line asfollows:

pi, mi1, A1, 73.30,
pi, mi1, A2, 52.90,
pi, mi2, A3, 65.40,

p4, ma1, A2, 63.30,
p4, m41, A3, 53.80

311

Part IV A MPL Tutorial

Please note, MPL allows you aso to store multiple data columnsin a single sparse datafile. You
specify which column by adding a comma and the data column number after the file name inside
the parentheses.

ProdCost[plant, machine, product] := SPARSEFILE("ProdCost.dat", 2);

Using sparse data files is common in real-world modeling. These files can end up being quite
large, with multiple indexes and containing lots of data. Freguently, you will have multiple index
files and sparse data files storing al the data and leaving the model file only to contain the actual
model statements, such as the variables, the objective function and the constraints.

312

Session 7 Formulating Models with Sparse Data

7.2 Problem Description: A Planning Model
with Multiple Machines at Each Plant

In this session, you will update the model to have multiple machines distributed between the
plants. You will use the model you created in session 6, and make the necessary additions and
updatesto it.

Since we now have different machines within each plant the production cost and the production
rate now have different value for each machine. The following is a table with a single line for
each plant, machine, product combination that is applicable.

Plant Machine Product ProdCost ProdRate
mll Al $73.30 500
pl mil A2 $52.90 450
m12 A3 $65.40 550
m13 A3 $47.60 350
m21 Al $79.00 550
p2 m21 A3 $66.80 450
m22 A2 $52.00 300
m31 Al $75.80 450
p3 m31 A3 $50.90 300
m32 Al $79.90 400
m32 A2 $52.10 350
m4l Al $82.70 550
p4 m41 A2 $63.30 400
m41 A3 $53.80 350

The production decision, how much we want to produce of each product, needs to take into
account that we now have multiple machines. Therefore, you will update the Produce variable to
include the machine index and then use a WHERE condition to exclude the elements that are not
applicable, such as plant p1, machine m11, and product A3.

313

Part IV A MPL Tutorial

7.3 Formulation of the Model in MPL

Listed below is the entire model formulation for Planning7. The additions to the model are
highlighted in boldface in order to make it easy for you to see the changes from the model in
session 6.

TITLE

Production_Planning7;
INDEX

product = (A1, A2, A3);

month = (Jan, Feb, Mar, Apr);

plant = (p1, P2, p3, p4);

fromplant = plant;

toplant = plant;

machine = (m11, m12, m13, m21, m22, m31, m32, m41);
DATA

Price[product]

Demand[plant, product, month]
ProdCost[plant, machine, product]
ProdRate[plant, machine, product]
ProdDaysAvail[month]
InvtCost[product]
InvtCapacity[plant]
ShipCost[fromplant, toplant]

(120.00, 100.00, 115.00);
DATAFILE ("Demand6.dat");
SPARSEFILE("Produce.dat", 1);
SPARSEFILE("Produce.dat", 2);
(23, 20, 23, 22);

DATAFILE ("InvtCost.dat");
(800, 400, 500, 400);
DATAFILE ("ShipCost.dat");

VARIABLES
Produce[plant, machine, product, month] -> Prod
WHERE (ProdCost > 0);
Inventory[plant, product, month] -> Invt;
Sales[plant, product, month] -> Sale;
Ship[product, month, fromplant, toplant]
WHERE (fromplant <> toplant);

MACROS
TotalRevenue = SUM(plant, product, month: Price * Sales);
TotalProdCost := SUM(plant, machine, product,month: ProdCost * Produce);
TotalInvtCost := SUM(plant, product, month: InvtCost * Inventory);
TotalShipCost := SUM(product, month, fromplant, toplant: ShipCost * Ship);
TotalCost = TotalProdCost + TotalInvtCost + TotalShipCost;

MODEL
MAX Profit = TotalRevenue - TotalCost;

SUBJECT TO

ProdCapacity[plant, machine, month] -> PCap:
SUM(product: Produce / ProdRate) <= ProdDaysAvail;

314

Session 7 Formulating Models with Sparse Data

PlantBal[plant, product, month] -> PBal:
SUM(machine: Produce) + Inventory[month-1]
+ SUM(fromplant: Ship[fromplant, toplant:=plant])

Sales + Inventory
+ SUM(toplant: Ship[fromplant:=plant, toplant]);

MaxInventory[plant, month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

BOUNDS
Sales < Demand;

END

315

Part IV A MPL Tutorial

7.4 Enter New Elements to the Model Step-by-
Step

Step 1. Start MPL and Create a New Model
1. Start the MPL application.

2. Choose File| Open and open the model from the previous session Planning6.mpl.

3. ChooseFile| Save Asto save it as a new model file Planning7.mpl.

Step 2: Change the Title for the Model
Change the title for the model to reflect that you are working with the Planning7 model.

TITLE
Production_Planning7;

Step 3: Add the ‘machine’ Index in the Model

In this model, each plant now has multiple machines. To create an index for the machines add the
following definition for the machine index in the INDEX section.

INDEX
product = (A1, A2, A3);
month = (Jan, Feb, Mar, Apr);
plant = (p1, p2, p3, p4);
fromplant := plant;
toplant = plant;
machine = (m11, m12, m13, m21, m22, m31, m32, m41);

Step 4: Update the ‘ProdCost’ and the ‘ProdRate’ Data Vectors to
Include the ‘machine’ Index
The production cost and the production rate now need to include the machine index since we have

different data values for each machine. Also, since the data is now sparse, that is not every plant
has every machine, you are going to store the data in a sparse data file.

Update the definitions for the ProdCost and the ProdRate data vectors to include the machine
index and change the filenames to a new sparse data file called Produce.dat. For the production
cost specify column 1 after the file name and for the production rate specify column number 2.

316

DATA

Price[product]

Demand[plant, product, month]

ProdCost[plant, machine, product]
ProdRate[plant, machine, product]
ProdDaysAvail[month]
InvtCost[product]

InvtCapacity[plant]
ShipCost[fromplant, toplant]

Session 7 Formulating Models with Sparse Data

(120.00, 100.00, 115.00);
DATAFILE ("Demand6.dat");
SPARSEFILE ("Produce.dat", 1);
SPARSEFILE ("Produce.dat", 2);
(23, 20, 23, 22);
DATAFILE("InvtCost.dat");
(800, 400, 500, 400);
DATAFILE("ShipCost.dat");

Step 5: Create a Sparse Data File for the Production Cost and
Production Rate

Now you need to create the sparse data file Produce.dat from the data given in the problem

description earlier in this session.

To create the datafile for the production cost and production rate open a new editor window for a
datafile called Produce.dat and type in the following:

p1,
p1,
p1,
p1,

p2,
p2,
p2,

Produce.dat

mit,
mit,
mi2,
mi3,

m21,
m21,
m22,

m31,
m31,
m32,
m32,

ma1,
ma1,
m41,

Production Cost and Rate per item produced

A1,
A2,
A3,
A3,

A1,
A3,
A2,

A1,
A3,
A1,
A2,

A1,
A2,
A3,

73

47

79.

66

75

52

82.

63

.30,
52,
65.

90,
40,

.60,

00,

.80,
52,

00,

.80,
50.
79.

90,
90,

.10,

70,

.30,
53.

80,

ProdCost[plant, machine, product]:
ProdRate[plant, machine, product]:

500
450
550
350

550

3

3

3

3

3

450,

300

450
300
400

3

3

3

3

350,

550

3

400,

350

317

Part IV A MPL Tutorial

Step 6: Update the Produce Variable Vector to Include the
‘machine’ Index

The Produce variable now needs to have the machine index in the declarations as we need to
know on which machine each product is produced. Furthermore, since not all of the machines are
in every plant we need to exclude the index combinations that are not valid. Thisis done by using
awhere condition on the ProdCost data vector. Only the combinations of indexes are used where
ProdCost is greater than zero when expanding the Produce variable. Enter the changes to the
Produce variable as follows:

VARIABLES
Produce[plant, machine, product, month] -> Prod
WHERE (ProdCost > 0);

Step 7: Add the ‘machine’ Index to the Macro for the Total
Production Cost

In the macro for the total production cost add the index machine to reflect that the Produce
variable now contains the machine index.

MACROS
TotalRevenue = SUM(plant, product, month: Price * Sales);
TotalProdCost := SUM(plant, machine, product, month: ProdCost * Produce);
TotalInvtCost := SUM(plant, product, month: InvtCost * Inventory);
TotalShipCost := SUM(product, month, fromplant,toplant: ShipCost * Ship);
TotalCost = TotalProdCost + TotalInvtCost + TotalShipCost;

Step 8: Update the ‘ProdCapacity’ Constraint to Include the
‘machine’ Index
In the declaration for the production capacity constraint the machine index must be included since

we now have a separate capacity limit for each machine in the plant. Enter the changes to the
ProdCapacity constraint as follows:

SUBJECT TO
ProdCapacity[plant, machine, month] -> ProdCap:
SUM(product: Produce/ProdRate) <= ProdDaysAvail;

318

Session 7 Formulating Models with Sparse Data

Step 9: Update the Plant Balance Constraint to Sum the Produce
Variable Over All the Machines

In the plant balance constraint there is now a separate Produce variable for each machine since
we need to add together the total production for the particular plant we now need to sum over the
machine index when referring to the Produce variable. To do this add the following summation
to the PlantBal constraint:

PlantBal[plant, product, month] -> PBal:
SUM(machine: Produce) + Inventory[month-1]
+ SUM(fromplant: Ship[fromplant, toplant:=plant])

Sales + Inventory
+ SUM(toplant: Ship[fromplant:=plant, toplant]);

319

Part IV A MPL Tutorial

7.5 Solve the Model and Analyze the Solution

The next step is to solve the Planning7 model by choosing Solve CPLEX from the Run menu. |If
everything goes well MPL will display the message “Optimal Solution Found”. If there is an
error message window with a syntax error please check the formulation you entered with the
model detailed earlier in this session.

You will use the Model Definitions Window again, as in session 6, to look at the parts of the
solution that we are interested in. To open the Model Definitions Window for the Planning7
model choose Model Definitions from the View menu.

&= Model Definitions M=] 3

=-{= TITLE Production_Planning?
EH-E= IHDEX
----- % product
----- & month
----- % plant
----- & toplant
----- & fromplant
----- % machine
E-{£= DATA
----- @ Price[product]
----- @ Demand[plant product, month]
----- @ FrodCost[plant machine, product]
----- @ FrodR ate[plant.machine product]
----- @ ProdD apsdevaillmonth]
----- @ InvtCost[plant product]
----- @ InvtCapacity[plant]
----- @ ShipCost{framplant toplant]
E-{== YARIABLES
----- @ Produce[plant machine, praduct month]
----- G Inventary[plant praduct,month]
----- & Sales[plantproduct.month]
----- & Ship[product month fromplant toplant] =

Wiew | Goto |

|+

Figure T7.1: The Modéd Definitions Window for the Planning7 M odel

To look at the values for the Produce variable either double click on the produce on the variable
the tree or select it and press the View button. This will display a view window containing the
solution values for only the Produce variable which are shown on the next page:

320

Session 7 Formulating Models with Sparse Data

VARIABLE Produce[plant,machine,product,month]

plant machine product month Activity Reduced Cost
pi mid Al Jan 4300.0000 0.0000
pi mid Al Feb 4200.0000 0.0000
pi mid Al Mar 5487.5000 0.0000
pi mid Al Apr 5300.0000 0.0000
pi mid A2 Jan 6480.0000 0.0000
pi mid A2 Feb 5220.0000 0.0000
pi mid A2 Mar 5411.2500 0.0000
pi mid A2 Apr 5130.0000 0.0000
pi mi2 A3 Feb 9049.3506 0.0000
pi mi2 A3 Mar 916.1616 0.0000
pi mi2 A3 Apr 10803.1169 0.0000
pi mi3 A3 Jan 8050.0000 0.0000
pi mi3 A3 Feb 7000.0000 0.0000
pi mi3 A3 Mar 8050.0000 0.0000
pi mi3 A3 Apr 7700.0000 0.0000
p2 m21 Al Jan 5100.0000 0.0000
p2 m21 Al Feb 6200.0000 0.0000
p2 m21 Al Mar 6538.8889 0.0000
p2 m21 Al Apr 7600.0000 0.0000
p2 m21 A3 Jan 4422.6136 0.0000
p2 m21 A3 Feb 3927.2727 0.0000
p2 m21 A3 Mar 5000.0000 0.0000
p2 m21 A3 Apr 3681.8182 0.0000
p2 m22 A2 Jan 6900.0000 0.0000
p2 m22 A2 Feb 6000.0000 0.0000
p2 m22 A2 Mar 6900.0000 0.0000
p2 m22 A2 Apr 6600.0000 0.0000
p3 m31 Al Jan 3300.0000 0.0000
p3 m31 Al Feb 5964 .9351 0.0000
p3 m31 Al Mar 2550.0000 0.0000
p3 m31 Al Apr 4477 .4026 0.0000
p3 m31 A3 Jan 4700.0000 0.0000
p3 m31 A3 Feb 2023.3766 0.0000
p3 m31 A3 Mar 5200.0000 0.0000
p3 m31 A3 Apr 3615.0649 0.0000
p3 m32 Al Jan 800.0000 0.0000
p3 m32 Al Feb 135.0649 0.0000
p3 m32 Al Mar 2150.0000 0.0000
p3 m32 Al Apr 1322.5974 0.0000
p3 m32 A2 Jan 7350.0000 0.0000
p3 m32 A2 Feb 6881.8182 0.0000
p3 m32 A2 Mar 6168.7500 0.0000
p3 m32 A2 Apr 6542.7273 0.0000
p4 m41 Al Jan 4300.0000 0.0000
p4 m41 Al Feb 4100.0000 0.0000
p4 m41 Al Mar 5073.6111 0.0000
p4 m41 Al Apr 4500.0000 0.0000
p4 m41 A2 Jan 2270.0000 0.0000
p4 m41 A2 Feb 5018.1818 0.0000
p4 m41 A2 Mar 2500.0000 0.0000
p4 m41 A2 Apr 5527.2727 0.0000
p4 m41 A3 Jan 3327.3864 0.0000
p4 m41 A3 Mar 2633.8384 0.0000

321

Part IV A MPL Tutorial

The Produce variable is now defined over four indexes: plant, machine, product and month. For
each plant the model decides which machine is the most efficient to produce the products at that
particular plant. This table could be used as a basis for a production schedule for the whole
company.

