Design of an Enhanced FOD Inspection System for the Aircraft Assembly Process

BEFORE

Manual Inspection

Reduce:

- Human Error
- Rework Hours
- Inspection Time

X-ray

Imaging

AFTER

Differential Imaging

By: Justin Amoyal, Roman Garber, Marwan Karama, Meba Kassahun & Anoosha Koohi LOCKHEED MARTIN

• Context

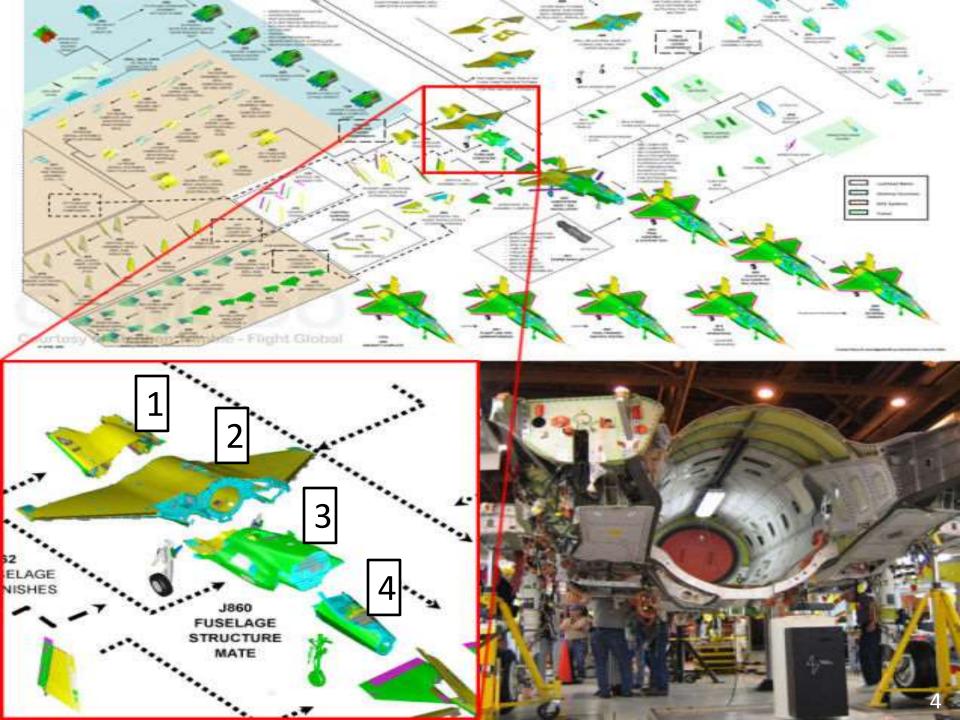
- FOD & FOD Inspection
- Aircraft Production
- Stakeholder Analysis
- Problem & Need
- System Requirements
- Operational Concept/Approach
- Method of Analysis
 - Stochastic Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions /Recommendations

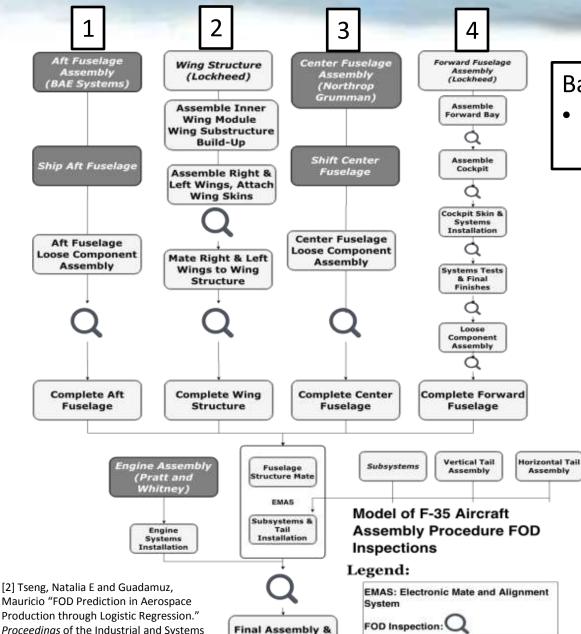
FOD Overview

- Foreign Object Debris (FOD): A substance, debris or article alien to the aircraft which would potentially cause damage.
 - According to Boeing, FOD costs the aerospace industry \$13 Billion/year [1]
 - Manual Inspection techniques used to combat FOD
 - According to sponsor at Lockheed Martin manual FOD inspections take 5-10% of each shift

[2]

• FOD Inspections occur at the end of each shift


Classification	Examples
Panstock (33.6%)	Washer, Bolt, Screw, Pin
Consumables (13.71%)	Rag, Cap, Bag, Bottle
Tools/Shop Aids (8.74%)	Wrench, Socket, Hammer
Trash (24.87%)	Plastic Wrap, Used Tape
Manufacturing Debris (19.09%)	Metal Shavings, Rivet Tails



[1] "FOD Prevention – What is FOD?", 2013. http://fodprevention.com/fod-information/. Accessed: September 7, 2015.

[2] Tseng, Natalia E and Guadamuz, Mauricio "FOD Prediction in Aerospace Production through Logistic Regression." *Proceedings* of the Industrial and Systems Engineering Research Conference, 2014.

F-35 Production

Systems Tests

Engineering Research Conference, 2014.

Balanced Assembly Line

- Work in Progress kept to a minimum
 - Limited to 50%
 Probability of Detection[2]
 - Total Rework & Repair Times (Hours)
 - Inspection Times
 - Number of Aircraft Produced
 - FOD Present Post Assembly

Historical FOD Data

Create Date	Occurences Per Day	Complete Date	Days to Complete	Initiating SWBS	Init Date	Estimated Complete Date	Labor Hours
10/9/97	1.00	10/10/97	1.00	228			0
10/9/97	1.00	10/9/97	0.00	229			0
10/9/97	1.00	10/9/97	0.00	229			0
10/9/97	1.00	10/26/97	17.00	232			0
10/10/97	1.00	10/13/97	3.00	230			0
10/12/97	1.00	10/12/97	0.00	229	8/4/14	3/28/15	0
10/12/97	1.00	10/12/97	0.00	229			0
10/13/97	1.00	10/15/97	2.00	229			41.7831823
10/13/97	1.00	10/13/97	0.00	229	8/5/14		0
10/13/97	1.00	10/14/97	1.00	231			0
10/13/97	1.00	10/13/97	0.00	233	8/5/14		0
10/13/97	1.00	10/28/97	15.00	279			0
10/14/97	1.00	10/15/97	1.00	228	8/6/14		0
10/14/97	1.00	10/14/97	0.00	229			0
10/14/97	1.00	1/22/98	100.00	229			0
10/14/97	1.00	1/22/98	100.00	229			0
10/14/97	1.00	10/15/97	1.00	229			0
10/14/97	1.00	10/20/97	6.00	279			0
10/15/97	1.00	10/15/97	0.00	211	8/7/14	4/4/15	0
10/15/97	1.00	10/15/97	0.00	211	8/7/14	4/4/15	0
10/15/97	1.00	10/30/97	15.00	226	8/7/14		0
10/15/97	1.00	10/30/97	15.00	226	8/7/14		0
10/15/97	1.00	12/2/97	48.00	228	8/7/14	1/31/15	223.367238

Case Study Parameters

		and the second se
Variable	Distribution & Random Number Generator	Distribution Graph
FOD Arrival Rate	Exponential Distribution ($\lambda = 0.0102$) $X = -\frac{\ln(1-R)}{0.0102} 0 \le R \le 1$	
FOD Rework Time	Exponential Distribution ($\lambda = 0.951$) $X = -\frac{\ln(1-R)}{0.951} 0 \le R \le 1$	
Inspection Time	Normal Distribution (MEAN, VAR) For Manual X = INVERSENORMAL(4.2,3.35) For FODXSYS X = INVERSENORMAL(0.42,0.0347)	
Station Process Times	Triangular Distribution (50,60,70) $T = 4 + \sqrt{R(8-4)(6-4)}$ $0 < R < 0.5$ $T = 8 - \sqrt{(1-R)(8-4)(8-6)}$ $0.5 \le R \le 1$	7

Stakeholder Analysis: Wins & Tensions

	Production Line Personnel	Aircraft Productio	on Corporation	
Production Line	High FOD Inspection hours	High Labor Costs	Labor Costs	
Personnel	High Rework & Repair Hours	High Rework & Repair Costs	Rework and Repair Costs	
	Many Inspectors Needed	High Labor Costs	Inspection Cost	Aircraft Production
	Experienced with Manual Inspections	Decreased Training Costs	Training Costs	Corporation
	Aircraft Customer	Aircraft Productio	on Corporation	
Aircraft Customer	Missed deadline due to FOD related Rework & Repair	Deadline extensions due to FOD related Rework & Repair	FOD Related Deadline Extensions	Win Tension
	FOD is contained at delivery	FOD present at customer delivery	FOD in Final Product	_
	Increased chance of FOD related pilot danger	Decreased Contract Value due to low reliability	Contract Value	GEORGE
				MASON

