

SYST 101: Intro to Systems

Lecture 28

April 29, 2004 C. Wells, SEOR Dept.

Syst 101 - Lec. 28

Spring 2004

Announcements

- FINAL EXAM
 - May 11
 - 1:30 4:15
 - Open book, open notes

Agenda

• Finish course review

Why Systems?

- The universe is too big and too complicated
 - Too much to do or understand
 - Divide and conquer
 - Artificial non-unique partitions
 - Every system is someone else's subsystem
 - It's the structure and interaction
- Combine and simplify for the system view
 - The big picture at the expense of detail
 - Relationships between parts is the focus

Events vs Systems

- So far, we've discussed systems
 Implied that they interact with each other
 - Implied that they do things themselves
- Brings us to how systems interconnect, and the topic of events
 - The structure and interaction

Events

- Events are things that happen in or to your system
- Events usually have relatively short time durations.
 - Functions, on the other hand, can take a long time to perform

Events vs Functions

- A common modeling technique:
 - Envision systems as responding to events by performing a function.
 - Events "trigger" functions
 - Biology: Stimulus-response

Internal vs External Events

 Systems are made up of sub-systems.
 – And often a system can be viewed as a sub-system to some larger system

Systems inside systems inside systems ...

Every system is somebody else's subsystem

George Mason University

Internal vs External Events

- A system can experience events that come from external systems, or can experience events that come from one of its internal systems
 - When you get hungry, your brain subsystem is responding to low-sugar signals from your endocrine system.

Events & Interfaces

- Systems relate to each other through their interfaces
 - Events are often "transmitted" through some sort of interface.
 - Interfaces are much easier to see in manmade systems
 - Sometimes not so easy to see in natural systems.
 - That's what makes medicine so hard...

Note!

- A System's interfaces will exist whether or not they are connected to anything!!
- A system's interfaces and what information they carry to and from the system are a key part of system design, and a key element in understanding natural systems.

Why Doesn't It Work?

- The model is wrong
- The model is not sufficiently accurate
- The entity doesn't match the model
- The entity is broken
- So what's wrong, the model or the entity? Or both?
- What to you do about it?

The Secret Ingredient

- There is a critical element in the evaluate block essential to explaining reality vs the model
 - **OBSERVE** the operation of the entity
 - Note the differences between reality and the model
 - Identify the (possible) cause of the differences
 - Formulate (guess) a "solution" that addresses the causes for the differences
 - Analyze the solution
 - Interpret the analysis to see if the solution is adequate

Syst 101 - Lec. 28

Quality of the Observation

- Sufficient detail to hypothesize what is causing the observed anomalous behavior
 - Why is it doing what it is doing
 - As usual, the needed quality of observation depends on the situation

Observe – Think - Do

- Think before you make changes
 - Do you have a rationale for what caused the difficulties? Really?
 - Does the "fix" address the cause?
 - Should the "fix" solve all the problems?
- Only then apply the fix
 Document the fix
- Observe and document the results

And the Answer --

- Depends on the situation
- You have to cultivate the ability to observe accurately and adapt
 - Critical element of intelligence
 - Difference between academic exercise and real world engineering
 - observation \rightarrow possible cause \rightarrow improved solution
 - 30 years of experience or 1 year experience 30 times

Software Can Be Tricky

 Validation and verification of software is problematic at best

- Impossible to test all conditions

- Failure modes are harder to identify
 - Failure sources can be computer hardware, logic, or coding
- Compilation and optimization can exacerbate the problem

A Basic Problem

- Knowing you're right
- Leads to
 - Dead ends
 - Being stuck
 - Conflict with others who know they're right too.

The Pencil Point Analysis

- All the steps were right, so why isn't the answer right?
 - An assumption was invalid, but was overlooked.
 - An inadvertent error exists but is repeatedly missed because the mind sees what it expects to see

Getting Unstuck

- Become an independent observer
 - Observe your system operating, without following your mental model
 - Watch what it does, and only what it does
 - Preconceptions about what is wrong can keep your attention away from the real difficulty

"Pride of Ownership"

- A phrase often heard in the real world.
- Meaning: "I built this, and if you criticize what I built, you're criticizing me, and I will take it personally."
- Effects: Criticisms dismissed as "stupid" or "ignorant". "They really don't understand what's going on if they can make comments like that".

"NIH" - Not Invented Here

- Translation: "If we didn't invent it, then it can't be any good".
- Allows a team to dismiss others' ideas and criticisms without truly considering them.

Utility of Lifecycles

- Had they been good systems engineers....
- Consider the full lifecycle of the system, from a variety of viewpoints
- Take the viewpoint of different participants in the system

"What Goes In, Must Come Out"

- In electrical engineering, it's known as Kirchoff's Current Law:
 - The sum of the flows entering a node must be equal to the sum of the flows exiting the node.

Project Phases

- Design Phase
 - Competitive Designs
 - Relatively Inexpensive
 - Relatively Little Opposition
 - Drives total costs
- Construction Phase
 - Must Have Only One Design
 - Expensive
 - Opposition Prior to Start

Syst 101 - Lec. 28

Construction/Maintenance Tradeoff

Another classic tradeoff

Components of Tradeoff Analyses

- At least two components, and a +/relationship between them
- In the previous example:
 - The higher we decide to pump, the shorter the tunnel needs to be
- Calculate (or look up) the cost functions of each

Optimization Procedure

- Sum the costs (as a function of the single independent variable, pumping height)
- Look for minima in the curve
 - inflection points • Slope = 0 ($\frac{d}{dx}f(x) = 0$) - endpoints

Tradeoff Optimization

Pumping	Tunnel						
Cost	Cost	Total Cost					
0	20000	20000					
5200	18000	23200					
5800	16000	21800					
6800	14000	20800					
8200	12000	20200					
10000	10000	20000					
12200	8000	20200					
14800	6000	20800					
17800	4000	21800					
21200	2000	23200					
25000	0	25000					

George Mason University

An N² Diagram

		ЧСh	ground		power		attitude				TT&C		comm.						
		orbital dynamics/launch	antennas & pointing	receivers	transmitters	command & control	networks	generation	storage	thermal control	determination	control	structures	propulsion	commanding	telemetry	antennas & pinting	receiver	transmitter
or	bital dynamics/lanch		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х			Х	Х	Х
ground	antennas & pointing	Х															Х	Х	Х
	receivers	Х															Х		Х
	transmitters	Х															Х	Х	
	command & control														Х	Х	Х	Х	Х
	networks	Х															Х	Х	Х
pwr.	generation	Х							Х	Х	Х	Х	Х		Х	Х		Х	Х
	storage							Х		Х		Х	Х		Х	Х	Х	Х	Х
	thermal control	Х						Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
att.	determination	Х						Х		Х		Х			Х	Х	Х	Х	Х
	control	Х						Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	structures	Х						Х	Х	Х		Х		Х	Х	Х	Х	Х	Х
	propulstion	Х								Х		Х	Х		Х	Х			
TTC	command					Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
	telemetry					Х		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х
÷	antennas & pointing	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х
comm.	receivers	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х
8	transmitters	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	

Syst 101 - Lec. 28

Readings

- The final will also cover the readings
- Petroski: "To Engineer Is Human" – Chapters 4, 5, 7, 8, 9, 15
- Petroski: "Invention By Design"
 - All chapters

Tips

- Simple answers
 - Necessary and sufficient
 - Same detail as viewgraph
 - Short and direct paragraphs
- Organize your notes and study
- Get some rest
- Good Luck
 - (if you depend on luck to pass)