The other variable that is interesting in this model is the Inventory. If you go to the tree window
again and open up a view window for the Inventory variable you will get the following solution
values:

VARIABLE Inventory[plant,product,month] :

plant product month Activity Reduced Cost
pi A2 Jan 800.0000 0.0000
p2 A2 Jan 400.0000 0.0000
p3 A3 Jan 500.0000 0.0000
p4 A3 Jan 400.0000 0.0000

As you can see the model has decided to produce products A2 and A3 during January to ensure
we have enough on hand for February.

Most of the plants are now running at full capacity. If you go to the tree window again and open
up aview window for the ProdCapacity constraint you will get the following solution values:

CONSTRAINT ProdCapacity[plant,machine,month] :

plant machine month Slack Shadow Price
pi mi2 Jan 23.0000 0.0000
pi mi2 Feb 3.9595 0.0000
pi mi2 Mar 20.2682 0.0000
pi mi2 Apr 1.2033 0.0000
p2 m21 Jan 3.6947 0.0000

As you can see plant pl has some extra capacity for machine m12 and plant p2 has some extra
capacity for machine m21. Other than that all of the machines in every plant is running at full
capacity to fulfill demand.

322

APPENDICES

Appendix A: Character Set
Appendix B: Error Messages

323

MPL Modeling System

APPENDIX A:

CHARACTER SET

MPL recognizes the following ASCII characters:

Letters

65-90
97-122
38

39

64

95

96

® -0 >

Digits

48-57 0..9
46

White Space and Comments

0-31

32 v
33 !
123 {
125 }

Upper case letters
Lower case letters
Ampersand
Aphostrophe
At-sign

Underscore

Grave accent

Digits
Decimal point

Control characters (white space)
Space (white space)

Exclamation point (start a comment)
Left braces (opens a comment)
Right braces (closes a comment)

325

Appendix A: Character Set

MPL Modeling System

Special Symbols
34 ! Double quotation mark (quoted names)
35 # Number sign (include commands)
36 $ Dollar sign (advanced command)
44 s Comma (item separator)
45,62 -> Becomes (name abbreviation)
46,46 . Dots (index range)
58 : Colon (constraint name)
59 H Semicolon (separator)
63 ? Question mark (interactive data value)
91 [Left bracket (vector index)
93] Right bracket (vector index)

Arithmetic Operators

37 % Percent sign
40 (Left parenthesis
41) Right parenthesis
42 * Multiplication symbol
43 + Plus sign
45 - Minus sign
47 / Division symbol
94 ~ Circumflex
Relational Operators
60 < Less than
61 = Equal sign
62 > Greater than
60,61 <= Greater than or equal
62,61 >= Less than or equal

Reserved charactersfor future use

92 \ Backslash
124 | Vertical bar
126 ~ Tilde

326

Appendix B: Error Messages

APPENDI X B:

ERROR MESSAGES

In the presentation of error messages, any text presented as xxxxx is a place holder. On your
screen, it will be replaced by text or a keyword specific to the error in your formulation.

Format Errors in the Formulation

* %k % %

A mnor mstake was found in line nnn :|

The model file must start with a defined keyword,
but I found instead “xXxxxx’.

The model file must start with one of these keywords:

TITLE, INDEX, DATA, DECISION, VARIABLES, CONSTRAINTS, MACRO,
MODEL, MAX, MIN.

327

MPL Modeling System
2. | expected to see a problem name after thekeyword TITLE,
but found instead *xxxxx’.

Example:

TITLE + FAME_Simulation ;

~

The problem title can only be a name.

3. I expected to see a keyword starting the next section,
but found instead *xxxxx’.

Example:

TITLE Plan_for_1_year ;

ProdInvt1 : 20000 + Prod1 = Invti + 90000 ;

The model file must contain an objective function, which in turn must begin with
the keywords MAX or MIN. In this example the objective function is missing.

4, I expected to see a semicolon 7 after the objective function,
but found instead “Xxxxx’.

Example:
MAX 3x1 + 5x2 { note the lack of semicolon }
x1 < 4 ;

~

328

Appendix B: Error Messages

| expected to see a semicolon ’;’ after the previous constraint,
but found instead ‘Xxxxx’.

Example:

x1
2 x2
-3 x1 + 2 x2

4
12 { note the lack of semicolon }
18 ;

> A A A

Note that semicolon errors are normally not noticed until the next constraint is
parsed. Furthermore, if the next constraint begins with plus or minus sign, the
missing semicolon is normally not noticed until the comparison in that constraint
has been reached.

| expected to see either a number or avariable,
but found instead ‘Xxxxx’.

Example:

3x1 + 2x2 + < 18 ;

A

| expected to see a left parenthesis'(,
but found instead ‘XXxxX’.

Example:
3x + log 3 < 5 ;
A pair of parentheses must be around the argument for the arithmetic functions.

| expected toseea')', closing the parenthesis,
but found instead ‘Xxxxx'.

Example:

3(Sb1 + Co1 + So1 = 2 (Sbh2 + Co2 + So02) ;

| expected to see a constraint name after the keyword REFERENCE.

329

MPL Modeling System

11. | expected to see a semicolon ’;’ after the previous bound,
but found instead ‘Xxxxx’.

Example:

BOUNDS
workl < 60 {note the lack of semicolon}
work2 < 60 ;

12. | expected to see a variable name,
but found instead ‘XXxxX’.

Example:

BOUNDS
3 < + invtil ;

A

13. | expected to seearelational operator such as'<' or '>',
but found instead ‘xxxxx’.

Example:

BOUNDS
X 3 ;

14. | expected to see alessthan operator such as'<',
but found instead ‘xxxxx’.

Example:

BOUNDS

15. | expected to see a greater than operator such as'>',
but found instead ‘xxxxx’.

Example:

BOUNDS

330

Appendix B: Error Messages

A lower bound 'xxxxx’ has alr eady been defined for the
variable 'Xxxxx’.

Example:

BOUNDS
X > 3
4 < X;

Thisisthe second time alower bound is defined for the variable ‘x’.
An upper bound "xxxxx' has already been defined for the

variable 'xxxxx’.

Example:

BOUNDS
z <
y <
z <

[IR

)
)
)

Thisis the second time an upper bound is defined for the variable ‘ Z’

Thelower bound 'xxxxx’ is higher than the already defined
upper bound "XxXxxx'.

Example:

BOUNDS
5 < x < 3

The upper bound 'xxxxx’ islower than the already defined
lower bound "xxxxx’.

Example:

BOUNDS

The upper bound for a variable must be greater than zero unless the variable is
given anegative lower bound.

331

MPL Modeling System

21.

22.

23.

24.

25.

26.

27.

28.

31.

32.

33.

The argument for EXP must be lessthan 40.0

The argument for SQR must be less than 10000000000.
Theargument for LN must be greater than zero.
Theargument for LOG must be greater than zero.
Theargument for SQRT must be greater than zero.
The argument for RANDOM must be a positive integer.

The random seed must be a positive integer.

| expected to see an assignment of a new seed value,
but found instead “xxxxx’.

Division by zero in a coefficient is not allowed.

Example:

1/3 prodi1 + 2/0 prod2

I expected to see a closing text quote ™ “before reaching the end of the line.

Example:

TITLE "Production planning

Text quotes must be closed in the same line.

I found an end of comment % “without the corresponding
beginning {~

332

35.

41.

42.

45,

Appendix B: Error Messages

| expected to see a closing braces’}’, closing this comment,
but reached instead the end of thefile.

Y our comments are not paired up properly. Check to make sure that each left

braces have an accompanying right braces.

| expected to see a description of 'xxxxx' after the keyword IS,

but found instead ‘Xxxxx’.

The name 'xxxxx' has already been defined.

| expected to see an assignment symbol *:=',
but found instead ‘xxxxx’.

Example:

INDEX
product 1..3 ;

| expected to see a name abbreviation,
but found instead ‘xxxxx’.

Example:

DECISION VARIABLES
Inventory [month] ->
Model

| expected to see an equal sign '=',
but found instead ‘Xxxxx'.

| expected to seea colon "',
but found instead ‘xxxxx’.

Example:

SUM(i, price*product)

The index list in the summation must be followed with a colon.

333

MPL Modeling System

46.

47.

51.

52.

53.

| expected to see a number,
but found instead ‘XXxxX’.

| expected to see a semicolon after the data vector formula,

but found instead ‘XXxxX’.

| expected to see a unit name,
but found instead ‘XXxxX’.

| expected to see a defined index,
but found instead ‘XXxxX’.

| expected to see a defined data vector,

but found instead ‘XXxxX’.

Example:

INDEX
i=1..5;
DECISION VARIABLES
x[1]
DATA
A[i] = x ;

| expected to see a variable vector,
but found instead ‘XXxxX’.

Example:

INDEX
i=1..5;
DATA
d[i] := (1,2,3,4,5) ;
DECISION VARIABLES ;
X
BOUNDS
d[i] < x ;

334

55.

56.

57.

Appendix B: Error Messages

| expected to see data or variable vector in the sum,
but found instead ‘Xxxxx’.

Example:

DECISION VARIABLES
X

MAX
Z = SUM(x)

| expected to see an integer subscript entry for the index 'xxxxx',
but found instead ‘Xxxxx’.

Example:
INDEX
i=1..5;
MAX
Z =

x[Jan]

| expected to see a an name subscript entry for the index 'xxxxx',
but found instead ‘xxxxx’.

Example:
INDEX
month := (Jan,Feb,Mar,Apr,May,Jun) ;
MAX
Z = SUM(month<Dec: Invt) ;

| expected to see an offset value for the index,
but found instead ‘XXxxX’.

Example:

SUM(i,j: x[i-y]);

The offset value for aindex subscript must be a scalar number, another index or a

data vector.

335

MPL Modeling System

58.

59.

61.

62.

63.

| expected to see a left bracket '[’,
but found instead ‘XXxxX’.

Example:

DATA
d(i) := (1,2,3,4,5) ;

| expected to seearight bracket ']',
but found instead ‘XXxxX’.

Example:

DECISION VARIABLES
production[i -> Prod] ;

~

| expected to see a definition such as subscript range for the index 'xxxxx',
but found instead ‘xxxxx’.

Example:

INDEX

| expected to see a name of a datafile,
but found instead ‘xxxxx’.

Example:

Datafile (DATA):

The data filename must not be keyword such as DATA unlessit is put in quotes.

| expected to see a number element for the data vector,
but found instead ‘xxxxx’.

336

65.

66.

67.

68.

69.

70.

71.

72.

Appendix B: Error Messages

| expected to see a comma separator ’,’ between data elements,
but found instead ‘Xxxxx’.

Thereare not enough numbersin this data vector.
This spar se data element has already been entered.

| expected to see afield or column number,
but found instead ‘Xxxxx’.

| expected to see a semicolon ';' after the previous macro definition,
but found instead ‘Xxxxx’.

Example:
MACRO
A = SUM(i: x) { Note the lack of semicolon }
B := SUM(i: y)

~

| expected to seethe keyword THEN after the | F condition.
| expected to see the keyword ENDIF at the end of the | F condition.

Theindex rangeisreversed (hi..lo).

Example:

INDEX
product = 3..1 ;

~

The first number in aindex range must be less than or equal to the second one.

The subscript "'xxxxx' is not within the defined range
of theindex "xxxxx'.

Example:

INDEX
i
k[1i] :

337

MPL Modeling System

73. Thesubscript 'xxxxx’ has already been given
for this subindex.

Example:

INDEX
month := (Jan,Feb,Mar,Apr,May,Jun);
Holiday[month] := (Apr,May,Jun,Apr);

74. Thisset difference operation failed asthis set isnot a subset
of the earlier.

75. | expected to see an integer sublength,
but found instead ‘xxxxx’.