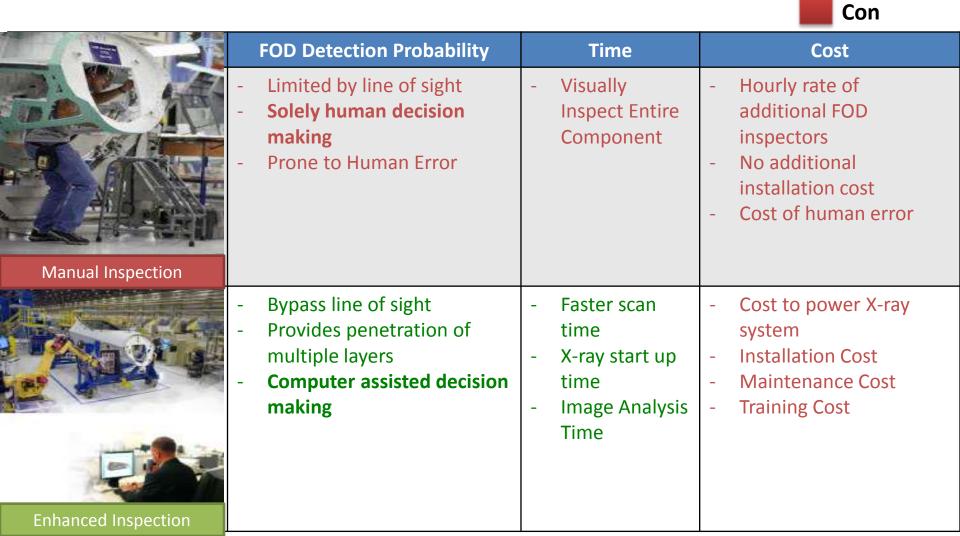
UNIVERSITY

Enhanced Inspection Need

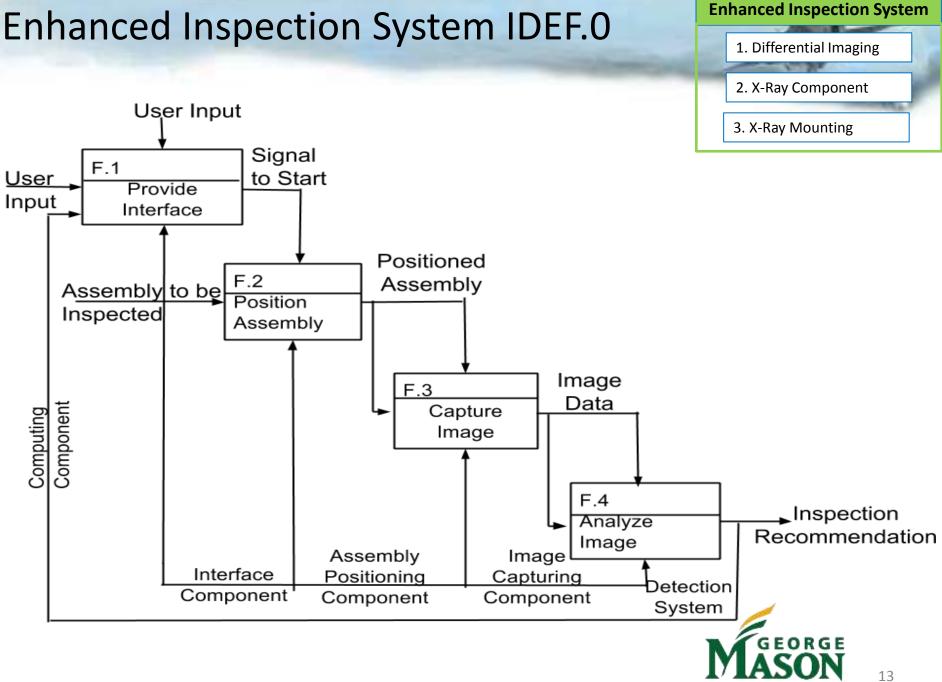
Objective	Increase/Decrease
Total Rework & Repair Hours	
Total Inspection Time	
FOD Present post Assembly	
Number of Aircraft Assembled	

Enhanced Inspection System Requirements

MR #	Requireme	Requirement Description							
MR.1.0		System shall have a 95% FOD detection rate in all portions of the Aircraft to support a production rate of 1 Aircraft/day.							
	MR.1.1	System shall incorporate multi-layer visibility, enabling 95% visibility within assembly components.							
	MR.1.2	System shall limit human error by implementing decision assistance.							
	MR.1.3	System shall reduce the Type II Error, by detecting 95% of FOD inputted prior to EMAS .							
MR.2.0	System sha	Il reduce FOD inspection times by 50% providing an ROI of 25%.							
	MR.2.1	System implementation shall reduce the number of inspections required per Aircraft by 50%.							

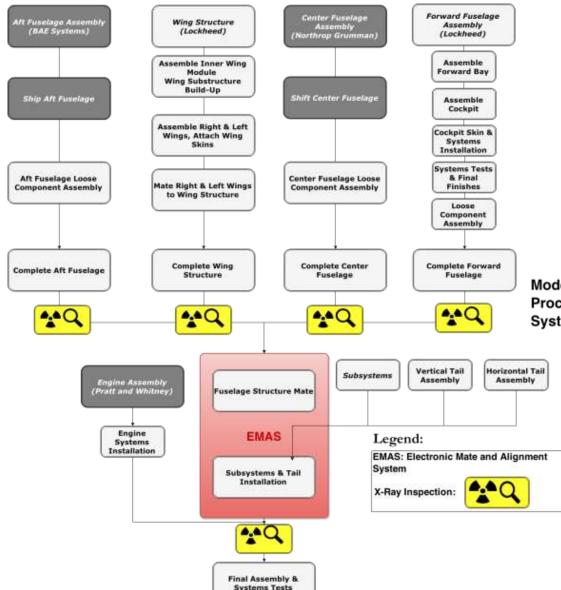


- Overview/Context
- Operational Concept/Approach
 - Alternatives Manual & Enhanced Inspection System
 - System Validation and Implementation Alternative Selection
 - X-Ray Mounting Alternatives
 - Decision Analysis for X-Ray Alternatives
- Method of Analysis
 - Stochastic Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions /Recommendations


Design Alternatives & Implementation

- 1. Manual/Visual Inspection
- 2. X-Ray imaging & Differential imaging software
 - Automated system with multi-layer view
 - Automated FOD Identification Software-Subject To: Design/Sensor

Pro

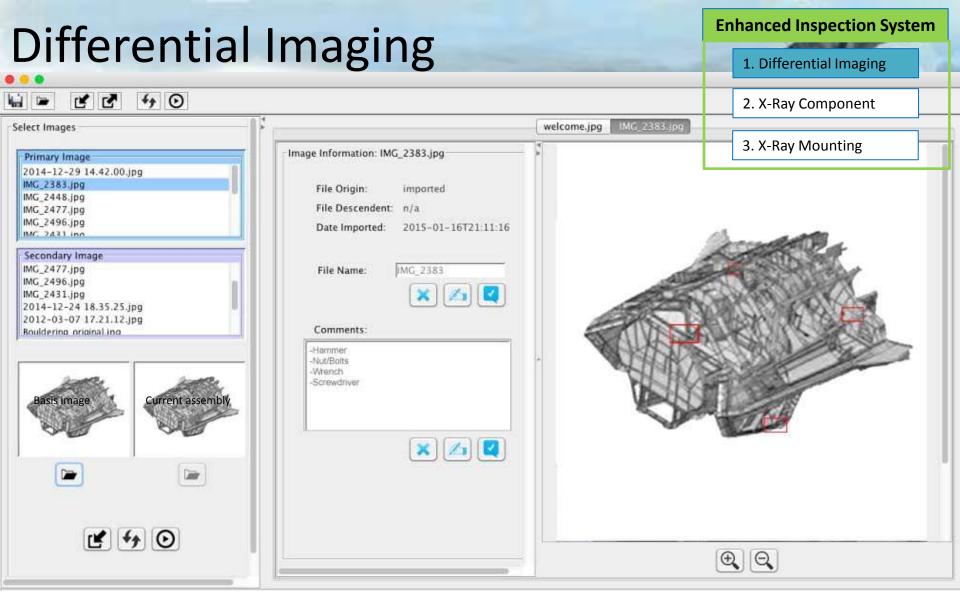

12


▲ ¶ 1 Т Y

s

Fighter Jet Assembly with Enhanced Inspection System

Enhanced Inspection System



95% Probability of Detection

- Total Rework & Repair Times (Hours)
- Inspection Times
- Number of Aircraft Produced
- FOD Present Post Assembly

Model of F-35 Aircraft Assembly Procedure Incorporating Proposed System

Developed by classmate – Don Brody

Overview/Context

Operational Concept/Approach

- Alternatives Manual & Enhanced Inspection System
- System Validation and Implementation Alternative Selection

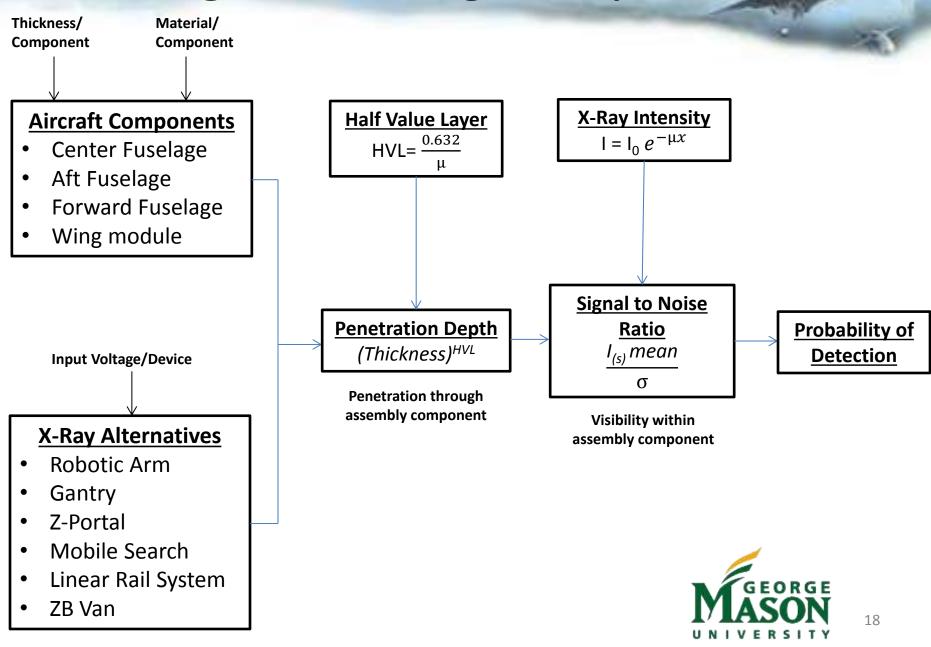
- X-Ray Mounting Alternatives

- Decision Analysis for X-Ray Alternatives

- Method of Analysis
 - Stochastic Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions / Recommendations

X-ray Mounting Alternative

Enhanced Inspection System


1. Differential Imaging

2. X-Ray Component

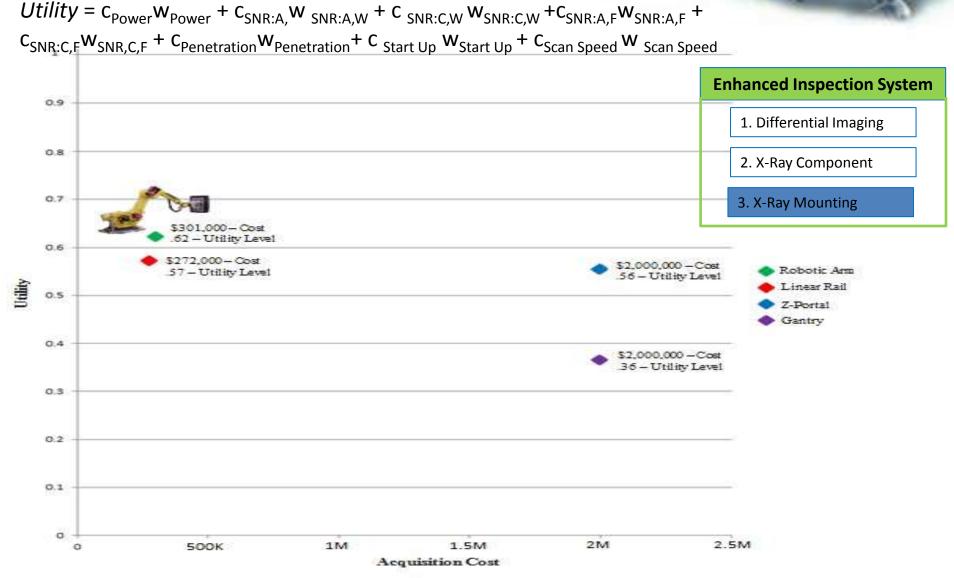
3. X-Ray Mounting

X-ray System	X-ray System	Source	Penetratio n Power (in steel)	Power Requirement	Scan Speed	Dimensions	Start Up Time	Radiation Dose
-	Linear Rail	Backscatter	6.3 mm	250-600 watts	0.185(m^2/s)	DIFFERENT SIZES AVAILABLE	20 min	BASED ON SIZE
	Robotic Arm	Backscatter	6.3 mm	250-600 watts	0.185(m^2/s)	DIFFERENT SIZES AVAILABLE	20 min	BASED ON SIZE
	Gantry	Transmissi on- Optional Backscatter	400 mm	380-480	9.6(m^ 2/s)	Length 36.5m Width 3.0m Height 5.0m	15 min	5 mR
	Z-Portal	Backscatter	300 mm	480	9.6(m^ 2/s)	Width 8.9m Height 6.3m	15 min	5 mR

