

SYST 101: Intro to Systems

Lecture 5

Feb. 3, 2004 C. Wells, SEOR Dept.

Syst 101 - Lec. 5

Spring 2004

Announcements

 You will be required to attend the final project presentations of SYST 490/495 time and location TBD

Agenda

- Topics for Today
 - Homework discussion
 - Assumptions and analysis

Homework Discussion

- Task consisted of 3 elements
 - Bend a paperclip (to redesign the GEM) and draw the resulting design
 - State the good and bad points of the design
 - State how you might test your claims

Homework Grading

- Indication that you bent a paperclip (if only in a thought experiment) as evidenced by a drawing 70 pts.
 - Would the design really work? 10 pts.
- Any honest discussion of the merits or weaknesses of the design 10 pts.
- Any plausible discussion of a possible test program
 10 pts.

Not Looking For:

- Not looking for:
 - Marketing brochure
 - Unsubstantiated claims
 - New clasping methods
 - Impossible (implausible) solutions
 - extra features beyond utility to hold papers
- K.I.S.S.
 - Know what the job is
 - Minimum acceptable job, shortest time, least cost

Use The SE Process!

- Evaluate
 - Understand the requirements
 - Read The Question
- <u>Conceive</u>
 - Assume a solution
- <u>Build</u>
 - Bend a paperclip (even if only mentally)
- <u>Use</u>
 - See if it works
 - Write up the project and turn it in
 - Good and bad points and a possible test procedure

Establishing Your Team

- You will need more communications and face time than you expected
- Grading criteria next time:
 - Robot performance
 - Oral presentation
 - Lab Notebooks
 - Peer evaluations

Review

- Systems Engineers are a mile wide and a foot deep
 - Breadth encompasses the way system engineering works across the whole system
 - Depth encompasses some understanding of the elements of a system
- Your courses provide "experience" to use
 - SEOR courses describe the things and how system engineers do them across a system (breadth)
 - Other courses provide understanding of the elements (depth)

Syst 101 - Lec. 5

Technical & Non-technical Areas

- Physics
- Chemistry
- Aerodynamics
- Materials
- Electrical / Electronics
- Information
- Dynamics
- etc.

- Customer needs and utility
- Customer perceptions
- Aesthetics
- Personnel issues
- Ergonomics
- Socio-economic issues
- etc.

Conceiving a Solution

- Assume a solution
 - Based on the requirements
 - Based on knowledge / previous experience
 - Study widely
- Analyze the assumed solution
 - Fix what does not work well enough
- Repeat as necessary

Assumptions in Analysis

- Always starts with simplifying assumptions.
 - Solve the easy problem first, then add complicating factors and issues
- Always keep in mind your assumptions
 - You not really solving the real problem, you're solving something similar (you hope)

Analysis Difficulties

- You can never be sure when you are done
 - Understanding what is important
 - Unanticipated failure mechanisms
 - Unrealistic assumptions
- Mind set when performing analysis
 - Keep an open mind
 - Second set of eyes on the problem

How to Analyze

- Actually build the system and test it
 - Costs a lot and can't test for all situations
 - Risks to life
 - One time events
- Build a model of the system and test the model.
 - Cheap(er), safer, repeatable under various situations, and usually simpler that the system
 - But are they adequate?
 - it depends

Modeling

- What do we mean when we say "model"?
- Models:
 - Plastic airplanes
 - Mental models
 - Simulations
 - Scale models
 - Test models

Model - Definition

- A model is a representation of some entity.
- The entity does not have to actually exist.
- The model itself does not have to have physical existence.

Modeling - Purpose

- We build models to
 - Describe the entities they represent
 - Learn about the entities they represent,
 - Learn how the entities interact
 - Have fun!
 - Others (too numerous to mention)

Forms of Models

- Mental models
 - how you conceive of something
 - how you perceive something
- Physical models
 - to describe
 - to predict or validate behavior
- Mathematical models
 - to understand behavior
- Others (too numerous to mention)

Examples

- Model airplane
- Sculpture
- Drawings (pictures, sketches, blueprints, etc.)
- Equations
- Ideas
- Plans?
- Functional Flow Block Diagrams?

Why Use Models

- Because the entity
 - does not have to exist
 - is too complicated to understand
 - is too costly to build unless it works
 - is too dangerous to use until we understand it

Models Are Scalable

- How detailed must a model be?
 It depends on the use
- What kind of model should be used?
 It depends on the use
- You can do a cost/benefit analysis of the information gained (benefit) versus the type/detail of the model (cost)

Model Verification

- Models may need to be validated if their accuracy is questionable
 - Too simplified
 - Design far from the existing practice
 - Design close to failure
- The design may require Qualification if the accuracy of the model is questionable

Assignments

- Reading
 - Petroski, To Engineer is Human
 - Chapter 4
 - Chapter 5
- Homework
 - Lego Mindstorm Tutorial
 - Install and run the software. Proceed through the tutorial. (completed by all team members by Thursday)

Homework (cont.)

- Consider the roads and parking lots of the GMU Fairfax campus as "the GMU Fairfax Traffic System".
 - One external element within the environment of the Traffic System (i.e., can affect and can be affected by) is listed below. List 4 more.
 - -- Local road & street network
 - One external element within the Context of the Traffic System (i.e., can affect the parking system but CANNOT be affected by it) is listed below. List 4 more.
 - -- the weather