Example:
INDEX
month := (Jan,Feb,Mar) : { Note the lack }
DATA { of sublength }

76. Thisshort namelist isnot the same size asthe previous
named subscript list (xxxxx).

Example:

INDEX
product := (ProductA,ProductB) -> (A,B,C);

~

77. Theindex ‘xxxxx' isnot multi-dimensional.
78. Not avalid subscript for theindex ‘xxxxx’.

81. Theindex 'xxxxx' must have the same declaration astheindex 'xxxxx'.

82. Theindex 'xxxxx' doesnot match the declaration of the vector 'xxxxx'.
Example:
DECISION VARIABLES
x[jl

MODEL
MAX Z := SUM(i,j: x[i,j]);

338

83.

85.

86.

87.

91.

92.

96.

97.

98.

Appendix B: Error Messages

Theindex 'xxxxx’ is not specified in the underlying index list.

Theindex 'xxxxx' in vector 'xxxxx’ is not specified
in theunderlying index list.

Example:

SUBJECT TO
constr[i] : x[i,j] < 5:

Theindex ‘j’ must be specified in the constraint.

Thefixed subscript ‘xxxxx’ for theindex ‘xxxxx’ is not possible
here asthe index has already been referred in the vector.

Theindex 'xxxxx' has already been given a
condition wher e thisvector was defined.

The option name 'xxxxx"' is not recognized by MPL.

Could not open the model file filename for reading.
File not found.

The MPL parser run was cancelled by the user.
The keyword "'xxxxx' isreserved for usewith MPL.

Thecharacter 'X' isreserved for future use.

These characters are reserved for use in future rel eases:

\ o -~

The keyword ‘xxxxx’ isreserved for future use.

The following keywords are reserved for use in future
releases of MPL:

DEFINE, FOR, FOREACH, INIT, INITIAL, INITIALIZE, INF, MOD, NORMAL,

POWER, ST, UNIT, UNITS, USING

339

MPL Modeling System

Errors for Nonlinear Parser

111.

112.

113.

114.

115.

116.

A nonlinear term wasfound in alinear (L P) model.

A nonlinear term was found in a quadratic objective function.

A nonlinear term wasfound in alinear constraint for QP model.
Arithmetic functionsis not allowed in a quadratic model.
Exponent on a variableisnot allowed here.

This exponent hastoo high power for a quadratic model.

Appendix B: Error Messages

Errors Using Include Files

121. The parameter for #include should be a filename.
122. Includefilescan not be nested to morethan 8 levels.

123. Could not open theinclude file xxxxx for reading. File not found.

Most likely, the filename is not alegal filename, or the file can't be found in the
current directory.

Errors Using Conditional Directives

124. 'xxxxx’ isnot a known conditional directive.

The known conditional directives are:

#define, #undef, #ifdef, #ifndef, #ifnotdef, #else, #endif.
125. Themaximum number of conditional directivesis 100.
126. Thisdirective has not been defined.
127. Thereisno #ifdef for this#else.

128. Thereisno #ifdef for this#endif.

341

MPL Modeling System

Errors with Data Files

141.

142.

143.

144.

145.

146.

147.

Cannot open the datafile filename for reading. File not found.
Too few numbersin the datafile filename.

| expected to see a valid integer subscript entry for the index "xxxxx’,
but found instead "xxxxx’.

| expected to see a valid name subscript entry for the index "xxxxx’,
but found instead "xxxxx’.

| expected to see the next data value entry, but found instead "xxxxx'.
This data element has already been encounter ed.

I expected to see a closing text quote (*) before reaching the end of the line.

Errors Reading MPS Files

151.

152.

153.

154,

155.

156.

157.

158.

An MPS file must start with a NAME section.

An MPS file must have a ROWS section.

An MPS file must have a COLUMNS section.

The %xxxx "is not a valid row type.

The Xxxxx ~is not a valid bound.

The row name %xxxx “was not defined in the ROWS section.

The column name %xxxx "was not defined in the COLUMNS section.

Nonlinear operator Xxxxx “not recognized.

342

Appendix B: Error Messages

Errors with Problem Size and Memory

**x%kxx A probl emhas cone up :

161. Thisproblem hastoo many constraints.
The maximum number is 2100000000.

162. Thisproblem hastoo many decision variables.
The maximum number is 2100000000.

163. Thisproblem hastoo many nonzeros.
The maximum number is 2100000000.

164. Thisproblem hastoo many nonzerosin rim vectors.
The maximum number is 2100000000.

165. Thisproblem hastoo many elementsin data vectors.
The maximum number is 2100000000.

170. Thisproblem hastoo many symbols.
The maximum number is 64000.

171. Thisproblem hastoo many named data constants.
The maximum number is 16000.

172. Thisproblem hastoo many indexes.
The maximum number is 16000.

173. Thisproblem hastoo many data and variable vectors.
The maximum number is 16000.

174. Thisproblem hastoo many variable vectors.
The maximum number is 16000.

175. Thisproblem hastoo many constraints vectors.
The maximum number is 16000.

MPL Modeling System

176.

177.

181.

182.

183.

184.

185.

186.

191.

192.

199.

This problem hastoo many defined macros.
The maximum number is 16000.

This problem hastoo many special ordered sets.
The maximum number is 16000.

Thisnamed index hastoo many subscript elements.
The maximum number is 100000.

This subindex hastoo many subscript elements.
The maximum number is 100000.

Thisindex list hastoo many indexes.
The maximum number is 16.

Thisterm hastoo many index referrals.
The maximum number is 16.

Theterm hastoo many data vector referrals.
The maximum number is 8.

Thisindex formula hastoo many index referrals.
The maximum number is4.

The multi-dimensional index 'xxxxx’ istoo large for the 32-bit version of MPL. The
maximum size for all theindexes multiplied together is 4294967295 (2* 32). Please
contact Maximal Softwarefor details on how to get a 64-bit version that can handle
problems of thissize.

The vector "xxxxx’ istoo large for the 32-bit version of MPL. The maximum sizefor
all theindexes multiplied together is 4294967295 (2" 32). Please contact Maximal
Softwarefor detailson how to get a 64-bit version that can handle problems of this
size.

This machine does not have enough free memory to
read in thismodel.

Appendix B: Error Messages

Errors Using Database Connection

**xx*x A mnor nistake was found in line nnn :

200. Thisversion of MPL doesnot have the database connection installed.
For moreinformation, please contact Maximal Software.

201. | expected to seetheindex "xxxxx’,
but found instead "xxxxx’.

202. | expected to see either the data vector "xxxxx’ or an index name,
but found instead "Xxxxx’.

203. | expected to see either the variable vector "xxxxx’ or an index name,
but found instead "xXxxxx'.

204. | expected to see arelational operator,
but found instead "xxxxx’.

205. | expected to see an index from the vector,
but found instead "XxxxXx'.

206. | expected to see an import column entry,
but found instead "xxxxx’.

207. | expected to see either INDEX or DATA keyword,
but found instead "XxxxXx'.

208. | expected to seethe DATABASE keyword,
but found instead "XxxxXx'.

211. | expected to see a database table name,
but found instead "XxxxXx'.

212. | expected to see a database column name,
but found instead "XXxxx’.

345

MPL Modeling System

213. Thecolumn 'xxxxx’ was not found in the database table.
214. A column for reading index must be either alpha or numeric.
215. A column for reading data must be numeric.

216. | expected to seea SQL statement string,
but found instead ‘Xxxxx’.

217. Maximum number of exported vectorsis 10000.

221. Could not initialize *xxxxx’.

222. Paradox error: ‘Xxxxx'.

223. Codebaseerror: Table ‘xxxxx’ not found.

224. ODBC error: ‘xxxxx’

225. Oracleerror: ‘xxxxx'.

226. You havenot logged on the ‘xxxxx’ database yet.

227. Internal databaseerror: ‘xxxxx'.

241. Expected to see an Exce Filename or Range specification.
242. Expected to see an Excel Range specification.

243. Could not start Excel for dataimport.

244. Could not open Excel workbook file ‘xxxxx’.

245. Could not find sheet ‘xxxxx* in Excel workbook ‘xxxxx’.

246. Could not find range ‘xxxxx’ in Excel workbook ‘xXxxxx’.

346

Index

#
#else, conditional directive..........cooevveeieceeiieniens
#endif, conditional directive...........ccocoevvvveieiieniens
#ifdef, conditional directive..........cccocvevvveieviennens
#ifndef, conditional directive...
#undef, conditional directive............cccovvveeeviennens
A
Abort if conditions................... .. 207
using FORSOME keyword in..... .. 207
About MPL for Windows dialog box . .. 139
ABSTUNCHON. ..o 197
Absolute gap
CPLEX parameterccoceeeeeeeenenesienesieeeens
XPRESS parametercccvveeervenenenesenieennns
Access database file, model file option ..
Access, calling MPL from........ccccovevvvneieveiesesene
ACCUraCY NUMDEIS......cveereeieieeseeeesee e seeesaeneas
ACOS function....
ACOSH fUNCHONcveeeeeeveeieeesee e
Activity Keywordc..cooeevrieiennns 180, 189, 225, 227
Advance basis, CPLEX parameterccoceevrenene. 91
Advanced starting values, CPLEX parameter......... 101
Algorithm
CPLEX parameterccocoeeveeeerienenieseseeeenens 87
XPRESS parametercccvveeeveneneneneninenens 128
Algorithm, CPLEX parameter..........ccoceeveeruevruennns 108
Alias index
ALL KEYWOId.....c.ocveeeieteeeeee e 180, 189
AND KEYWOIdcovvveeieiereeiisieeseiee e 161
Application limit, CPLEX parameterc.ce.e... 91
ARCTAN functioncccceevrvevrnnne .. 197
Arithmetic 196
INDOUNAS ..o 191
ondaa........ 171,172
ON SUBSCTIPES 1.vvveieeee e 214
Arithmetic functions... .. 197
Arithmetic operators... .. 326
Arrange Window iCONS...........ceovverueereereeereeenienens 135
ASCII characters..... . 150, 325
ASIN function 197
ASINH function... ... 197
ATAN fUNCLON.....oiiiiiee e 197

347

Index

ATANZ fUNCHON. ... 197
ATANH fUNCLioN.......ceiiiciec e 197
Auto save, environment OptioN..........cccveereerereereeeenes 75
B
Backtrack factor, CPLEX parametercccc..... 107
Backup copies, making when installing.................... 10
Bakery Model

Problem DesCription..........cccoeeeeererenieeniceneenes 245
Bakery2.mpl, sample tutorial model...........cc.ccco...... 248
Bakery2.sol, tutorial solution file...........c.ccceveeenene. 252
Balance constraints, MPL Tutorial 270, 271

Barrier cache limit, XPRESS parameter..................
Barrier iteration limit, XPRESS parameter
Barrier memory limit, XPRESS parameter..

Barrier Options for CPLEX dialog box
Barrier Options for XPRESS dialog box
Barrier progress info log
CPLEX Parametercccceeevereineneneeeeneesreneenees 94
XPRESS parametercccoveeeveneeieeneseneennes 119

Barrier tolerance, XPRESS parameter ..
Basis filename, CPLEX parameter ...

Basisinterval, CPLEX parameter.. ...89
BECOMES K&YWOId.........cccocvvreiiiriiiiisieieeenes 166
Becomes operator
1N CONSLTAINES.......cueeveeeeiieeeee e
invariables....

INOEXES.....veeeeiieieiereee e
Best bound interval, CPLEX parameter ..
Binary input file, general solver option.............cc......
BINARY keyword...........cccoceuernnn. 145, 148, 179, 193
Binary output file, general solver option................... 86
Binary variables.........cc.coviieiniincnnne. 145, 179, 193
Block comments, in MPL models..........cccveenene. 150
Bounds

0N VECEOr Variables........cocereieneniecriceseeeen
BOUNDS Keyword..........cccoeereeeneerenne.
Braces, block comments
Branch direction, CPLEX parametercc....... 100
C
C/C++, caling MPL from.......ccoevvviveinveccseseeenes 17
Calling MPL from

CICH o 17

MPL Modeling System

MS ACCESS.....cvcuirreieiireereeee e 17
VisUal BaSIC ..o 17
Candidate pricing list size
CPLEX-MP Parameterc.ccooevenineneneeinenens 95
XPRESS parameter .
Cascade WiNdOWSc.cooreveurirenieieenenesieeiseereiene
Case sensitivity
inthe MPL [anguage........cccceevverveeveerveeneeenienens 7
of decision variables...........c.cccoovvvnecnnnicnnn 198
search and replace .
SEACH FOr tEXT...veieeec s
Change filename of solution file........cccccceeereivrienne 82
Change options
for databasesooeeverivereeeiice e 80
for generated files.. .84
for solution files........ .82
for the CPLEX solver87
for the FOtMP SOIVEr ... 130
for the MPL environmentcccccovevveenirnnenens 75
for the MPL language
for the XA SOIVEN ... 130
for the XPRESS SOIVESccovirinieiciriricienen 113
Change properties for a project .55
Change solver options.................. L1131
Change solver parameter options. .130
Change SOIVEr SEIUD.....c.coveerveieerieeeereeeesee s 133
CharaCter SEt.........ooeveererieeeiineeeereseeees 149, 325
Check sparse data for duplicate entries
atafilES. ..o 79
MPL Language Option.........cccceveevrreereenereerennes 152
Check syntax of the model
from the RUn menucocevvecnnricnnne 57, 249
from the toolbar........c.covvvevinncccce 57
Cholesky factorisation, XPRESS parameter129
Circular iNdeXc.covveeerereeeeeseecenees .158
Clear current model from memory60
Clipboard operations..........cc.cc.... ... 46
copy text to the clipboardccccccvvevvccvreenne. 46
cut text to the clipboard..........ccccovvereievccvneene.
paste text from the clipboard ...
Clique cuts, CPLEX parameterccoeevruevrenenns
Close al WiNdOWS.......c.covviveurinnieieenenesieecnnieiene
Close moddl file......