Detecting FOD Using X-Rays

X-ray Mounting Alternative -Swing Weights

Enhanced Inspection System


1. Differential Imaging

2. X-Ray Component

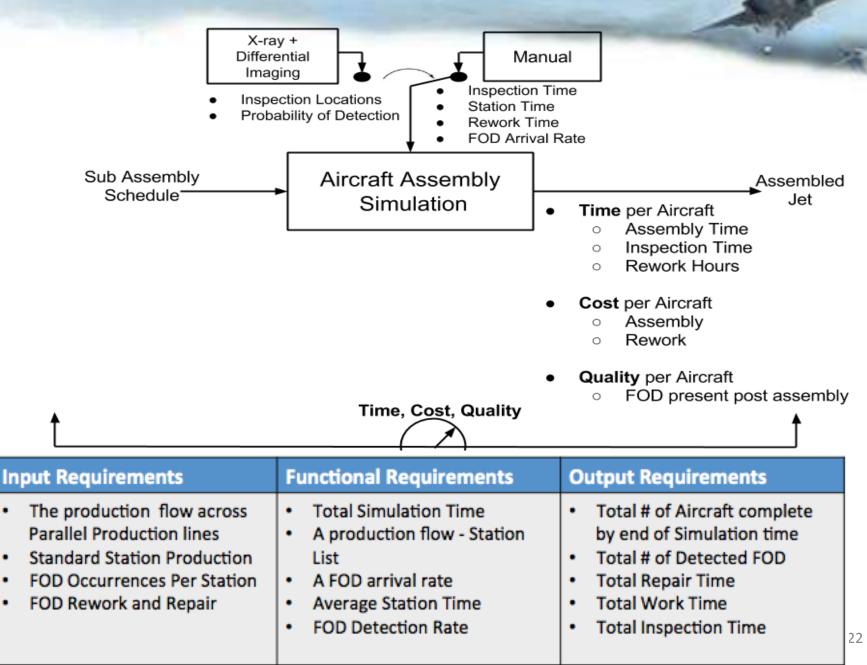
3. X-Ray Mounting

-	Mounting ernative	Average Cost (\$)	Average Power Req. (watts)	SNR (Aluminum, Wing)	SNR (Carbon, Wing)	SNR (Aluminum, Fuselage)	SNR (Carbon, Fuselage)	Penetration Depth through Steel (mm)	Start Up Time (min)	Scan Speed (m/s^2)
		C _{avg Cost}	C _{Power}	C _{SNR}	C _{SNR}	C _{SNR}	C _{SNR}	C _{Penetration depth}	C _{start up}	C _{scan speed}
		$W_{avg \ Cost}$	W _{Power}	W _{SNR}	W _{SNR}	W _{SNR}	W _{SNR}	W _{Penetration depth}	W _{start up}	$W_{scan speed}$
Weigh	t	.25	.75	.1212	.0909	.3636	.1818	.2424	.25	.75
Prefere	ence	Low	Low	High	High	High	High	High	Low	Low
A	Linear Rail	272,000	550	2.39	3.38	1.97	1.19	6.3	20	0.185
MI ot ue nr	<u>Robotic</u> <u>Arm</u>	301,000	550	2.39	3.38	1.97	1.19	6.3	20	0.185
tn ia nt	<u>Gantry</u>	2000000	620	2.39	3.38	1.97	1.19	400	15	9.6
gi v e	<u>Z-Portal</u>	2000000	480	2.39	3.38	1.97	1.19	300	15	9.6

Mounting Alternative - Utility vs Cost

- Context
- Operational Concept/Approach
- Method of Analysis

Method of Analysis

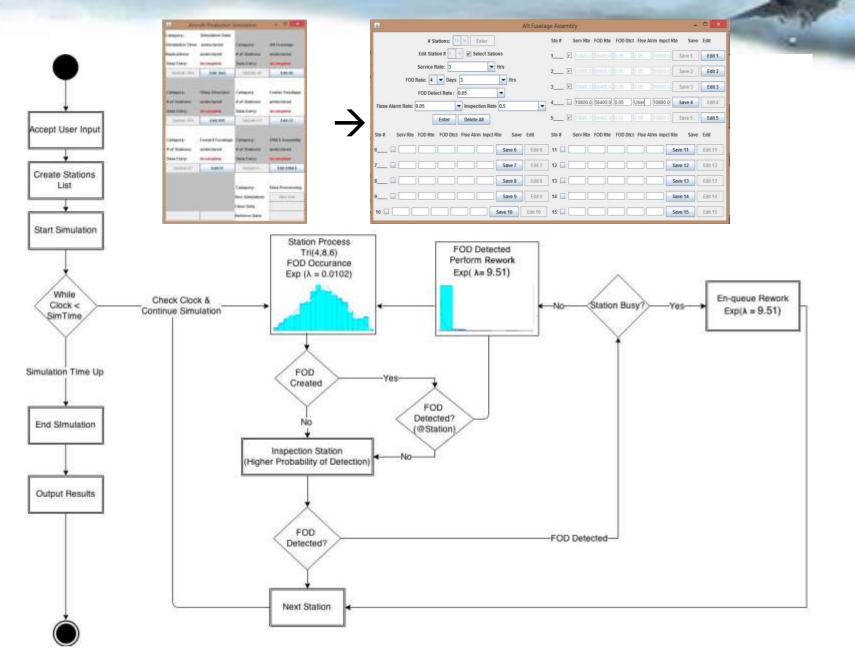

- The Simulation
 - Model Boundaries & Simulation Inputs/Outputs
 - Simulation Requirements
 - FODSim Overview
 - Flow & Implementation
 - Case Study Variables and Assumptions
 - Validation
- Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions /Recommendations

21

Model Boundaries & Simulation Inputs/Outputs

٠

Stochastic Simulation Tool - FODSIM


- Aro	an Production	Simulation			-					Aft Fusela	ge Asser	nbly				-	□ ×
Catagory: Simulation Time: Replications: Data Entry:	Simulation Data undeclared undeclared incomplete	Catagory: # of Stations: Data Estry:	Aft Funelage undeclared				# Stations:	5 🕶 Ent	<u></u>		Stn # 1		FOD Rte		se Airm Inpct F	te Save	e Edit Edit 1
Update Serie	Edit Sim	Update AT	Edit AF			Serv	rice Rate: 3		Hrs		2	P [noadalo]				Save 2	Edit 2
Catagory: Ø of Stations: Data Entry:	Wing Structure undeclared incomplete	Catagory: # of Stations: Data Entry:	Center Fusalage undeclared incomplete		Flase Alz		4 Days Detect Rate :		Hrs	•		2 10800.0	56400.0] [Save 3 Save 4	Edit 3 Edit 4
Optimite VVS	Edit WS	Update CF	Edit CF	\rightarrow			Enter	Delete All			5	P (10000 D				Save 5	Edit 5
Catagory: # of Stations:	Foward Fusalage undeclared	# of Stations:	EMAS Assembly undeclared	-	Stn #	Serv Rte FOD	Rte FOD Dtct	Fise Airm	npct Rte Save	Edit	Stn #	Serv Rte	FOD Rte	FOD Dtct Fis	se Airm Inpct F	ite Save	e Edit
Data Entry:	Edit FF	Data Entry:	Edit EMAS		6 🗆				Save 6	Edit 6	11 🔲					Save 11	Edit 11
2	Simulatis	in Settings	×		7 🗆				Save 7	Edit 7	12 🔲					Save 12	Edit 12
	Delaalt All (Br ma: 1000	anches Include v day			8 🗆				Save 8	Edit 8	13 🗌					Save 13	Edit 13
1	Replications; 200				9				Save 9	Edit 9	14 🔲][]	Save 14	Edit 14
	File Type: d Sava	elautt 👻			10 🔲 🗌				Save 10	Edit 10	15 🗌					Save 15	Edit 15
	Main	Men	ı	Simul	lation	Settir	ngs	l	Branch	Sett	ing	S		۷	'ariab	les	

 Simulation Main Settings Aft Fuselage Branch Wing Structure Branch Center Fuselage Branch Forward Fuselage Branch EMAS Assembly 	 2 Default Options Simulation Time Simulation Replications File Location 	 Choose how many stations in branch Can Select Stations with similar parameters Can Enter Manually or with Drop Down boxes 	 Number Stations Service Rates FOD Occurrence Rates FOD Detection Rates False Alarm Rates Inspection Rates

Case Study Parameters/Assumptions

- There are **26** total Stations: **21** Assembly (and **5** Inspection Stations with FODXSYS)
 - Process Time modeled by TRI(50,60,70) hours
 - FOD Events are based on an arrival Rate EXP(λ =0.0102)
 - FODXSYS Inspection time modeled by Norm(0.42, 0.0347) hours
 - Manual Inspection time modeled by Norm(4.2, 3.35) hours
 - FOD Arrival Rate as Exponential Distribution with λ = 0.0102 FOD Arrivals per Station per Hour
 - FOD Rework Time modeled from Exponential Distribution with $\lambda = 9.51$
- Inspection Stations and EMAS do not create FOD
- FOD Rework is always performed at the Station that has created the FOD
- FOD Rework time is increased by :
 - (Station Detected Station Originated)/ Total Stations + 1) * EXP(λ = 9.51)
- FOD Inspection decision modeled as Bernoulli Distribution With p = Probability of detection
 - P = 50% for Manual Inspection Station
 - P = 95% for FODXSYS
 - Each Station has a default chance to detect FOD (By Eye) **P** = **10%**
- If FOD goes undetected through EMAS, the repair time is increased by another EXP(9.51)

FODSIM Flow Diagram

Design of Experiments

- Generate accurate representation of Lockheed Martin's Ft. Worth
- Create Instantiated architectures for the system
- Instantiated architectures will be compared based on cost, time, and quality

Inputs **Outputs** Aircraft with Aircraft **Total Repair** Average Queue Detection FOD Rate Accuracy Assembled FOD on Wait Delivery Low (λ =0.0042) 50% Med (**λ=0.0102**) High (**λ=0.0260**) Low (λ =0.0042) Number of Number of Hours Hours / 65% Med (**λ=0.0102**) Aircrafts Aircrafts Component High (**λ=0.0260**) Low (λ =0.0042) 80% Med (**λ=0.0102**) High (**λ=0.0260**) Low (λ =0.0042) 95% Med (**λ=0.0102**) High (**λ=0.0260**)