Close project fil......covvvveieveivrieneeeriennns
Coefficient reduction, CPLEX parameter ...
COEffiCIONtS ...

INDOUNGS ..o 191

INFOrmMUIBS.......cceniriccec 198, 200

outside ParentheSeScccevvvereeeveeeseseeenienens 204
Column nonzeros, CPLEX parametercoco.e.. 109
Command line

GENERATE command...........coeournvnreeneneneeneenns 17

running MPL from .
Comments, INSEItING......c.cervrereeerieerereeeseeeseeenes
Computational options

in General Solver Optionsdialog box 85
Compute ranges .

general SolVer OptioNccovvevreererieereeee e 86

solution file OptioN........ccveieveeireiecee e 83
Conditional direCtives..........ccoccoreeinneneeieinnieeens 151

348

Conditional INAEXESccveveereerieerieesereeesieeneens 214
Conditions, @Aoort ifcccceveererereiereese e 207
Constant value, in the objective function................ 184

Constraint aggregation limit, CPLEX parameter 105
Constraint count
shown in Model Statistics dialog box
shown in Status Window
Constraint eqUAtioN.........cceeveereereeiereeesierennens
Constraint vectors, MPL Tutorialcccccevrvennnnne
Constraints
(015w (] o1 oo TSRS
formulatermsin........cocveeeceveesiereceee e
inventory balance

NAME ...c.cvrereennnnns

plain.............

plant balance

semicolon................

WHERE condition ON........cccccoveeeeininnieicenenenns
Constraints count

shown in Model Definitions window............. 31, 69
Contents tab, MPL help system..........cc.ccoueuenee. 33,137
Context Sensitive Help, dialog box 34, 242
Control characters, in MPL models...150
Convergence tol, CPLEX parameter110
Convert to minimize, generate MPS option.............. 84
Copy text to the clipboard..........c..ccoevrunene .46

from the toolbar..........cooeeevrvciecee 46
Copyright information for MPLcccccoveevrieinnnne 139
COS FUNCHON. ...t
COSH function
COUNT KEYWOIQ......ccuereeeiieririiieieseeesieseesesaeennens 203
Cover cuts, CPLEX parametercccceeeverereenne 103
CPLEX parameters

ADSOIULE gaD ..o 107

AdVanCe basiS ..ot 91

Advanced starting values...

Algorithm.........cceeevnvenene

Application Mtcovevreeieice s

Backtrack factorccoeevvrieininnecnrceee

Barrier Options dialog box

Barrier progressinfo 10g........ccoeevvevveieneeeneinnnnns

Basisfilename........cccooeeinvniiiccce

Basisinterva.......

Best bound interval..

Branch direction.....

Cliguecuts..............

Coefficient reduction..

COlUMN NONZEXOS ...t

Constraint aggregation limitcccceveevrerernne 105

Convergence tol

COVEN CULS ...t

Crash method.........coeoirreeiinneecreecee

Crossover strategy 101

Cutting plane passes limit.. .. 105

Dependency CheCKercovveveeveereeieneeeneeneens 92

Digunctive cuts.......... .. 104

Feasibility tolerance..........ccovvveieveeivsieresieseenens 89

Flow path CULS......ccveveeriiee e 104

Gomory candidate limit.........ccccovervriereeienerennns 105

Gomory fractional CULS........ccoveevveereeereeresierennns 105

Gomory Passes liMit.......coeeevereereisieseeenienens
Growth imit......ccoeeveiereiserereee e
Gub cuts.......covu..
Implied bound cuts
Infeasibility finder.....
Integrality tolerance...
Iteration limit................ .
Iteration limit for barrier.......c..coevvveievveinnrenne,

Limit Options dialog boX.........ccoeeveereeerieieninnns
Log File Options dialog box .
LOWEN CULOFf....veieiceeeiesiee e

LPiteration 10g......ccovevvrieereieierieeseresesieeseeees
Markowitz tolerance..
Matrix fill limit..........
Max correction limit.. .
Min SOSSiZe.....ccccevuevrnnen ...96
MIP bound strengthening......... .91
MIP Cuts Options dialog boXccccvervreerene. 103
MIP NOAEfil€...vcuiieeeieesee e 97

MIP Strategy Options dialog box....
MIP Strategy?2 Options dialog box..

MIP strong branching limits........... .97
MIP Tolerance Options dialog box .

MIR CUES ...t
Network extraCtion..........cccoeeveeeenneseeeeinneeens
Network Options dialog box .
NEWOIK PriCingeveveeeeveeieeseeeseeseeeeeseenas 111
Node file Size limit.......cooeirnneieirreciee 96
Node limit............. ..96
Node selection....... ...98
Numeric tolerances.... .112
Object value lower limit... ..96
Object value upper limit... ..96
Objective difference.......cccccovvvvveievceveiencienenens 107
Objective range 110
Ordering.....ccceveereereiereeiseresesee s e seeesaenens 109
Pass dual problemccccoevvvereiencieseseeneene 92
Perturbation............... .89

Perturbation constant.

Perturbation limitccoeveee. .89
Preprocessing Options dialog box... ..90
Presolve91
Presolverelaxed LP...........ccccceoevveiinnnccienene 92
Pricing candidate list SIize.......ccoevevrvervrereenniennns 95
Pricing dual

Pricing primalc.oovveveeieneieree e 88
Probingcoveeeieveisesee e 99
Reduced cost fixing... .101
Refactorization...... ...89

Relativegap
Relative object di

Rounding heuristic................. .102
Rounding heuristic frequency........cc.cccuveevvennns 102
Row multiplier factor for cuts........c.cccvvervrvenns 105
5o 1o S 88

349

SCaN fOr SOS......ooiivviirrenieeeeereee e 102
Send iteration 10gt0cvvveeveereeireecee e 93
Simplex Options dialog box .. .87

Singularity limit.................

Start algorithm............ .. 102
Starting point algorithm.. ..109
Sub agorithm............. ... 102
TImMe It oo 95
Tree memory liMit.......ccveereiereienerereceseeeeeenes 96
Upper cutoff
Variable Selection.........ccccevvvieiiinnecenerene 99
Variabl€ UPPEr.....ccveveevieiee e 110
CPLEX solver, installing.........ccoeevveevsereieneiennnns 236
Crash method
CPLEX Parameterccceevveruenerenieneeneesiesensienne
XPRESS parameter
Create anew model file...
Create anew project file.....covvvrerevereieveersiereeenns
CREATE KEYWOrd.......covevviererireeereeesieennens
Cross-over control, XPRESS parameter ...
Crossover strategy, CPLEX parameter
Cut strategy, XPRESS parametercccocvvereenne.
Cut text to the clipboard.............
from thetoolbar..............
Cut-off, XPRESS parameterccoccevevvvereenereene
Cutting plane passes limit, CPLEX parameter........ 105
D
Dataarithmeticccovoeveiineniicceceee 171,172
Data constants.
entered at run-time by USerccccoveincincne 168
MPL TULOFT @ ... 257
Datafiles
check sparse data for duplicate entries................. 79

export constraint values to.

export variable values to.... ...180
INPUL dir€COrYc.ceveeeeeeieeeeee e 79, 152
MPL Tutoridl.... . 284, 311
OULPUL AIFECLONY ... 79, 152
quicksort for sparse dataoption................... 79, 153
Data Files, MPL Language Option..........ccccccceueenuene 79
DATA Keyword.........coveervniennenns 145, 147, 168, 170
DataSection........ccccvvvvciiivneceece 145, 167
DataVectors..........oociiriniinince s 170
import from database.. .. 176
import from Excel ... 174
MPL Tutorid...........c...... .. 256
read from sparse datafile.. .. 173
shown in Model Definitions window ... 29, 67
SPAISE ittt 171
Database
Access database file option.........ccccceeeereciennnee 153
Directory option...........cccc......153
Excel worksbook file option 154
ODBC data source option.. ..153
Database connection........... ..217
default database option.........cccccceeeereeennne. 80, 153
export constraint values.. 190, 226

MPL Modeling System

export variable values..........cccccoeeeveeevnnenne

iMpOort data VECIOrS........eovvveeeereeenieresieens

import index values..........cc.cceueuennn.

messages send to Message Window ..

names abbreviation

where conditions.......
DATABASE keyword
Database Options dialog boX........ccceeveereeerieerininnns

default database...........oeeerererieeeineeers

directory or database files. .

[o 0 401 1= % oo o

ODBC daf@ SOUICEcvevenereeeeeiienieieiesereseeienens 80

password............... .81

USEMMAIME. ..ot .81
Database password, model file option. .154
Database type, model file option.......... .153
Database username, model file option. .154
Data-dependent generation...........coeeveevvenererenes 202
Decimals setting for the solution files...........ccoeun. 82
Decision variables

CaSE SENSITIVITY vovvvveereereeieee e 198

AeClaring .oveeeeeeree e 178

SECHON. ..ttt 198
DECISION VARIABLES keyword. 147, 178
Default databasecccoveveerrivieiincsrees 80

model file optioncccevvvvvveiiveevcene, .153
Default model type, MPL Language Option............. 78
Definition part in the MPL modd 145, 147
Degradation estimate, XPRESS parameter............. 125
Delete text in the model file .
DElIMITErS.....cveieeceeee s
Dense column removal, XPRESS parameter.......... 129
Dense data vectors
DENSE KeYWOIdcocviviieierieisieseseieeseeesee e
Density of the matrix

shown in Model Statistics dialog box 65
Dependency checker, CPLEX parameter 92
Description

Of CONSLTAINTS......vveeceieeeiereeee s 187

of variables .
Description Of MENUS.......cc.ccvveieiereeisereceeeseeees 35
Dialog boxes

About MPL for Windows............ccceeeerrereeunncne 139

Barrier Options for CPLEX108

Barrier Options for XPRESS... .128

Context Sensitive Help............... .34

Data constant entered at run-time...

Database OptioNS........cceevvereeiereeeseresesieeseeenes 80
Environment Options..........ccovvvrveereereseresenienens 75
Find and Replace.........cccvecveeeveieevece e 49
FortMP Option Parameters...........ccovvenene 130, 131
General Solver Options.........ccceeeverieiereeneseseenes 85
Generate File Options....... .84
Goto Line.....c.ceeunee. ...50
Insert File......coveeenenene. .42
Limit Options for CPLEX95
Limit Options for XPRESS........cccccoevvveivvennnns 120
Log File Optionsfor CPLEXcccoceevvevvevniennne 93
Log File Optionsfor XPRESS............ccoceevrennne 118

350

MIP Cuts Options for CPLEXc..ccevevvrvernrnnne 103
MIP Cuts Options for XPRESS........cc.ccceeerennene 126
MIP Strategy Optionsfor CPLEXccccovveurnnee 98
MIP Strategy Options for XPRESS..... . 124
MIP Strategy2 Options for CPLEX101
MIP Tolerance Options for CPLEX

Model StatistiCs........covrererereenennn

MPL Error Message.........ccocvevvereereennennnes

MPL Help Systemcocvvvevcreeceeeeeseeeeeenes
MPL Language Options.

Network Optionsfor CPLEXccccceeevvieennnne. 111
(07 o= 1 1 S 38
Preprocessing Options for CPLEXccccceenee 20
Preprocessing Options for XPRESS.... .. 116

Print Fle ..ooooveeveieeeeceee e

Project New . .52
Project Open..... .52
Project Properties........coovveeevereeieveeesenesesieeneens 55
Project SAVe AS......occeveerieereee e 54
Save AsFile

Save QUESHIONcvvveeeieece e
Save SElECtioN ..o
Simplex Options for CPLEX
Simplex Options for XPRESS..
Solution File Options.............
Solver Menu Setup.....
Solver Options List.....
Solver Setup OptioNS........ccveeerereeereeeeereeenees
StAUS WINAOW ...
Tolerance Options for XPRESS....
View Other FIleS......ccovveinriciieecerereene
XA Option Parameters.........ccouvvvrveereeresereniennns
Direct assignment of SUBSCHPEScccevvrvevreeenenne
Directories
database files........coveinirnecncee 80, 153
input datafiles.....

model file option.