Gather

Simulate

Compare

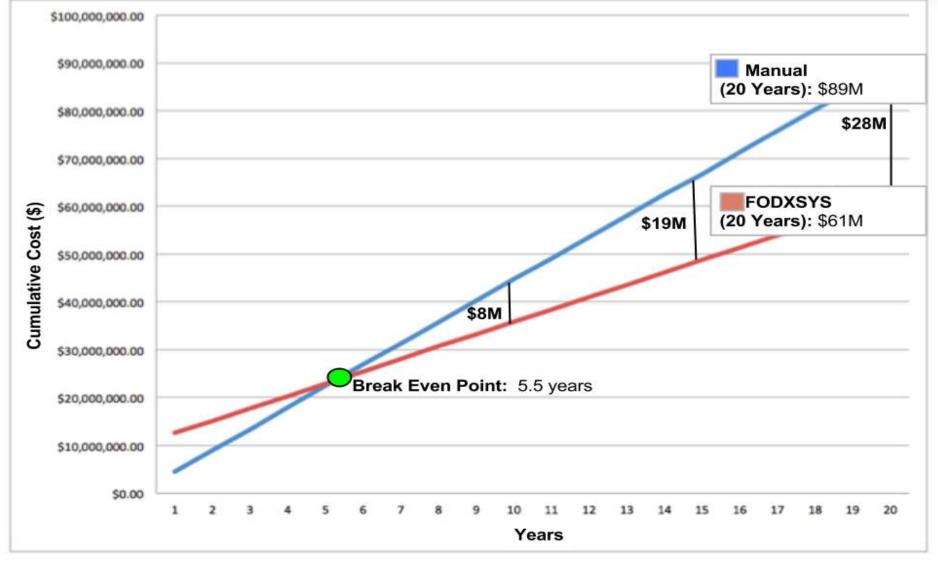
Results

26

- Context
- Operational Concept/Approach
- Method of Analysis
- Method of Analysis
 - The Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions / Recommendations

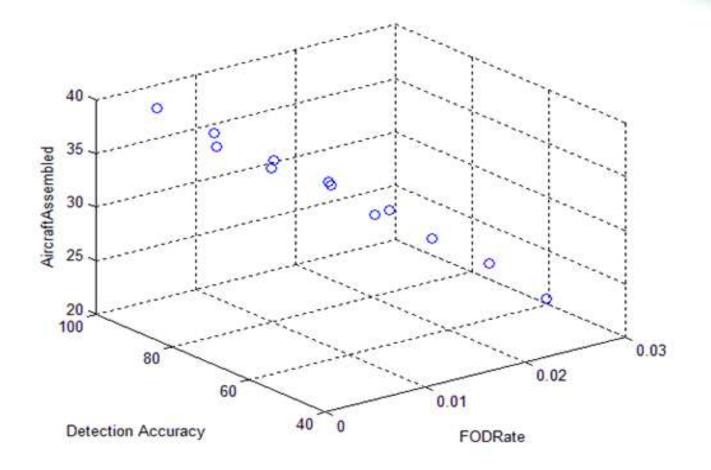
FODSIM Output Analysis FODXSYS vs. Manual

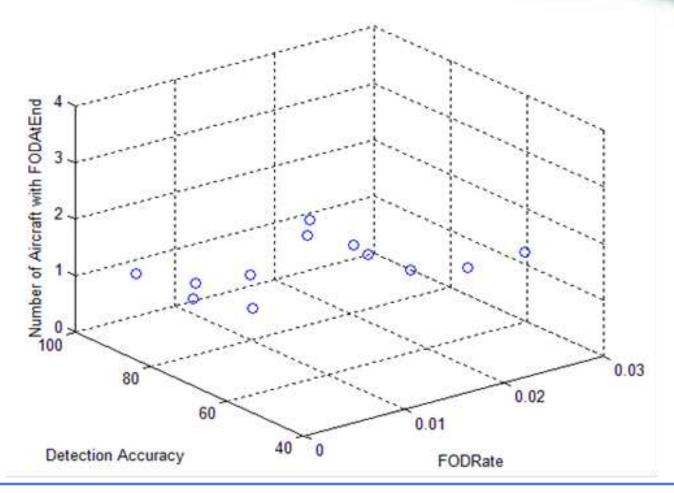
				-			
Result	Mean	Probability Distribution	Result	Mean	Probability Distribution		
Average Aircraft Assembled (# of	41	900	Average Total Repair and	1111			
Aircraft)	36	A A C GA	Rework Hours	1856			
FOD Contained Post Assembly (#	1	8 2 	Average Queue	26.9			
of Aircraft)	2		Wait (Hours)	6.6			
Total Labor/Total	997	* }	FOI	DXSYS			
Aircraft (Hours)	1781		Manual				


- FODXSYS is increasing # of Aircraft Assembled
- Improvement of Quality on Delivery
- Reduction of Total Labor per Aircraft
 - Rework labor reduction
 - Inspection Labor reduction

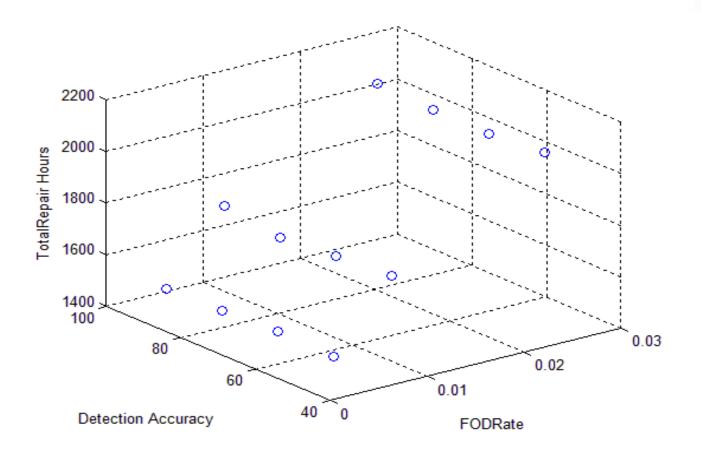
- Context
- Operational Concept/Approach
- Method of Analysis
- Method of Analysis
 - The Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions /Recommendations

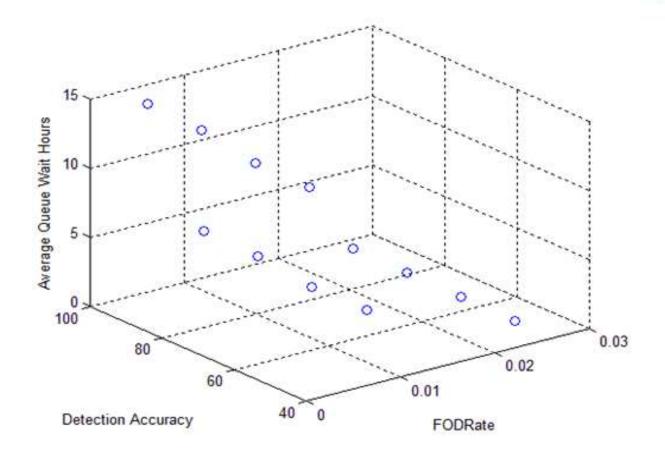
Cost and Business Case Analysis


- Context
- Operational Concept/Approach
- Method of Analysis
- Method of Analysis
 - The Simulation
 - Design of Experiments
- Results
 - Simulation Results
- Business Case Analysis
 - Business Case & Cost Analysis
- Conclusions /Recommendations

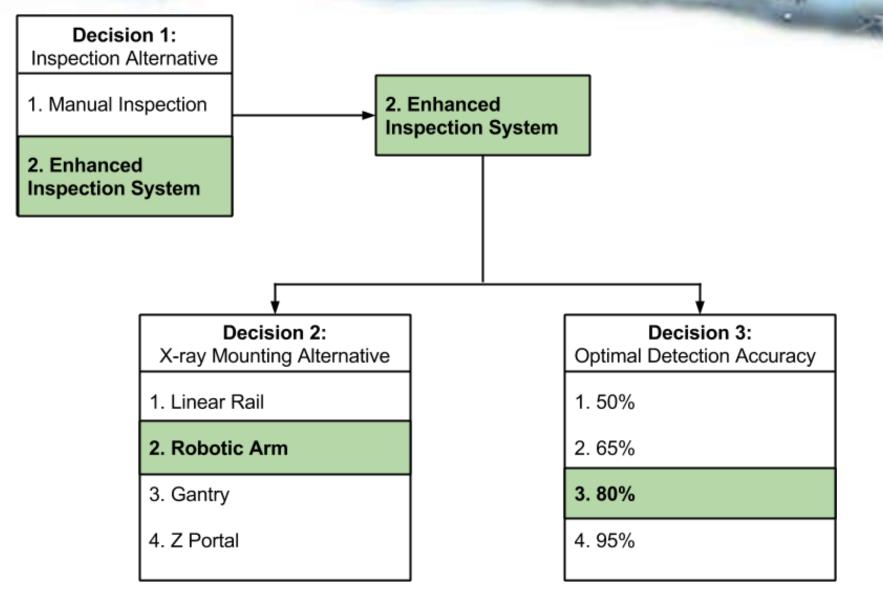

Sensitivity Analysis

Inp	uts	Outputs						
FOD Rate	Detection Accuracy	Aircraft Assembled	Aircraft with FOD on Delivery	Total Repair Hours	Average Queue Wait			
Low (λ =0.0042)		39	3.04	1470	13.6			
Med (λ=0.0102)	50%	35	2.42	1726	3.7			
High (λ=0.0260)		23	1.72	2058	0.14			
Low (λ =0.0042)		38	1.88	1477	13.7			
Med (λ=0.0102)	65%	35	2.57	1713	3.6			
High (λ=0.0260)		24	0.99	2038	0.15			
Low (λ =0.0042)		39	1.01	1466	14.3			
Med (λ=0.0102)	80%	35	0.55	1695	4.11			
High (λ=0.0260)		24	0.49	2040	0.15			
Low (λ =0.0042)		39	1.00	1459	14.5			
Med (λ=0.0102)	95%	34	0.55	1722	4.27			
High (λ=0.0260)		24	0.47	2048	0.18			


- FOD Rate is the most sensitive parameter of the system Minor changes lead to significant affects on Total Repair Hours & Aircraft Assembled
- Detection Accuracy > 80% leads to diminishing returns on Quality


- Detection Accuracy > 80% leads to diminishing returns on Quality, and the difference in Pre & Post EMAS Rework & Repair Hours
- Decrease FOD Rate possibly by: Implement new training procedures, establishing more FOD critical areas.

- Detection Accuracy > 80% leads to diminishing returns on Quality, and the difference in Pre & Post EMAS Rework & Repair Hours
- Decrease FOD Rate possibly by: Implement new training procedures, establishing more FOD critical areas.



- Detection Accuracy > 80% leads to diminishing returns on Quality, and the difference in Pre & Post EMAS Rework & Repair Hours
- Decrease FOD Rate possibly by: Implement new training procedures, establishing more FOD critical areas.

- Detection Accuracy > 80% leads to diminishing returns on Quality, and the difference in Pre & Post EMAS Rework & Repair Hours
- Decrease FOD Rate possibly by: Implement new training procedures, establishing more FOD critical areas.

Final Decisions

Questions?