Disjunctive cuts, CPLEX parameter...........c.cccov... 104
Distribution models, MPL Tutorid 296
DLL SOIVEFS ...t 58
DOomain iNdEXES.......cocvveuiieinieicererieeeeeeines 162, 210
Domains

defining for the modelcoovvevvevvecinierieees 155
DOS 1egacy SOIVErS.......covverieerieesereeesieeneens 58, 132
Dot operator

Set domain iNAEXc.cuveirvereecireecerce e 212
Double QUOLES, iN NAMES........cccvveeveereeerieereeeeeenes 149
Double-click as goto in model

for model definitions Window............cccccveveeueuennne 76

set in environment options dialog box 76
E
Edit MENU ..o

copy text to the clipboard ..

cut text to the clipboard..........ccccovvvreivcienenene. 46
delete text in the model file.........cccoeveeirricnnne.
paste text from the clipboard ...

undo changes in the model

Editing model file......cccovvveieviirievecereceeesiene

Editor
clipboard operationS..........coeevrererenieerierenereenes 46
close model file......ccoieinnrciice 39
copy text tothe clipboardccccocvvvevvecvreenne. 46
create anew model file
cut text to the clipboard..........ccccovvvrevviciinenene. 46
delete text in the model file.........cccoeeeinricnnne. 46
goto linein themodd50
insert file into the editor42
open model file........cccuvuennn .38
paste text from the clipboard
printfile ..o,
replace text inthe model........cccccoveveveevrieveccniennne
save MOdE! fil.......ccovrveirirrieiieeee s
save selected text to afile.... .
search for text inthe modelccoeeennricinnne.
UNAO ChaNGES.....ccvveeereieeeeiie e

Element count
shown in Model Statistics dialog box 65

ELSE Keyword...........cveevrerervniennnnns .202

EMPLy NaMES......covveiieeereserce e 149

END KEYWOId........coveerieereierieinieeseieeseeees 145, 148

Environment options
for the Message Window...........ccccveereevrienne
for the Model Definitions window..

Environment Options dialog boX..........ccceevrveerinnnns
auto save model file.......cocovvereeeiirniecenerc 75
database connection to Message Window 76
double-click as goto in modd! 76
error messages to Message Window .. .76
expand branches...........coceevveevreene. .. 76
MPL input lines to Message Window......... .. 76
performance statistics to Message Window 76
short filenames in window titles
show element CouNt..........covvvveeririnieeene
solver iteration log to Message Window 76
SQL statements to Message Window 76
status messages to Message Window 76

warning messages to M essage Window. .. 76
Environment, using the MPL24
Equal constraints..........cc.cceveeeene. .186
Equipment indexes, MPL Tutoridl .. .310
Error Message Windowcceceveveenesenieennnnnns 27

checking syntax of themodel 57, 249
Error messagesccocevvevveninenne

errors reading MPS files.

errors using conditional directives............co....... 341

errors using includefiles............. .341

errors using nonlinear parser .340

errors with datafiles................ .342

errors with database connection.. .345

errors with problem size............. .343

format errorsin the formulation............c.ccu..... 327

send to Message Window..........ccccccvevnene 31, 70, 76
Estimate deg. mult, XPRESS parameter 125

351

Index

Excel
caling MPL from......ccccoveevvievecseeseee e 17
export constraint values.. ... 189
export variable values..... ..181
import data vectors..... 174
import index values...........c.coouen... .. 165
skip over empty, model file option... ... 154
worksbook file, model file option.............c........ 154
worksheet name, model file option.................... 154
Excel workshook file, model file option................. 154
EXCELLIST keyword........cccccovvveveernnne. 174,181, 189
EXCELRANGE keyword 165, 174, 181, 189
EXCELSPARSE keywordccccceue... 174,181, 189
EXCEPT keyword, in WHERE conditions............. 203
Exclamation mark, single line comment
EXIt MPL ..o
EXP fUNCHONovviiccee e
Expand branches, in model definitions window
eNVIronNMENt OPLIONcvvveveereeireereee e 76
Expansion
Of Variables......cccerireieiiec e 179
Of VECLOI'S ..ot 200
Export to datafile
CONSEraint ValUES.........c.cvvnveieirericirisieieieneene 189
variable values
Export to database
CONSEraiNt ValUES.........cocuveeinieeeieererieieienas 190, 226
(o (== (X 0] o110 o 1R 225, 227
do not export OptioNceveereeeeeeree e 81
refill option
variable values............cccoeeennicincnnne
Export to Excel
CONSEraiNt ValUES.........cuvvvnieeeiriiciecsieieeneee
variable values.........
EXPORT TO keyword
External datafiles
MPL TULOTT@. ..o 284
External index files.........ccoveeenniciiinneccee 164

F
Feasibility tolerance, CPLEX parameter................... 89
File margins
for generatefile... .84
File menu................. .37
close model file.......... 39
create anew modd file... 37
eXit MPLocveveveeieee .44
insert file into the editor . .42
open MOdel file........ooiireiiieee e 38
print model file.......coeoiiniiiee e 43
save mode file............... .40
save selected text to afile.. .41
File Open dialog box.... .38
from thetoolbar.............. .38
Filename, in the solution file.........ccooveveveviecieinnee, 82
Files

MPL Modeling System

close Mode file.....ccevveeveerceese e 39
close project file....oovvveeiciercieeeree e 53
create anew model file..... .. 37

create anew project file.... .52
includefiles........ccoveuennne .151
insert file into the editor42
MPS generate options....... .84
open MOdel fil......coveereereereeicece e
0pEN ProjeCt file ..vvveireereereieeese e
opening view file... .
save MOdE! fil€.......ccovrreenirrciieee s
(= Y oo 1=] =
save selected text to afile.... .41
shownin aView window62
Find and Replace dialog box.... ..49
from the toolbar...........ceueee. .49
Find and replace text in the model .. 49
Find didlog DOX......ccvoeeeienieiriise e 48
from the toolbar........c.ccvvveiinneccce 48
Find tab, MPL help system...
Find text in the model ... 48
FIRST KEyWOrdcooveeiiviieevieeeeeseee e 203
Fixed subscripts.. .199
Fixed variables...........cccoveerinenee .191
Flow path cuts, CPLEX parameter.........c..cceveenene. 104
Folders

o101 o 1o TSP 200
IF/IIF conditions on formulaterms.................... 202
iN CONSLraints.ccovevrvevreeeneenes .186
indexes referred in..... .203
using parenthesesin................... .204
where conditions on formula terms.

Formulating the model
identify CONSIraints........cccveveeveeresereeeneeseens
identify decision variables..........cc.cooeevreiviennns
identify objective function... .
MPL TULOM @ .vveeeeeicieecee s

FORSOME KeYWOrd........cceovreeieiereeenieeseeenieseenes
in Abort if conditions...........c.......... .

FortM P Option Parameters dialog box

FortM P solver
change optionSc.cceveeieerereee e

FoxPro, calling MPL from .

Fractions.......cccieveineiseee e

FREE keywordccoeveveievevnereeenns 145, 148, 192

Free variables. ... 145,192

FUNCLiON INEXES......ccveviviieereeceese e 160

Functions, arithmeticccvevvvieriieneievcce e 197

G

General solver option, infeasibility finder... ...86

Genera Solver Options diaog box......... ...85
COMPULE FaNGESc.vevereeenrnees ...86

generate binary input file.. ...86

352

generate binary output file.........ccoceevvvreievieeneene. 86
generate fileS.....covvvvreivc e 86
generate MPSfile....... ..86

generate native input file .
generate output file........ ..86
10g fileNaMEe ..o 86
send iteration log to

solution mapping file.. .
USe adVanCe basiS........couvveuieririereieerreeeeeiees
use infeasibility finder
Generate File Options dialog box ..

.84
convert to minimize............... .84
generate file margins..... .84
generate MPS files options .84
include comments................. .84
integer variablesin MPSTiles........cccccvvevvieviennnne 85
SINGIE COIUMN....c.veveeiieie e 84
SOS referenCe roWS........coveeeereerresereeeseseeenes 84
Generatefiles
from the command linecccovevvneciinnicicnnne 17
general solver options..... .86
input file.......ccocu.... ..60
00 R 84
SOIULION fil€ . 59, 82
Generation of formula terms
where conditionsoceeerrrceiinnnecesene 202
Gomory candidate limit, CPLEX parameter 105
Gomory cuts, XPRESS parameter
Gomory fractional cuts, CPLEX parameter 105
Gomory passes limit, CPLEX parameter................ 105
Goto Line dialog boXcccovvvevrievininienieese e 50
from the toolbar....... .50
Goto linein the model... .50
Graph menu................. W71
graph of the matrix................ .71
graph of the objective function..........cccccovvveee. 73
Graph of the MatriX......oceeveiereeiirereseree s
Graph of the objective function.. .
Graph windows, ZOOMINGcccererereeiereenenereenennes
Greater than ConStraints.........ooevvevrecinveeens
Growth limit, CPLEX parameter...
Gub cuts, CPLEX parameterccocooveeruerererennens
H
Hardware, system requirements...........ccoceeerereeeneens 10
Help menu.....cccovevenencenns .. 136
about MPL for Windows...........cccceereienenenennns 139
help topiCS.....covvveerieenne. ... 136, 241
search for help oNn.......ccooeeiieiniicceee 136
HEIP SYSIeM ..o 24
CONLENES taD ... 33,137
context SENSItIVE.coeeveeerieiereeereceeies 34, 242
covered in MPL Tutorid 241
findtab......ccoovviveiens 33, 138
FOr MPL .o 136
INAEX 1A ..o 33,138

I

Identify model elements
CONSEFAINES....c.viveieeeeeie s 247
decision variables... .. 246

objective function... ... 246
IF KEYWOId.....c.civieiiiieirieeeeree e 202
IF/IIF conditions

on formulaterms.........ccccoevveriennccinscee 202
IIF keywordccoceeee .. 202
Immediate If function (IIF) 202
Implied bound cuts, CPLEX parameter 104
Import from database

Access database file 0ption.........c.ccoeeveenienene. 153

datavectors............ 176, 221

default database option.

ODBC data source option............cceeeerverenne. 80, 153

password option

username option
Import from Excel spreadsheetcccveerenene. 174
Import from spreadsheet

Excel skip over empty optionccccveeerenene. 154

Excel workbook file option...........ccceeeveeencnene. 154

Excel worksheet name option...........cccoeerenene. 154
IN operator, set membership
Include comments, generate MPS option................. 84
Include directives...........coecvivirciciiiiiecnee 151
Include files
INDEX Keyword..........cccevvvivrerennerenenenes 145, 147, 156
Index operations

defining SEtS USING......coveveeveerieiee e 161

difference........... ... 161

intersection.. .161

union........... ..161

useof NOT . ..161
Index section..........ceueee ... 155
Index tab, MPL help system.. 33,138
Indexed bounds............ccoeueeee ...192
Indexed names, name generation . 79, 153
Indexed variable...........cooocevinnciciciicce 199
Indexes

AlIBS. ..

CIFCUIAI ..

CONAItIONAcveviiiiiei e

connecting together ...

defined as list of names............ccevecinnicnenee. 157

fixed SUDSCIIPL.....cveeereeerie e
functionsin MPL ...

import from EXCElccveerereineiseeeree
MPL Tutoria
multi-dimensionalcccccceevvevieieviseiiceene
parent iNdeX Ofccooeiiriirere e
read from external files........ccccccovevevveeiicienns 164

353

referred in formulas..........cccooveeinnciicnnees

shown in Model Definitions window ..

using subsetsin MPLccoeevvevcvnieennns
Indexes and Vectors

MPL TUEOM &L 255
INDEXFILE keyword.................... .
Infeasbility Sets, XPRESS parameter 114
Infeasibility finder

general Solver Optionccecevvevreereiee e
Infeasibility finder, CPLEX parameter .
INITIAL KEYWOIdcvvveveieieiereeese e
Initial solution, XPRESS parametercc.cco.e...
Initial values for variables
Input directory for datafiles.........ccooevevvrernrnnns
Input file

shown in aView Windowc.ccoeceeneecnenene 62
Input filenames, for DOS SOIVESS........cccovevreeneenne 134
Insert File dialog boXccccveveevieieerecsereseieenins 42
Insert fileinto the editorcccovveveiinneccrene a2
Installing MPL

making backup COPIES.........ccovervverieereice e 10

Mplwin directory

no solvers available...........cccoveeiinninicnnnnnes 236

SELUP SOIVENS. ..ot seeneees 236

Windows directory

Windows system directory
Integer functions

using in formulaterms..........coceovveeerereieseiennns 203
Integer indexes................ .155

WIthin @range.......cccevevveerieiereeisereseseeseeeeee s 156
INTEGER keyword......... ..145, 148, 179, 193
Integer markers, MPSfiles..
Integer variables..............

definein MPSile......cooiiiieiccecce

Integrality tolerance, CPLEX parameter
Integrated Environment

MaIN WINAOW ... 19
Integrated environment OptionS...........ccvevereeierieernens 75
Interactive data.