References

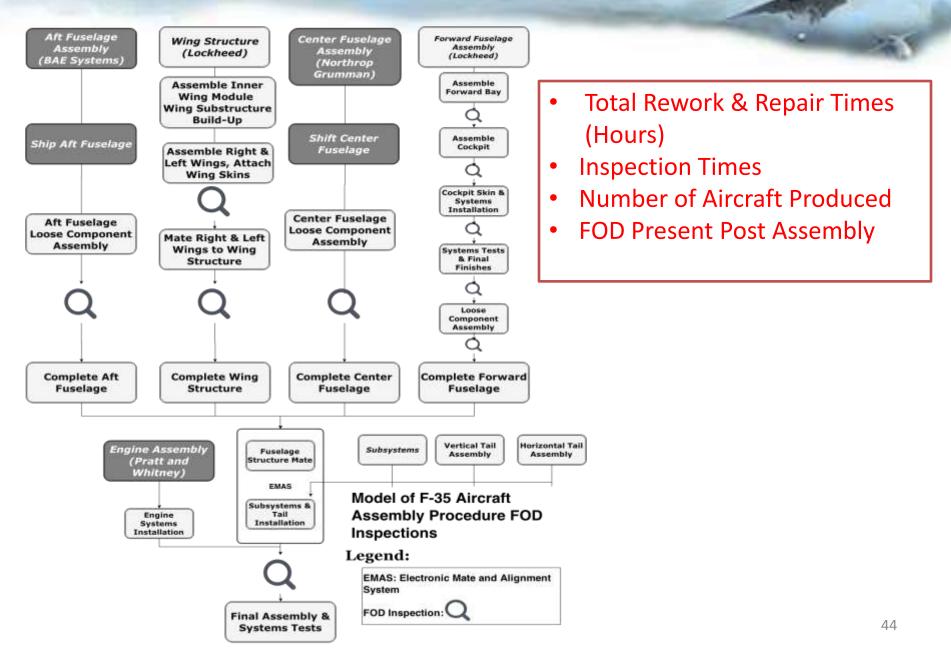
- 1. American Science and Technology, "Z BACKSCATTER VAN," AS&E, Massachusetts, USA, Tech. Report. ZBVDATA_080307, 2007.
- 2. American Science and Technology, "MOBILESEARCH HE," AS&E, Massachusetts, USA, Tech. Report. MSHEDATA_012711, 2011.
- 3. American Science and Technology, "Omniview Gantry High-Performance Inspection System," AS&E, Massachusetts, USA, Tech. Report. OVDATA_101711, 2011.
- 4. American Science and Technology, "Z PORTAL," AS&E, Massachusetts, USA, Tech. Report. ZPORTALDATA_052510, 2010.
- 5. Batchel, B. 2014. "Foreign Object Debris and Damage Prevention" [Online] Available: <u>http://www.boeing.com/commercial/aeromagazine/aero_01/textonly/s01txt.html</u>
- 6. Callerame, , "X-Ray Back scatter Imaging: Photography Through Barriers". Retrieved September, 2014 Available: <u>http://www.icdd.com</u>
- 7."CTOL SWBS Manufacturing Sequence Flow" 2011. [Online] Availabl<u>http://information2share.wordpress.com/2011/05/25/ctol-swbs-manufacturing-sequence-flow/</u>
- 8. Garber, M , Diagnostic imaging and differential diagnosis in 2 case reports , J Orthop Sports
- Phys Ther. , vol 35 , no , p.745 754
- 9. Gemini[®] 7555". Retrieved September , 2014 Available: <u>http://as-e.com/products-solutions/parcel-inspection/gemini-6040</u>
- 10. Fessle, C J, , "Physics of Projection Radiography ". RetrievedSeptember , 2014 Available: <u>http://web.eecs.umich.edu</u>."Backscatter Radiography". RetrievedSeptember , 2014 Available: <u>http://www.nucsafe.com</u>
- 11. FOREIGN OBJECT DAMAGE PREVENTION. [Online]. Available: http://www.lockheedmartin.com/content/dam/lockheed/data/aero/documents/scm/terms/fod/fod.pdf
- 12. FOD PREVENTION GUIDELINE [Online]. Available: http://www.nafpi.com/ nafpiguideline.pdf

References

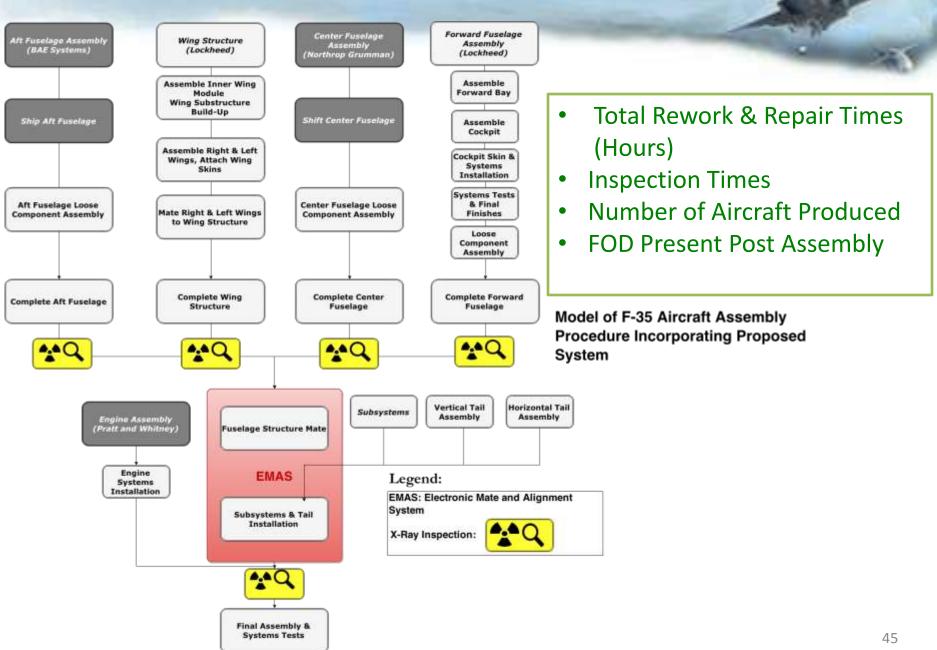
- Butler, Amy. "F-35 Deal Targets Unit Cost Below \$100 Million." Aviation Week. N.p., n.d. Web. 10 Nov. 2014.
- *F35.com*. N.p., n.d. Web. 11 Oct. 2014.
- "BAE Systems completes 150th aircraft for F35 fighter programme".
- King, Samuel Jr. <u>"First F-35 arrives at Eglin."</u> U.S. Air Force, 15 July 2011. Retrieved: 20 July 2011.
- Pae, Peter. <u>"Stealth fighters fly off the radar"</u>. <u>Los Angeles Times</u>, 23 April 2008. Retrieved 27 April 2008.
- <u>"Iraq Accepts First Lockheed Martin F-16 Aircraft · Lockheed Martin"</u>. Retrieved 13 September 2014.
- Davies and Dildy 2007, p. 249
- <u>"Iraq Accepts First Lockheed Martin F-16 Aircraft · Lockheed Martin"</u>. Retrieved 13 September 2014.
- <u>"McDonnell Douglas F-15 Streak Eagle fact sheet"</u>.*National Museum of the United States Air Force*. Retrieved 24 September 2010.
- <u>"Analysis of the Fiscal Year 2012 Pentagon Spending Request."</u> *Cost of war,* 15 February 2011. Retrieved: 31 August 2013.

Back Up Slides

Simulation Validation

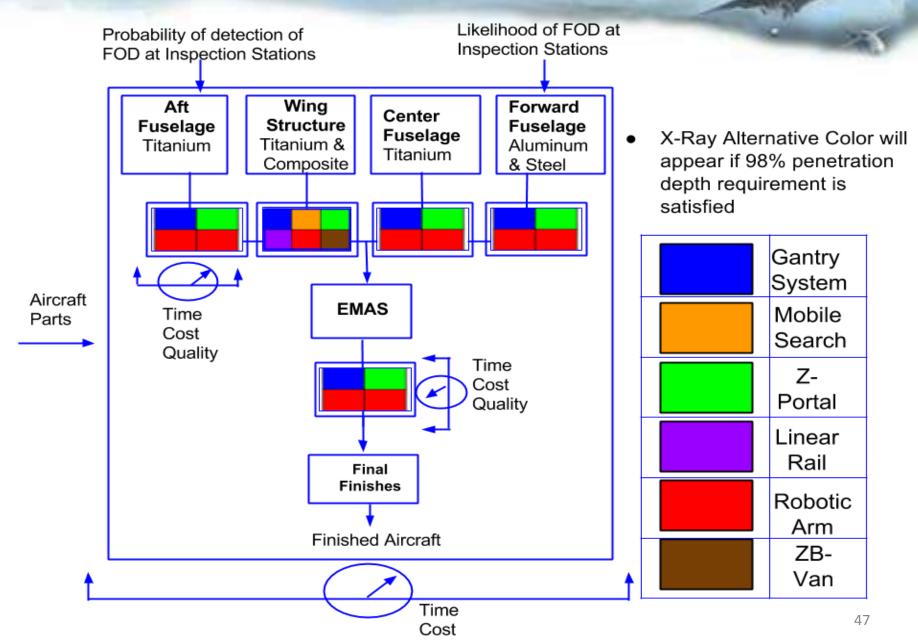

- Tested the Simulation using 4 Validation Tests
 - Tested Station Process Times 21 Stations in Series with only one component going from beginning to end with FOD Rate at 0
 - ✓ Test Passed, 130.1253 hours within 3 σ of 126 hours, with σ = 2 hours
 - 2. Tested FOD Arrival 21 Stations in Series running continuously for 1 day with FOD Rate at 0.0102
 - ✓ Test Passed, 5.0574 is within 3 σ of 4.40 FOD Arrivals/Day, with σ = 2.959 FOD Arrivals
 - Tested FOD Arrival 21 Stations in Series running continuously for 1 day with FOD Rate at 0.183 at one Station and 0 for all others
 - ✓ Test Passed, 4.564 is within 3 σ of 4.40 FOD Arrivals/Day, with σ = 2.959 FOD Arrivals
 - Tested Rework Time 21 Stations in Series running continuously for 1 day with FOD Rate at 0.0102, Detection at 100%
 - ✓ Test Passed, 10.817 is within 3 σ of 9.34 Rework Hours/Day, with σ = 34.821 hours

Impact of Detection Errors


- <u>Type I:</u> FOD absent but thought to be present

 Manual & FODXSYS: Assembly Component will be sent to rework station and returned to previous assembly station once it is realized that no FOD is present.
- <u>Type II:</u> FOD present but thought to be absent
 - Manual: Compounding 50% probability of detecting the item based on number of stations following.
 - FODXSYS: Individual 95% probability of inspection at the inspection station following the mating of the assembly components