INTERSECTION keyword
Inventory balance constraints, MPL Tutorid .. 270, 271

Inventory variables, MPL Tutorial........ccccccuvveeeenne 270
IS KEYWOId.....coveereieeeieieesiee e 179
Iteration limit for barrier, CPLEX parameter.......... 110
Iteration limit, CPLEX parameter.........c..ccoevvrvenrnne 95
K
Keywords
Actvity ..180, 189, 225, 227
ALL o 180, 189
AND Lo 161
BECOMES 166

MPL Modeling System

DECISION VARIABLES..........ccooueununne. 147,178
DENSE ...t 171
ELSE.....ciiiiiiii e 202
END............ 145, 148
EXCELLIST .o 174,181, 189
EXCELRANGE.... 165, 174, 181, 189
EXCELSPARSE ... 174,181, 189

(@01 (@0 | 180, 225
ObjectLower ..
[©]0]='w: (8] o] o= G 180, 225

....173, 180, 189
.145, 148, 185

L

LAST keyword203
Lessthan constraintccccvverveunenee. .186
Level and frequency, XPRESS parameter .. 127
Licensing information for MPL............... .. 139

354

Lifted cover inequalities, XPRESS parameter 127
Limit Options for CPLEX dialog boX...........cccevrunne 95
Limit Options for XPRESS dialog box................... 120
Linear
1001070 (C IR 1Y 1= RS 153
Linear models, model type........cccveievervrerereniennnnns 78
List of open windows.......... ...135
Load model fileinto editor...........c.coveirirnieeccnenene 38
MPL TULOTT@. .. 235
Location indexes, MPL Tutoria..........cccoeeenenene. 284
Log file
CPLEX parameterccoevevvereneneneneeneenieseenees
send iteration log to.
XPRESS parameterccccceveverenenne
Log File Options for CPLEX dialog box
Log File Options for XPRESS dialog box ...
Log filename, general solver option
LOG fUNCHON.....vviieieicsieie e
LOGLO fUNCHON. ..ot
Logical preprocessing, XPRESS parameter.
Lower bounds defining in MPLcccoceevveiennne.
Lower cutoff, CPLEX parameter...........ccccevvrvennene
LP Iteration Limit, XPRESS parameter
LPiteration log
CPLEX parameterccoovevveveneneneeeeneenieseenees
XPRESS parameter
M
MaCIO SECHION ... 145, 183
Macros
NBIMIE ...t 183
referring to macrosin formulas............cccceeeee 206
semicolon
shown in Model Definitions window............. 30, 69
MACROS keyword.. 145, 147, 183, 206
MaIN MENU ..ot 36
Main Window in MPL ... 19
Markowitz tolerance
CPLEX Parameterccooeevvereneneneeeeseesreneeees
XPRESS parameter
Matrix fill limit, CPLEX parameter............cccceeenuene 91
MatriX Graphccoveeieiniieereee e 71
coloring of72
spreadsheet view . .72
ZOOMING c.tveneeieieiesieeeie et see s 72
matrix MuUltiplication...........ccceveveeeereienens ..215
Max correction limit, CPLEX parameter.. ..110
Max cuts, XPRESS parameter 127
MAX KEYWOId........covrereeeiinieieieererieens 145, 148, 184
Max nonzero coeffs, XPRESS parameter................ 127
Max subscript length...........cccccveinenene. 157, 165, 166
NaMe geNEration.........ccueeeerueneeereeienieseeenas 79, 153
Max variable length, name generation.............. 79, 153
MAXIMIZE keywordccccoeenee184
Maximum problem size for MPL.. .. 139
Memory USage.......cccevvearereennenns ... 144
shown in Status Windowccceeerencereeneneene 26
Menus

Message line, in the status window .

MESSAGE WINAOWoovevevineererienisie e esaeeseenenes 70
change options for-..... 31, 70, 76
database CONNECLION........ccvrerveveeirieieicereas 31,70
EITON MESSAGES....eveveniereeneereentesaestesnesseeseneas 31,70
MPL iNPUE lINES......coveviveiricieevieeeeveeesienens 31,70
Options didlog bOXccvevevereeirieiriiee e 76
performance statistics...
send iteration 10g t0.....oveveereeireereee e
solver iteration 10g......cceeveereereseresenieeseeees
SQL statements................

Status Window mMeSSagEScccervrervevreerenes 31,70
Warning MesSagesScoveereerenens 31,70

Message window, CPLEX parameter..

MIN keyword

Min SOS size, CPLEX parameter

MINIMIZE KEYWOId........covevrreeeieeerinieeseeeneeseenes

Minor mistakes in the formulation .
MIP bound strengthening, CPLEX parameter 91
MIP Cuts Options for CPLEX diaog box
MIP Cuts Options for XPRESS dialog box .
MIP nodefile, CPLEX parametercccovvvevrunnnns
MIP node log
CPLEX parametercocovvevereeieeneenienesiesesnennes
XPRESS parameter .
MIP priority order, CPLEX parameter 100
MIP probe, CPLEX parametercooevvevrieerennnnes 99
MIP solutions limit
CPLEX Parametercocovvevieeeieenenienesiesennennes
XPRESS parametercccvvveeveneneneneneeens
MIP Strategy Options for CPLEX dialog box...........
MIP Strategy Options for XPRESS dialog box
MIP Strategy2 Options for CPLEX dialog box.......
MIP strong branching limits, CPLEX parameter 97
MIP Tolerance Options for CPLEX dialog box 106
MIR cuts, CPLEX parameterccccevevrererieeinens 104
Mistake in model, COrrecting........ccoeveereeesieereennnes 27
Model
check syntax of the modéccceevreenenee. 57, 249
solvethe modelccceeevvvecinniccee 58, 237
Model definitions windowcccccveecnenenes 28, 66
change optionNS for.......c.coveereeieeercee e 76
constraints branch described.... 31, 69
data branch described.........c.coceevinnccnnne 29, 67
index branch described...........c.cocvvueinininieicne 29, 67
macros branch described..........c.coeeiiinneine 30, 69
MPL TUEOME ..o 239
set environment OptioNS.........ccvoeevrerveereenenns 28, 66

355

variables branch described............c.cccocceenee. 30, 68
Model editor
clipboard operationS.........cceeeveeerererenieeseeseneenes 46
close modd file.............. .39
copy text to the clipboard .. .46
create anew model file...... .37
cut text to the clipboard...... .46
delete text in the model filec.ccveviniccnenne 46
gotolineinthe modec.cccoecvveervncievieeeene
insert file into the editor .
open Model fil.....ccveveieveireceeereee
paste text from the clipboardccoceevveveennnnne 46
printfile...ccoeoveerieieenne .43
replace text in the model. .49
save model file.............. .40
save selected text to afile.. 41
search for text in the model .48
UNAO ChaNGES......euveveeeeeeieeeeiee e 45
Model file option settings
Access database file ..o 153
check sparse data for duplicate entries............... 152
datafilesinput directory.........cccceeevveevniereennnes 152
data files output directory 152
default database................. ..153
directory for databasefiles..... ..153
Excel skip over empty option .. 154
Excel workbook file...............154
Excel worksheet name...........covevvrecennericncns 154
max Subscript 1engthccoceeeevveeieereeceeine 153
max variable length
name generation OptioNnS..........ccveeveereerererernens 153
Name MOAE! tYPE.....ovvevrveereeereeeee e 153
ODBC data source153
PASSWOITcveveeveierererieereeees .. 154
plain variables must be defined 152
USEIMAIME. ...t 154
Model formulation
Tutorial Session 2, Bakery2.mpl........ccccoeevveunnnne
Tutoria Session 3, Planning3.mplcccveueeee.
Tutoria Session 4, Planning4.mpl ...
Tutoria Session 5, Planning5.mplcccveueeee.
Tutoria Session 6, Planning6.mplccccc......
Tutoria Session 7, Planning7.mplcccceue.e.
Model info

in solution file
MODEL keyword
Model part
inthe MPL MOdEl.......ccccevvvereireieereeseerne
OVEIVIBW.c...vevieeieiesieeeieseee st es e seenesseseenenees
Model Statistics dialog box .
CONSEFAINE COUNE....vvvineerieeeeeeereeeesiees e seeeeee s
density of the MatriX.....c.oceeveieveeivrererircereereeeenes
element count..................
nonzero count of the matrix... .
objective coefficients......... .65
parsingtime............. .65
RHS count........... .
M element COUNE........c.ccevueereereiee e ee e 65
Variable CoUNt.......cccceeririeircee s 65
Model type

MPL Modeling System

JINEAN .. 153
linear MOdels........couvveviininiccrcccce 78
nonlinear 152, 153
nonlinear MOdElS..........ccovieerirnieiieeceree 78
quadratic MOUEIS......ccvvvereereeireeree e 78
[o1UE= s | - ([.. 153
Model1.mpl, tutorial model session 1. ..235
Modeling environmMeNt..........cceeveceveeeeeresenererenenes 19
Models with sparse data
MPL TULOTT@ ... 309
MPL
About MPL didog boX.......coeervrvnieineineene
copyright information...
environment

help system

licensing information.

MEIN MENU ..ottt

maximum problem SiZe.........ccoeeveiereeieneierennns 139

release number

serid NUMDBEr ...
MPL environment, using the..........cccceeevvrivneiernnnnns 12
MPL Error Message Dialog BOX..........cccvvvenene 57, 249
MPL input lines

environment options dialog boX..........ccceeeveeeneene. 76

send to Message Window........... 31, 70, 76

MPL Language Options dialog boX.........cccceveevrvennne 7
€ase SeNSItiVe.cvvrerreecenene .77
datafiles................ .79
Default Model Type.. .78
logtofile....cceerruenene .78
log to message window .78
max subscript length79
name generation options.......... .79
plain variables must be defined77

MPL quitting, Save Question dialog box.................. 44

MPL running
From ShOMCUL. ... 16

Mplwin directory
INSLAllING T0...c.veeieeveccc e 10
MPS file generated, general solver option................ 86
MPSfiles
gENErate OPLiONS ...vevveveeeeeeee e seenas 84
iNteger Markers........ccooeveeveeievereieseee e 85
integer variables..........oovecveeieveneese e 85

options for generate...
Ul bound entries....

MPS names
useinthe solution fileccccevveeeieveensierieisienns 82
MS Access, caling MPL from........cccovevveivneceieennns 17
Multi-dimensional indexes.... .29, 67, 162
WHERE condition ON.........ccoeervrerieereeenenenns 162

356

Multiple plants, MPL Tutorid.........cccccevrvevreeenene 283
Multiple time periods, MPL Tutorial

Multiplication of formulaterms. .200
multiplication of MatriXes........ccovvvvvvrereriireennns 215
N
Name generation
indexed NAMES........ccccovrrierieieeessseee 79, 153
max subscript 1engthc.ccceoveinenncnne 79, 153
max variable length.... .. 79,153
numeric names........ .. 79,153
prefixed numeric names. .. 79,153
Name of the problem ... 147
Named indexes..... .29, 67, 155, 157
NAMED KeyWord...........ccccovreiiinnieiineeeenes 157
NBMES ... 149
abbreviating... , 166
EIMPLY oot 149
of constraints. .185
of macros................ .183
of objective function .184
of variables........ccoovveiviiiecc e 178
of Vector CoNStraints..........oocceevvveeerceiseeenenes 187
using underscore
Native input file generated, general solver option..... 86
Network extraction, CPLEX parameter
Network Options for CPLEX dialog box.
Network pricing, CPLEX parameterc.ccco......
New Concepts
aliasiNdeXes.......covvrveicicc 296
balance constraints...........ccceieciinncicicine, 297
data CoNSEANtS........covvereriiirecrrerc e 257
datafiles
data, variable, constraint vectors.............cccc....... 256
equUipPMENt INAEXES.......cvereeeerieerieieeree e
external datafiles....
IN OPEIELON ...
INAEX fIlES.....cuiiiicic e
indexes as domains............
inventory balance constraints. 271
PENiOAS INAEXES......c.oveeiieiiiiee e 270
plant balance constraints. .297
plant indeXc.cccverieennn. .284
sales and inventory variables. .270
transportation models........ .296
transshipment models............ .296
using summations over vectors. .257
where conditions................... .296
New model file, creating..........c.cccove.. 37
Nodefile sizelimit, CPLEX parameter 96
Node limit
CPLEX Parameterccccveeverinrereneeeeneesreneeenes 96
XPRESS parametercccovnereneeneeneeneniennes 121
Node selection
CPLEX Parametercceovevverenereneeeeneesreseeenes
XPRESS parameter
Nodeset selection, XPRESS parameter 124
Nonlinear

iNitial VAUES......ccooveeieieiceeese e 179
model type.......coeevveevrenne 152, 153
Nonlinear models, model type.. .78
NONIINEAr SOIVENS.......cveeiieiirieiee e 26

Nonzero count of the matrix

shown in Model Statistics dialog box ...
Nonzero values only, in the solution file ...
NOT KEYWOIT.....cocevveriieiieierieeseseeesaeeseeeeeeseenas
NUMDBES ...
Number width, setting for solution file...
NUMENiCINAEXES......cuvierreieiririeiceiieiine
Numeric names, name generation....................
Numeric tolerances, CPLEX parameter
Numerical tolerance, XPRESS parameter

O

Object value lower limit, CPLEX parameter .
Object value upper limit, CPLEX parameter ...

ObjectCoeff Keyword...........ccoeueververirenrirenens 180, 225
Objective difference, CPLEX parameter 107
Objective functionc.ccoeeeeererenenene ... 145
formulastermsin ... 200
graph of the......ccoviiii e 73
name of the
using constant ValuES iN.........ccveeererereneienienenes 184
Objective function coefficients
inthe solution file..........cccoooeeiinniiciiiiccie 83
shown in the Model Statistics dialog box............. 65
Objective range, CPLEX parametercccveenne 110
Objective ranges
insolution file ..o 83
shown in aView Windowcccoeveennnicnnnne 64
ObjectLower keyword
ObjectUpper keyword
ODBC data source
database OptioN.........cccveerereeineereee e 80
model file Optionccvvireeneireeeeee 153
Offset value for SUDSCHiptS.......coovevineneriniecics 199
ON-liNENEIP. .. 24
Open an existing project file. .52
Open File dialog box............. .38
from the toolbar.. .38
Open modé file... ... 38
MPL Tutorid235
Open Project dialog bOX.........cccereierereienenenesieene 52

from thetoolbar..........ccovviiciinenns .52
Optimality tolerance, CPLEX parameter 90
Option settingS iIN MPLooooiiiinecccee 152
Options dialog box

MESSAGE WINAOW......cveneieeeninieseeiesie e 76
OPLIONS MENU ..ottt 74

CPLEX barrier options.........coceeeereierererienieens 108

CPLEX limit options....
CPLEX log file options

CPLEX MIP Cuts options........ccccoeveeervererenienens 103
CPLEX MIP strategy options..

CPLEX MIP Strategy2 options..........cccceeeeruenens 101
CPLEX MIP tolerance options...........c.ccoeeenuenene 106

357

CPLEX network options..........ccveveevveeeserenennes 111
CPLEX preprocessing options.. ..90

CPLEX simplex options.
database options.........
environment options...
generate file options....

MPL language options.... 77
setup options for SOIVErS........ccovvveeveeeeserennnnes 133
setup solvers for the Run menuccccceeeveenennee 132
solution file options
SOIVEr MENU SELUP.evveveeeereiereeieseeeseee e seene e s
SOIVEr OPtONS ISt vvveeveveeeceeecee e

solver parameter options. .
XPRESS barrier options..........cccceveevveererereniennns
XPRESS limit Options.......cccccovvvrieeveeenerenenns
XPRESS log file options ...
XPRESS MIP cuts options
XPRESS MIP strategy options..........cccceeerveennes
XPRESS preprocessing options
XPRESS simplex Options.........ccceevveereeereeennns
XPRESS Tolerance options...........ccveeveereeenns
Options Menu

Ordering algorithm, X PRESS parameter.
Ordering, CPLEX parameter................

Output directory for datafiles
Output file generated, genera solver option

Output file, shownin aView window........
Output filenames, for DOS solvers......
OVER Keywordcccovvvevreenenene .
OVER operator, defining set SUbsets..........c.ccoveene
P
Paradox, calling MPL from.........cccooeveviniinieneenne
Parent index of multi-dimensional index.
Parentheses........coveveireierie e
NESLEL. ...t
Parse model into MemOryc.cccceeveeererenenieieniens
Parsing time
shown in Model Statistics dialog box 65
Part. pricing cand. list sizing, XPRESS parameter . 120
Pass dual problem, CPLEX parametercccc..... 92
Password, model file option................. .154
Paste text from the clipboard.. ...46
from thetoolbar..........cc.c...... ...46
Pause after solve for DOS solvers. .134
Percentage, entering in MPL moddccccccoee.. 196
Performance statistics
send to Message Window...........c.ccceeunee. 31, 70, 76
Period indexes, MPL Tutorialcccccceeeerieennnne. 270
Perturbation
CPLEX Parameterccoceevvereinereneeeeneesreneenens 89
XPRESS parametercccooeeerineeieeneseneennes 114
Perturbation constant, CPLEX parameter................. 89
Perturbation limit, CPLEX parameter
PlUNCHON ...
PIF filenames, for DOS SOIVEXS........cccccerveereceneenee

MPL Modeling System

Plain constraints, defining in MPL..........c.ccccveeee.. 185
Plain variables must be defined
MPL language optioncceeeveeerievrienens

Planning3.mpl, tutorial model file
Planning3.sol, tutorial solution file..
Planning4.mpl, tutorial model file...
Planning4.sol, tutorial solution file..
Planning5.mpl, tutorial model file
Planning6.mpl, tutorial model file
Planning7.mpl, tutorial model file

POWER fUNCEON.....c.ciiiieiiiriiciecseeenee s
Prefixed numeric names, name generation....... 79, 153
Preprocessing Options for CPLEX dialog box 20
Preprocessing Options for XPRESS dialog box 116
Presolve

CPLEX parameterccocveereeeereenenieseseeeenens

XPRESS parameter .
Presolve relaxed LP, CPLEX parameter................... 92
Pricing candidate list size, CPLEX parameter 95
Pricing dual, CPLEX parameter
Pricing primal, CPLEX parameterccccoevvvrnns 88
Pricing, XPRESS parameterccceevrererereenes 114
Print File dialog box.............. .. 43

from toolbar43
Print model file........ccooviieiinriieceees 43
Probing

CPLEX parameterccocoveveeeereenenieseseeeenens 99

XPRESS parameterccvvveerenenenesesnenens 117
Problem Description

Multi-Period Production Planningcc...... 272

Planning Model with Multiple Machines........... 313

Prod. Planning with Multiple Plants................... 285

Product-Mix Modél............cccounneee. . 258

Shipments Between Plants..

Tutorial Session 2...........c.... .245
Problem title.........cccovvvnccnnene . 147
Product-mix model, MPL Tutorialc.coeueunee. 245
Project files

Change Propertiescvvevveveesereneeeree e 55

close project file

create anew project file.......ocovvvevvvvreievcienenenne, 52

0pEN ProjeCt file ..vvverireereercceece e 52

save project file................ .54

save under different name .54
Project menu........ccccveveevveeveienenne. .51

change properties for a project .55

close project file.....ccocovvervruenene ...53

create anew project file.....c.oovvvervivrcivcivneneenn, 52

0pEN ProjeCt file ..vvveireereereeiee e 52

save project file
Project New diadlog BOX........ccovverereevsenisineisinins
Project Open dialog boX.......cccevveeveeveeresenieininnes

from the toolbar................
Project Properties dialog box
Project Save

from the toolbar........c.covvveveinniccee

under different name
Project Save Asdialog boXccccvveeveerenerieiiinins 54
Projects to manage models.........ccveveereeeneieninnnnns 32

Properties for a project

358

dialog box described..........cccoevveivreiiiineiereene
Pseudo cost, XPRESS parametercccveveenne
Pull-down menusin MPL, overview ...

full description of each menuitem...........ccccc.....

Q

Quadratic models, model type........c.ccoveereiererenennns 78
Quadrratic

Quicksort datafiles, for sparse data option..
Quicksort for sparse data, datafilescccooeveeueneee
QUIEMPL .ottt

R

RANDOM fUNCLONcviiieieieereeecceeeeeee 197
Range, for numMeric indexX........ccocovvvereeenerereseneene 156
Ranges

compute............

in the solution file.
Ranges objective

iNSOIUtION file ..o 83

shown in aView Windowc.cccoeernecenenenn 64
Ranges RHS

iNSOIUtION file ..o 83

shown in aView Windowc..cccceoeneeenenenn 64
Reduced cost

iNSOIUtION file ..o

shown in a View window
Reduced cost fixing

CPLEX parameterccooevereneneneenieneenieneens 101

XPRESS parameter .
ReducedCost keyword
Refactorization, CPLEX parameter ...
REFILL KEYWOrdcveovvveieiereeieeesesieennns 225, 227
Relational Operators..........ocvvvevveerveereeienieieseeneeeens 326
Relative gap

CPLEX parameterccooevereneneeieenienienieneens 107

XPRESS parameterccccovvnennne
Relative object diff, CPLEX parameter ...
Relaxed LP presolve, CPLEX parameter..
Release number for MPLccccovvveuenene
Replace text in the model
Reserved charaCters...........ooveerniicininneecneenes 326
RHS count

shown in Model Statistics dialog box 65
RHS ranges

iNSOIUtION file ..o

shown in a View window
RHS values

iNSOIUtION file ...
RhsLower keyword..
RhsUpper keyword..
RhsValue keyword...........ccceoereecvnererinnieinnnnns
Rim element count

shown in Model Statistics dialog box 65
Rounding heuristic frequency, CPLEX parameter.. 102

Rounding heuristic, CPLEX parameter 102

Row multiplier factor for cuts, CPLEX parameter.. 105

RUN ChecK SYNtaXcccevvrveerieirereeesesesesieesseenes 57
from the toolbar.. .57
MPL Tutorid249

Runmenu........ccooeevvenncnnne ...56
check syntax of the modd57
clear current model from memorycccceeneeee. 60
generate inPUL file......ccoeeveereeereireee e
generate solution file .
parse model iNt0 MEMOIYccvvvveereeeeereeerienens 59
SELUP SOIVErSFOr v 58
solve current model ...59
solve the model58
solver setup.... .133

Run Solve........... ...58
from the toolbar..........covvvveiirneccce 58

Running MPL
From ShOMCUL. ...
from Start menu.
MPL TULOTT@ ...
OVEIVIEW ..ottt

S

Salesvariables, MPL Tutorialcccccoeeneeencennns 270

Sample tutorial model
Session 1, Model1.mpl......cceoeveeineninineereee
Session 2, Bakery2.mpl.... .

Session 3, Planning3.mpl
Session 4, Planning4.mpl
Session 5, Planning5.mpl
Session 6, Planning6.mpl
Session 7, Planning7.mpl
Save As Filedialog box
from the toolbar................

Save As Project dialog box ...
Save modé file........ccoeevnee.
from the toolbar ..
Save project file
from the toolbar...........coeoeveierinceeeeee 54
under different name..........cccveeeneincincneee 54
Save Question dialog box
close mode file......cooeveiiniriieeeee 39
quitting MPL............. .. 44
Save selected text to afile..... .41
Save Selection dialog box41
Scalability of MPL144
Scalar values....... .. 168
Scaling
CPLEX Parametercccoeeveeeeeieenenieneseseeeenns 88
XPRESS parameterccoveeevveneneneneeeeens 115
Scan for SOS, CPLEX parameterccoceeeveeenne 102
Scientific notation...........ccceveenne .149
Search and Replace dialog box ...49
from thetoolbar..........ccccooeveeuennne ... 49
Search and replace text in the model ... 49
Search Find dialog box 48
from the toolbar..... 48

359

Search for textinthemodelccccoeveievecnceiennne 48
SEACh MENU ... 47
find text in the model . .48
goto linein the moddl50
replace text inthemodel.........cccocvveivveevcieneeennne 49
Semicolons
INDOUNGS......ooiieiee e
N CONSLTAINES.....vcvviveeeeeieeeseee e
INMACTOS....cuvevireeeeie e eee e nnens

in objective function...

INVariables. ..o
SEMICONT keyword.....
Semi-continuous variables............ccoveeienriiins 192
Send iteration log to

CPLEX parameterccocvevvereneneneeeeneenieseenens

general solver option ..

XPRESS parametercccccovvneveneeneeneenieneennes
Sensitivity analysis, general solver option................ 86
Seria number for MPL ..o 139
Session 1, MPL Tutoria

Running MPL on a Sample Modd 233
Session 2, MPL Tutoria

Formulating a Simple Product-Mix Moddl 243
Session 3, MPL Tutoria

Introducing Vectors and Indexes...........cccccvuee. 255
Session 4, MPL Tutoria

Multiple Time Periods........c.cccoeerveeneieseenennenes 269
Session 5, MPL Tutoria

Multiple PlantS.......cccoovvereievecceseeeeeseeeeens 283
Session 6, MPL Tutoria

Shipments Between Plants...........cccveeveeereennnns 295
Session 7, MPL Tutoria

Models with Sparse Data.........ccccevvevrreereeeneenes
Set domain index with the Dot operator ...

Set membership with the IN operator.....................
Set operations

defining SELS USING......coovvveeeeiriee e 161

AIffEreNCe. ...

intersection...