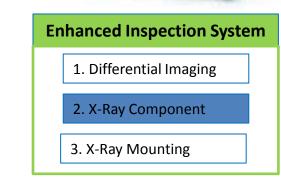
F-35 Production


Jet Fighter Production with FODXSYS

Differential Imaging – Pseudo Code

Code	Pseudo Code
<pre>for(int i = 0; i < width; i+= interval) { for(int j = 0; j < height; j+= interval) {</pre>	offset determined by user width = min width of two images height = min height of two images
<pre>int primaryPx = primary.getRGB(i, j); int secondaryPx = secondary.getRGB(i,j); int r1 = (primaryPx >> 16); int g1 = (primaryPx >> 8) & 0xff; int b1 = (primaryPx) & 0xff; int r2 = (secondaryPx >> 16); int g2 = (secondaryPx >> 16); int b2 = (secondaryPx >> 8) & 0xff; int b2 = (secondaryPx) & 0xff;</pre>	for i = 0 to width, increment by offset for j = 0 to height, increment by offset get RGB value of of primary image pixel at (i,j) get RGB value of secondary image pixel at (i,j) totalDiff+= (Math.abs(r1-r2) + Math.abs(g1-g2) + Math.abs(b1- b2))/3.0/255.0; end for end for
<pre>Math.abs(b1-b2))/3.0/255.0 > (10 * difference)) if(++diffCount > 10) {</pre>	<pre>{ difference = average difference of the two images if (difference == 0) return</pre>
<pre>if(xStart == 0 && yStart == 0) { xStart = i; yStart = j - 10; } else { xEnd = i; yEnd = j; } }</pre>	else for i = 0 to width, increment by offset for j = 0 to height, increment by offset get RGB value of primary image at pixel (i,j) get RGB value of secondary image at pixel (i,j) if (pixel difference is > 10 * average difference) if (this is the first difference > 10 * average) mark xStart and yStart else mark xEnd and yEnd end for
}	end for end else

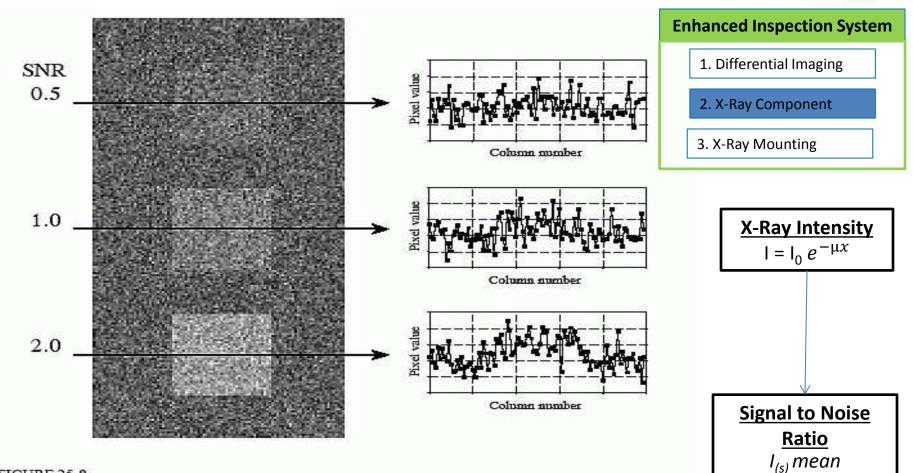
Different X-Ray considered per Assembly



Penetration Depth Example

Aircraft Sub- Assembly	Material (Highest Density)	Thickness (inch)
Center Fuselage	Steel	4"

X-Ray	Power
Machine	(Watt)
Gantry	300



$$HVL = \frac{0.6328}{\mu}$$

P =(thickness) HVL

 $\frac{Penetration \, Depth}{Aircraft \, Sub_Assembly \, Thinckness} = \frac{P}{T} = \frac{3.8}{4} = 95\%$

SNR and X-Ray Tube Voltage

FIGURE 25-8

Minimum detectable SNR. An object is visible in an image only if its contrast is large enough to overcome the random image noise. In this example, the three squares have SNRs of 2.0, 1.0 and 0.5 (where the SNR is defined as the contrast of the object divided by the standard deviation of the noise).

σ

Alternatives Estimated SNR in Wing and Fuselage

Wing Modulus (Carbon µ=0.02)

X-Ray Alternative	Mean Intensity (Is)	Signal to Noise Ration (SNR)	
Ganntry,MobileSearch,Linear Rail, Robotic Arms	23.37287	3.338981	

Wing Modulus (Aluminum, µ=0.05)

X-Ray Alternative	Mean Intensity (Is)	Signal to Noise Ration (SNR)	
Ganntry,MobileSearch,Linear Rail, Robotic Arms	16.69936	2.385622	SNR >1

Fuselage (Carbon µ=0.02)

X-Ray Alternative	Mean Intensity (Is)	Signal to Noise Ration (SNR)	
Gantry, MobileSearch, Linear Rail, Robotic Arms	18.77461	2.682088	SNR >1

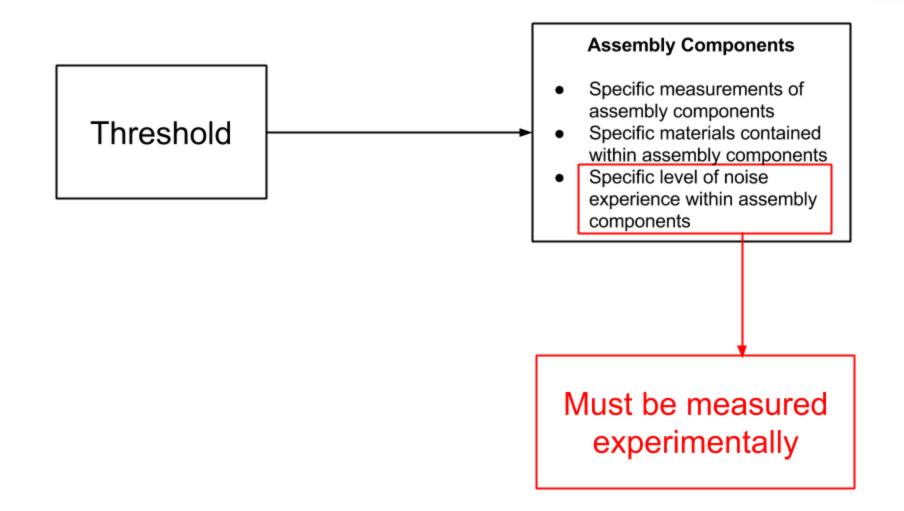
Fuselage (Aluminum, μ =0.05)

X-Ray Alternative	Mean Intensity (Is)	Signal to Noise Ratio (SNR)	SNR >
Gantry,RoboticArm,MobileSe arch,Linear Rail,	10.7419	1.534557	

Enhanced Inspection System

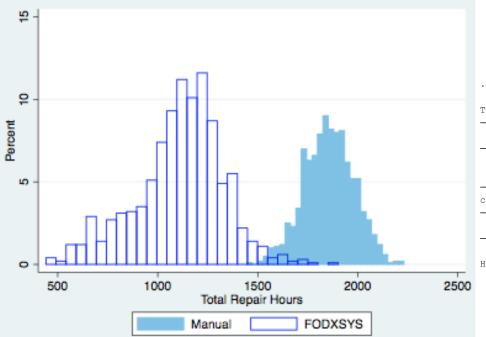
2. X-Ray Component

3. X-Ray Mounting


System Pass Minimum Detectability Requirement

Robotic Arm SNR Calculation

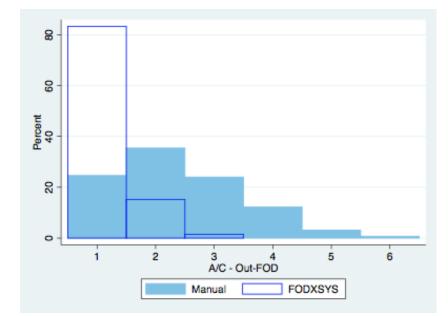
X-Ray alternative	x-ray tube voltage(kv)	distance to Object(mm)	Mean x-ray backscatter intensity(I)	Standard deviation Of noise	SNR
Robotic Arm 225		20	320	7	6.53


Signal To Noise Ratio

Results Summary

FODSIM RESULTS ALTERNATIVE MEANS:	AVERAGE REPAIR (HOURS) (x̄, σ)	AVERAGE QUEUE WAIT (HOURS) (x̄, σ)	AIRCRAFT WITH FOD ON DELIVERY (# AIRCRAFT) (x̄, σ)
MANUAL	1856 , 124	6.60 , 5.50	2.4 , 1.11
FODXSYS	1111 , 220.26	26.9 , 6.68	0.3,0.42
FODSIM RESULTS ALTERNATIVE MEANS:	AVERAGE AIRCRAFT ASSEMBLED (# OF AIRCRAFT)	AVERAGE INSPECTION TIME PER STATION (HOURS)	AVERAGE TOTAL LABOR / AIRCRAFT ASEEMBLED
	(x̄, σ)	(x̄, σ)	(x̄, σ)
MANUAL	36,2.7	1041,30.4	1780,138
FODXSYS	41,3.1	208,30.0	1020,77.8

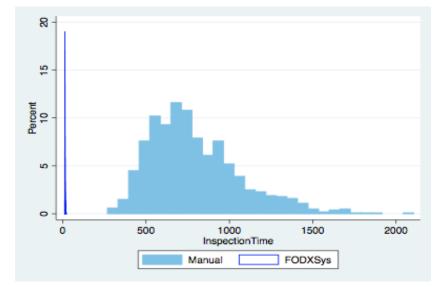
Total Repair Hours Dist.



. ttest TotalRepairHours , by(Dummy) unequal

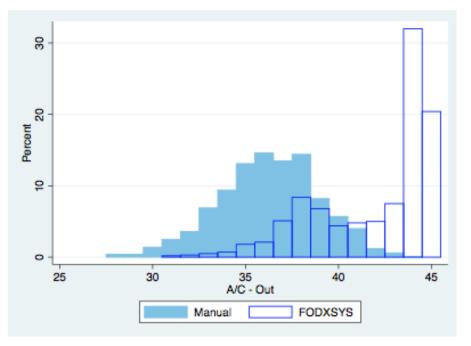
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	1000 1000	1856.014 1111.299	3.921163 6.965323	123.9981 220.2629	1848.319 1097.631	1863.709 1124.968
combined	2000	1483.657	9.237125	413.0968	1465.541	1501.772
diff		744.7146	7.9932		729.0362	760.393
diff = mean(0) - mean(1) t = 93.168 Ho: diff = 0 Satterthwaite's degrees of freedom = 1574.4						
	iff < 0 = 1.0000	Pr(Ha: diff != T > t) =			iff > 0) = 0.0000

Aircraft Assembled Containing FOD


Dist.

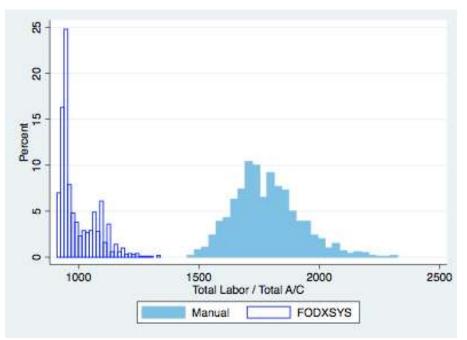
. ttest ACOutFOD , by(Dummy) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	1000 1000	2.359 1.182	.0351761 .0133811	1.112365 .423149	2.289973 1.155742	2.428027 1.208258
combined	2000	1.7705	.0229604	1.026819	1.725471	1.815529
diff		1.177	.0376352		1.103167	1.250833
diff = Ho: diff =	= mean(0) - = 0	mean(1)	Satterthwai	te's degrees		= 31.2739 = 1282.2
	lff < 0 = 1.0000	Pr(Ha: diff != T > t) =			iff > 0) = 0.0000

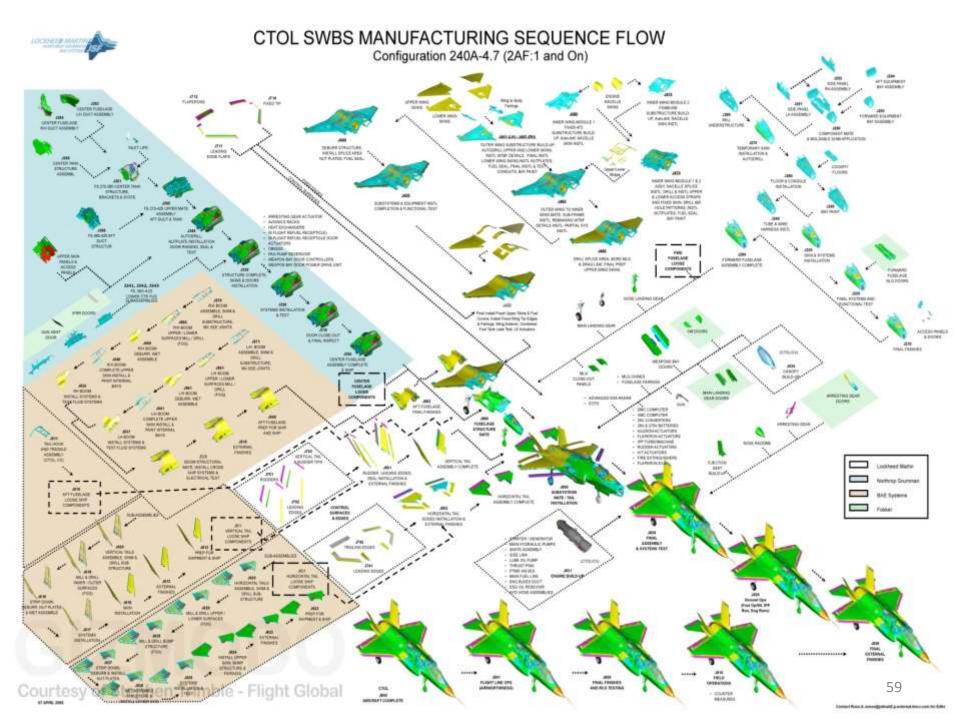

Inspection Hours Dist.

. ttest InspectionHours , by(Dummy) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	1000 1000	28114.16 208.269	26.00748 .9499945	822.4289 30.04146	28063.12 206.4048	28165.19 210.1332
combined	2000	14161.21	312.3464	13968.55	13548.65	14773.77
diff		27905.89	26.02483		27854.82	27956.96
diff = Ho: diff =	= mean(0) - = 0	mean(1)	Satterthwai	te's degrees	t = of freedom =	= 1.1e+03 = 1001.67
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) =			iff > 0) = 0.0000


Aircraft Assembled Dist.

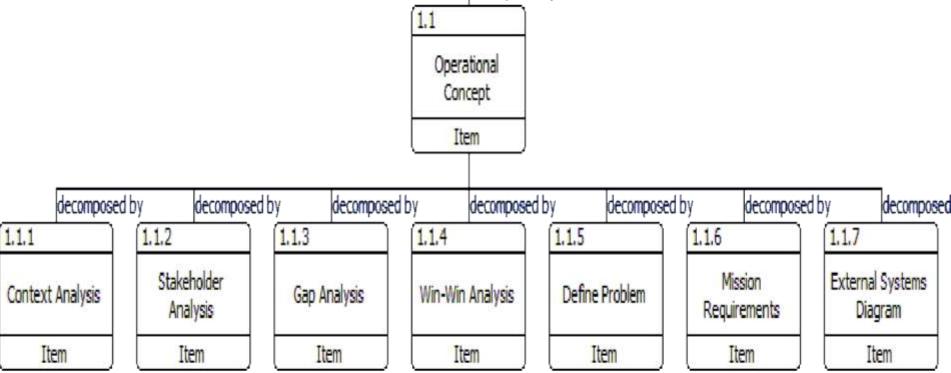
. ttest ACOut , by(Dummy) unequal

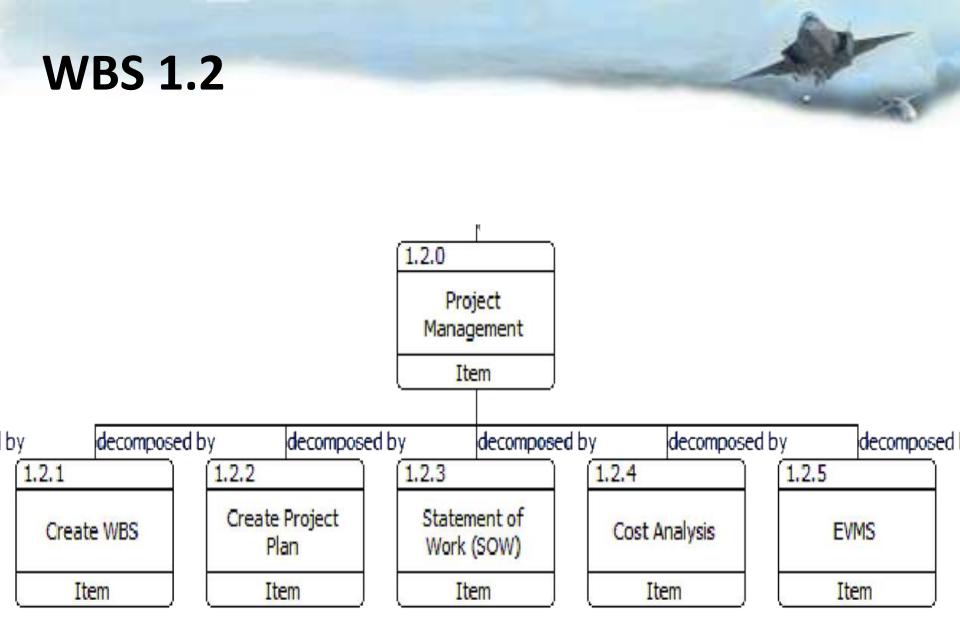

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	1000 1000	36.28 41.991	.0858194 .0984307	2.713847 3.112653	36.11159 41.79785	36.44841 42.18415
combined	2000	39.1355	.0913249	4.084174	38.9564	39.3146
diff		-5.711	.1305893		-5.967108	-5.454892
diff = Ho: diff =	= mean(0) - = 0	mean(1)	Satterthwai	te's degrees		= -43.7325 = 1961.58
	lff < 0 = 0.0000	Pr(Ha: diff != T > t) =			liff > 0 2) = 1.0000

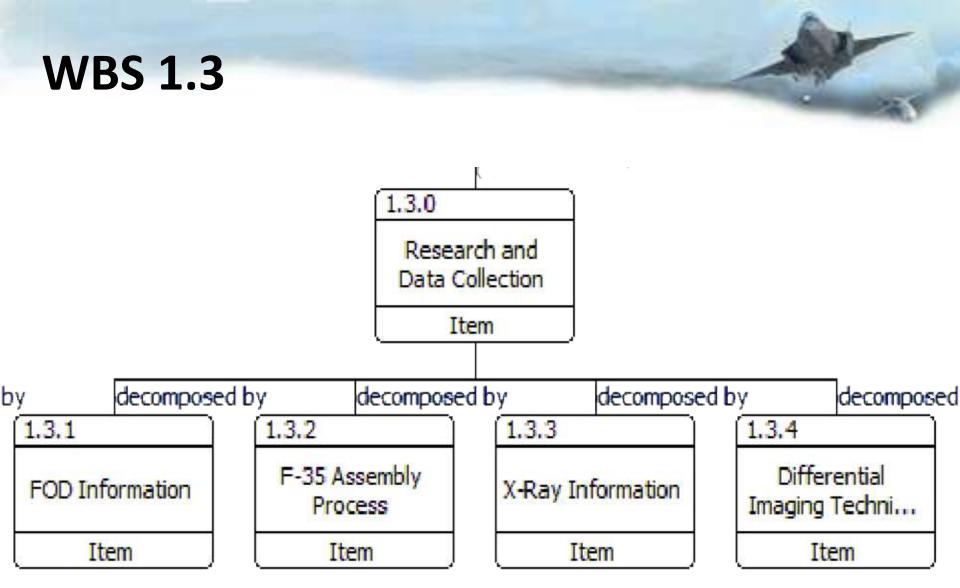
Total Labor Hours/AC Dist.

. ttest TotalLaborTotalAC , by(Dummy) unequal

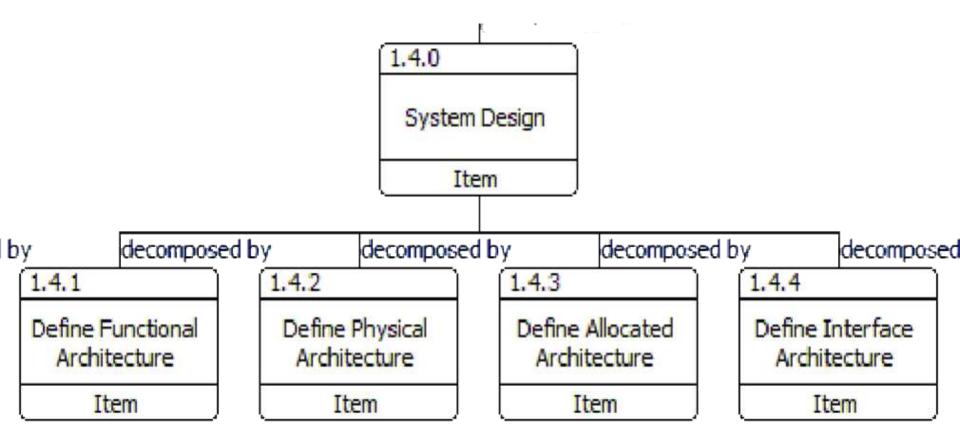
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	1000 1000	1781.483 997.8388	4.391462 2.459183	138.8702 77.7662	1772.866 993.013	1790.101 1002.665
combined	2000	1389.661	9.117604	407.7517	1371.78	1407.542
diff		783.6445	5.033142		773.7721	793.5169
diff = Ho: diff =	= mean(0) - = 0	mean(1)	Satterthwai	te's degrees	-	= 155.6969 = 1569.46
	lff < 0 = 1.0000	Pr(Ha: diff != T > t) =			iff > 0) = 0.0000