IO .ttt

UNIOM 1ttt
Set subsets with the OVER operator . .. 213
Sets, in MPL models..........cccoo... ... 162
SEtUP SOIVENS......cvieeeicieseecse e 133
Shadow prices

iNSOIUtION file ..o 83

shown in aView Windowc.cccoeerneccnenenn. 64
ShadowPrice keyword.........c.ccovveviinns 189, 226, 227
Shipments between plants

MPL TULOTT@. ... 295
Short filenames in window titles

eNVIronNMENt OPLIONovvvveveereeeeeeseee e 75
Shortcut for MPL ..o 16
Show element count, in model definitions window

eNVIronNMENt OPLIONcvvvvereereeeeeee e 76
SIGN function
SIMPIE CONSITAINES......cvevveerereireeiee e sie s 185
SIMPIEEIM ... 200
Simplex Options for CPLEX dialog box 87

MPL Modeling System

Simplex Options for XPRESS dialog box 113
SIN fUNCHION ..
Single column, generate MPS option ..
Single constraints..........cceeevveeeeene
Single line comments.....
Single quotes, in names..................
Singularity limit, CPLEX parameter
SINH fUNCHON ...
Size Of MOEIS ...t
Skip over empty, Excel model file option...
Slack KeyWordccooveveieiveieeseeeseesens
Slack values

iNSOIUtION file ..o 83

shown in aView Windowcccoeeenrereenencne 64
Solution file

NONZEro ValUES ONlYcovvevevereseeieiereeeeie e

shown in aView window .
Zerovalues aS dotcevveveiereeiee e

generate solution file.

nonzero values only.... .

NUMBEr Width ..o

solution file CONtENtScccevvevrerereree e

solution filename .

USE MPS NAMES.......coiiieriisieniieeee s

Zerovalues aS dotcvvvveveeeeieece e
Solution info

INSOIULION fIl€ ..uveveeeiceeec e
Solution mapping file, genera solver option
SOLUTIONFILE keyword.........cccccevrervrennns
Solve current Modelcooveeveeveneieseece e 59
Solve the model

fromthe RUNmenuccoeevveveeerieciinns 58, 237

from the toolbar..........ccoeeeveeererccereceeeses 58
Solver info

INSOIULION fIl€ ... 83
Solver iteration log

send to Message Window..........cccccveunene 31, 70, 76
Solver menu setupccceveneee.
Solver Menu Setup dialog box .
Solver Options List dialog box..... .
Solver Setup Options dialog bOX........cccccevvvevruennns 133
Solvers

select for the Run menu

360

SOSVAEDIES ... 193
Space character, in MPL models........c.ccooveevrieennns 150
Sparse datafiles........ccovvvrveennnne

export constraint values to.

export variable values to.........ccccceeeevccceniennns
Sparse datain models

MPL TUEOMEL ... 309
Sparse data VECION'Scceuvveereeieeseeeseseenenens 30, 171
Sparse Index and DataHandling...........ccccevrvennnnne 144
SPARSE keyword
SPARSEFILE keyword..........cccuoevrennns 173, 180, 189
Speed of model generation...........cccveeveereeierierennens 144
Spreadsheet

Excel workshook file optionccceeevveereene 154
Spreadsheet view of matrix

INVIEW WINAOWocviniiiiciiiccereecees 72
SQL statements

send to Message Window..........c..cceueunee. 31, 70, 76
SQR FUNCHON......coiveiieieveeieeeree e
SQRT function
Start algorithm, CPLEX parameterccoevrnene 102
St MPL .o e 16

MPL TULOF@.234

Starting point algorithm, CPLEX parameter

Status Bar, describedccccvviiinniecinene 23
SEAEUS WINAOW. ...t 58
progress while solving models............... 26, 58, 237
send messages to Message Window 31, 70, 76
Step-by-Step description
Tutoria Session 1, Model1l.mpl......c.ccccveervennneee

Tutorial Session 2, Bakery2.mpl........ccccceevveuennen
Tutorial Session 3, Planning3.mpl
Tutoria Session 4, Planning4.mpl ...
Tutoria Session 5, Planning5.mpl ...
Tutoria Session 6, Planning6.mpl ...
Tutoria Session 7, Planning7.mpl ...
Structure of the MPL modél file........
Structured bounds...........occerrieinnee

USING iN CONSEFAINTS.....cvvveveeeeieeeveeeeieseeesieesnns
SUBJECT TO keyword ..
SUBFANGE.....c.eviieiireee et
Subranges of indexes in constraints188
Subscript arithmetiC........coveereriee e 214
Subscript length........... ...157, 165, 166
Subscripted CONSLraints.........ococveveevervsereeesiereneens 187
Subscripted variables..........ccovveveieieieneieins 155, 178
Subscripts

direct assignment of

FIXE. oo

Subset of an index
SUM KEYWOIdoveuveieeeieieesieiee st seeesaeennens
Summations

USING IN MPL ..o
Supported solvers for MPL .
Syntax check the modelcceeevvereinverisereees

MPL TULOTT@. ..o
System info

INSOIULION fIl€...veveeercecc e 83
System requirements, hardware..........c..cccveeereeevriennne 10
T
TAN function197
TANH function... .197
Termsinformulas...........cccecvevieeecienece v 200
Text editor

clipboard Operations..........ccoeeeeiereniserieieniesenes 46

close mode file .

copy text to the clipboardcccoceeeereiincnenne. 46

create anew model file........cccovevevenievcieeieiens 37

cut text to the clipboard........ ... 46

delete text in the modd file. ... 46

goto linein themoddl50

insert file into the editor42

open model file........c.coeene .38

paste text from the clipboard 46

printfile....ccooiniiiee. .. 43

replace text in the model.... ... 49

save MOdE! file.....cucvveievieeirceceee e 40

save selected text to afile........cccveveeeicceciciens 41

search for text in the model 48

undo changes..........cccceveeee. .45
Textfile............ .144
THEN keyword... .202
TIlEWINAOWS ..o 135
Time elapsed

shown in Status Window............ccceceeeveneeeenienns
Timelimit, CPLEX parameter
Timelimit, XPRESS parameterccccooeveernenene 120
TITLE KEYWOIdocvinieiicicieieiee s 145, 147
Title of the model.........cccovveveiiiieieee s 147

Tolerance Options for XPRESS dialog box

Toolbar buttons... .22
Edit Copy 46
Edit Cut....... ... 46
Edit Paste.... ... 46
File Open.... .38
File Print..... 43
FIlE SAVE ...t 40
Project NOWccooeiiieiiriceeeenee e 52
Project Open .. .52
Project Save....... .54
Run Check Syntax. .57
Run Solve........... ...58
Search Find........ ... 48
Search Goto Line... ...50
Search Replace............. ...49
View Message Window.... .. 70
View Modé DEfinitions........cccceeeeevineiieeenens 66
View Solution File.........ccoovveieicieie e 62

Trace infeasibility, XPRESS parameter .
Transportation models, MPL Tutoridl
Tree memory limit, CPLEX parameter
Tutoria Concepts
alias iNdEXes........cooovvieciic 296
balance constraints....

361

data CoNStANES......cvvveereiereeese e 257
[0 e U 1113 311
data, variable, constraint vectors... .. 256

equipment iNdexes..........oovee.
external datafiles....
IN operator
index files............
indexes as domains...........cvovverveeeerereeeeeninnnienes
inventory balance constraints............ccoeeveveernene
inventory balance constraints.
PENOd INDEXES......ccveeeeiierisieiee e
plant balance constraints..........ccveevrereeerrerernns
plant indeXcccceeveeereenennns
sales and inventory variables.
transportation models........
transshipment models............
using summations over vectors.
Where conditionscoeeererreceiennncceneenes 296
Tutorial fOlder.......covveeeririciee e 235
Tutorial model file
Session 3, Planning3.mpl
Session 4, Planning4.mpl
Session 5, Planning5.mpl ..
Session 6, Planning6.mpl ..
Session 7, Planning7.mpl

SESSION L. 233
SESSION 2.ttt 243
Session 3 255
SESSION 5.t 283
SESSION B 295
SESSION 7ottt 309
)
Ul bound entries, MPSIlescccoevneirinieienne 85
Underscore, in names................ .. 149
Undo changes in the model editorccccoceveeneene 45
UNION keywordc.ccoeeennene. .. 161
Upper bounds........cccccvereeennnne. ... 191
Upper cutoff, CPLEX parameter...........c.ccoeveennene. 106
Use advance basis, general solver option.................. 85
Username, model file option
Using projects to manage models..........c.ccoreneienene 32
\
Variable count
shown in Model Statistics dialog box .. .65
shown in status windowc....... .27
Variable selection, CPLEX parameter...........cc...... 99

Variable upper, CPLEX parameter....
Variable values

INSOIULION FIl€ ... 83
shown inaView Windowcc.ccceeeeveeevenneenene 64
Variable vectors, MPL Tutorial..........cccoceevreereennns 256
VariableS. ..o 198

MPL Modeling System

semi-continuous....

shown in Model Definitions window .

WHERE condition on.............ccco.....
VARIABLES keyword ..
vector MUItiplicationccceevrerieeveeeeeeseeesenens 215
Vectors

(00101 (1| S 187, 257

multiplication in formulas...........ccceevevreiviennns 200
summations

Vectors and indexes
Y T T o -
View dense data vector elements.

display model definitionswindowc.......... 66
display model statistics

display ranges RHS..........ccooevvneieveree e
display slack/shadow prices.
display solution files............
display values/reduced cost .

View message window
from thetoolbar..........cccocuenee.

View Model Definitions windowcccvene. 28, 66
from the toolbar..........ccoeeeveeinerccereseeesee 66
MPL Tutoria

View named index elements..........ccccccvvevreennns

View Other File diadog boX.........ccocervvvrieiereirnenenne.

View solutionfile..................
from the toolbar..........ccoeevveevrievececseesee

View window
display inpUE file.......ccovveevrereeieese e
display output file..
display solution file........ccccevurvvreierceirenenne. 62, 238

Visual Basic, caling MPL from........ccceeeeveeveenenne. 17

w

Warning messages
send to message Windowccceeeeueeene 31, 70, 76

WHERE conditions..............
database connection.............
EXCEPT keyword used in...
on constraints...................
on formulaterms...

362

on multi-dimensional index Set..........ccccoeerveuennes 162
ONVANADIES....evveicee e 180
WHERE keyword................ ..166, 180, 202, 222

White space, in MPL models.

Window menue..... 135
arrange window icons. .. 135
cascade windows..... ... 135
close al WindOWS.........ccovveeirrieiineccene 135
list of OpeEN WINAOWS........cviviieierieieieieeeeine 135
tile windows

Windows application, calling MPL from.................. 17

Windows, close all.......ccovvveinnnccinncicsee 135

Windows, list Of OPENccvvveveeerieireeee e 135

X

XA Option Parameters dialog box..........cceeereeuennee 130

XA solver
change options..........ccveveeneineeeseeee 130

XPRESS parameters
ADSOIULE gaD ... 125
AIGOrItNM ... 128
Barrier cache limit........ccoveveieneneneneercenene 121
Barrier iteration limit.. ..121

121

Barrier memory limit......... .
..128

Barrier Options dialog box

Barrier progressinfo log.... ... 119
Barrier tolerance............. ...123
Cholesky factorisation.... ... 129
Crash method............. ... 114
Cross-over control 128
CUL STBEEGY ..ot 126
CUL-OFf e 127
Degradation estimate.. ... 125
Dense column removal 129
Estimate deg. mult.................... ... 125
Extra processors for paralel MIP. .. 121
GOMOrY CULS......cccvereiierieeieenins ... 127
Infeashility sets. ... 114
Initial solution 114

.. 127

Level and frequency

Lifted cover inequalities..........ccooeorereericnennene 127
Limit Options dialog bOX.........cccoerererieerieneniene 120
Log File Options dialog box 118

.. 117

Logical preprocessing........ .

LPiteration limit120
LPiteration log........ ... 119
Markowitz tolerance... .. 123

.. 127

Max cuts............... .

Max nonzero coeffs............... ... 127
MIP Cuts Options dialog box ... 126
MIP NOAE10G.....ceeueeeeriiiniereeeeie e 119
MIP solutions limit..........ccccceeevieeevieneie e 121
MIP Strategy Options dialog box.. ...124
Node limit......ccoeeeveeiiieienns ...121
Node selection..... .. 125

... 124
... 122
.. 129

Nodeset selection ...
Numerical tolerance
Ordering agorithm.....

Part. pricing cand. list SiZiNgc.ccoeevveervrerenne. 120 Trace infeasibility......cc.cvevvriereiiereinrece e 117
Perturbation...........cceovveeiirneeeseee 114 ZEX0 tOlEranCe........couvueuvirenieieirereeee e 123
Preprocessing Options dialog box... .116

PresolVecovoeereeeenennicieens .116

Pricing..... J114 7

Probing L1117

Pseudo Cost......... -125 Zero tolerance, XPRESS parameter

Rajucaj COSt FIXING.vevevereireeeienene e 117 Zero values as dot, in the solution file

Rela_t|ve [0 IS 125 Zooming

Scaling...... -115 Matrix graph WINdowco.eeeeereveeneeeersneenns 72
Send eration 10g 10 .vvvercevvvverssssvvvrense 118 objective function graph Window........................ 72
Simplex Options dialog bOXccceeveiereeivriennns 113

Tolerance Options dialog boXcceveereevrienene 122

363