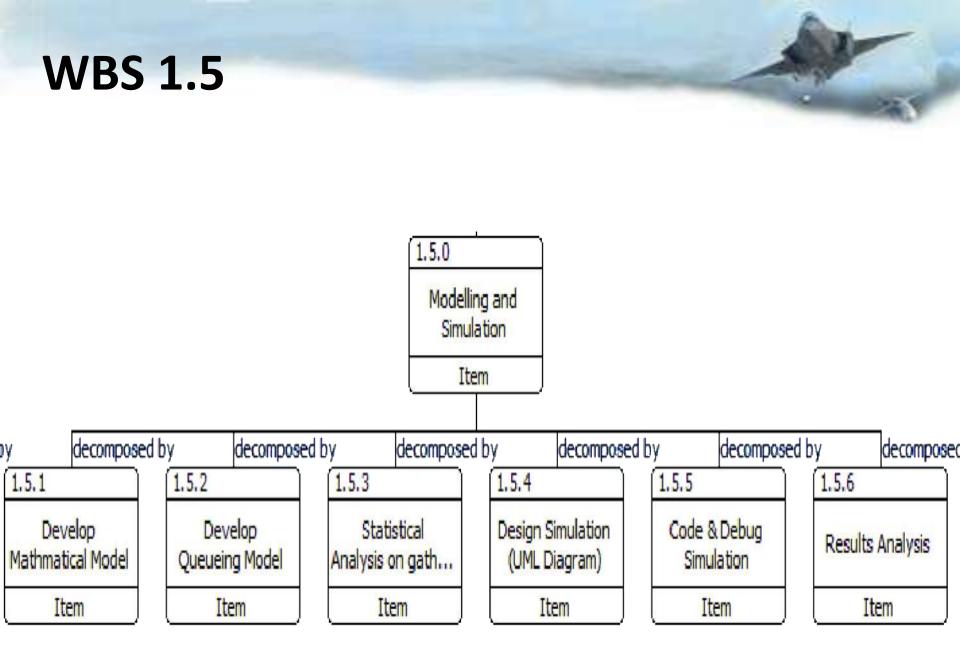


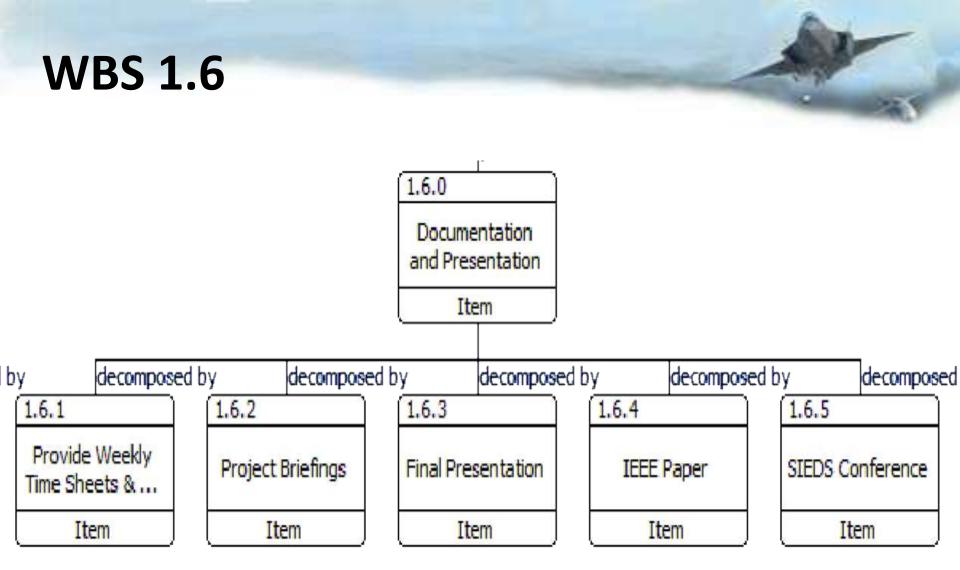

Project Timeline & Critical Path


	Task Name	. 0	uration ,	Start	Finish 🖕	Predecessors	Successors		Avg 31	, '14	Oct 5	, '14	Nov	9, 14	Dec	14, '14	Jan	18, '15	Fe	b 22,	15	Mar	29, '15	May
	nan wax wi->	7. S.	002210.2010		ana ara ta	-94.000000000		Ţ	F	S	\$	M	T	W	TI	S	S	M	T	W	T	1		i s
47	Finalize Final Presentation	1	8 days	Mon 11/10/14	Wed 12/3/14	46	48						1]										
48	Proposal Final Presentation Due	1	2 days	Tue 11/18/14	Wed 12/3/14	47							4	[]										
49	Draft Conference Paper Due	2	7 days	Wed 1/7/15	Thu 2/12/15	45,46	50					(*****				ľ			h					
50	Draft Poster Due	2	7 days	Tue 10/28/14	Wed 12/3/14	49	51,54												XR.					1
51	SIEDS Conference Rehersal	1	0 days	Tue 10/28/14	Mon 11/10/14	50	52					1	1											1000
52	SIEDS Abstract Draft	1	2 days	Sat 10/25/14	Mon 11/10/14	51	53					J												
53	Finalize SIEDS Abstract	4	days	Wed 11/5/14	Mon 11/10/14	52	54					0												1000
54	SIEDS Abstract Submission	0	days	Mon 11/10/14	Mon 11/10/14	50,53	55						**1	1/10							_		-	Į.
55	SIEDS Conference	0	days	Sat 4/25/15	Sat 4/25/15	54	56																*	4/25
56	General Donald R. Keith Memorial Cadet Capstone Conference Registration	0	days	Tue 3/31/15	Tue 3/31/15	29,39,42,55	57														Ģ	 }	31—	
57	General Donald R. Keith Memorial Cadet Capstone Conference Draft Presentation	6	days	Sat 4/25/15	Fri 5/1/15	56	58																	
58	General Donald R. Keith Memorial Cadet Capstone Conference	0	days	Fri 5/1/15	Fri 5/1/15	57				and the second s														¢ 5/1

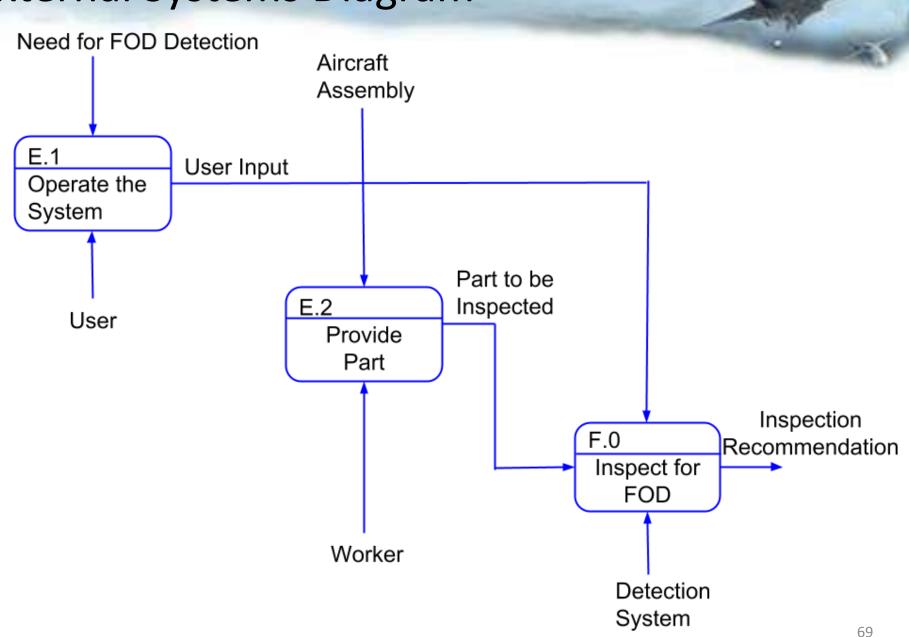
1.Define Requirements	1a. Receiving definitive feedback from Lockheed Martin	1a: Define requirements based on the capabilities of the system with correlation to the goals and objectives of Lockheed Martin
	1b. Verification of specific requirements from lack of quantitative data.	1b. Use "dummy variables" in simulation and verify requirements based on output
2. Times for Production		
Stages	2a. Data not received from LMCO in sufficient time	2a. Ask for average times per stage from Lockheed Martin and apply a random number generator as a multiplier to obtain multiple data points
3. Times for FOD	3a. Data not received from	
Inspection	LMCO in sufficient time	3a. Ask for average FOD inspection times per stages or position
	4. Failure to receive data	3aa. Establish a percentage of time per shift spent searching and apply this to the simulation
4.Retrieve Costs of Different X-RAY System Alternatives	from X-RAY vendors.	4a. Estimate costs from available research
	5a. Dependent upon receiving data in a timely	
5. Establishing	fashion	5a: Establishing "dummy variables" will enable our
Distributions of discrete events		team to run multiple simulations, graph the output and establish these distributions
		5aa. Obtaining these averages from Lockheed Martin


WBS 1.1

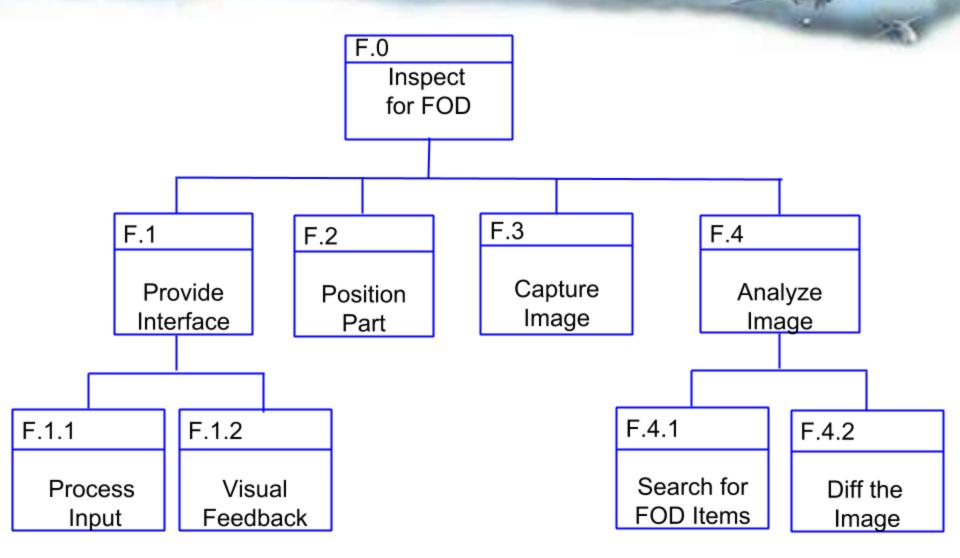




WBS 1.4



Alternate Differential Imaging


	Pixel by Pixel	
INPUTS Basis Image	 <u>Advantages:</u> Very Specific (analyze individual pixels) Not individualized to specific items Software already available 	OUTPUTS
Current Component Image	 <u>Disadvantages:</u> Extended time duration for comparison (each pixel compared) Differences with no correlation to FOD will be recognized 	Difference in Images
Specific Item(s)	Cluster of Pixels Advantages: Likely to identify specific FOD items Software aware of exactly which items to search for Rapid comparison time Software already available Disadvantages: Unlikely to recognize unanticipated items 	

Differential Imaging provides the operator with a means of assistance in identifying the FOD items after the Aircraft Components have been scanned and the images are being compared.

External Systems Diagram

FODXSYS Functional Architecture

Problem & Need

	Issues	Consequences
	Limited to top layer visibility	Increased Production Cost
Problem	Possibility of Human Error	Possibility of FOD related pilot casualties
Manual Inspection	Manual inspection is not time effective	Decreased Production Rate Deadline Issues
Process	Increased Rework & Repair Hours as a result of inspection reliability	Increased Rework & Repair Costs

	Solutions	Benefits
	Multi-layer visibility capability	Detect FOD hidden within layers
Need Enhanced	Eliminate possibility of Human Error	Decreased chance of Aircraft delivery containing FOD
Inspection Process	Decrease FOD Inspection time	Decreased Inspection Costs
	Increased Probability of Detection	Decreased FOD related Rework & Repair Costs