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Executive Summary

Normal distributions are commonly used in many modeling techniques to describe reality
yet in many cases, reality is closer to a fat-tailed distribution than a normal one. This critical
assumption of normality results in potentially inaccurate models, especially when modeling
risk and options prices. The aim of this project is to develop a fat-tailed distribution model

that fits the S&P500’s daily percent returns to be applied in standard financial calculations.

The project uses whole data models of t-distribution and mixed normal distributions as well
as extreme scenario models of Generalized Extreme Value distribution (GEV) and

Generalized Pareto Distribution (GPD) to calculate Value at Risk (VaR) and options

prices. The results show that the models chosen exhibit fatter tails than the data and by a
larger difference than that between the data and the normal distribution. Of all the models,
the closest to the data is the mixed normal model. This leads to the recommendation of the
project being to use the mixed normal model as the distribution in estimating VaR and

options prices so that investment decisions include the expectation of more extreme
scenarios. For VaR, this can also be achieved by using the normal model with a base

value for VaR or by using a multiplier.
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Context

Financial engineering is a multidisciplinary field that involves the use of mathematical
techniques and analyses to solve financial problems. It uses a variety of tools such as
statistics, concepts of economics, computer science, and applied mathematics to help
address the financial market, present and future. Financial engineering is primarily used as
an analysis technique for financial corporations such as corporate banks, hedge funds, and
investment banks.

Risk is an important concept in Financial Engineering. It can be defined as the amount of
exposure to loss. Investments are generally made in anticipation of a positive return but the
value of this return is uncertain, unpredictable and potentially unfavorable. The practice of
financial engineering uses tools to determine a set of decisions that minimize future risk.

Problem: Normal Assumption

The normal distribution is a probability distribution in which all of the corresponding values
are plotted in a symmetrical fashion, and most of the results are grouped tightly around the
mean value of the distribution. The values are equally likely to be plotted on either side of
the mean. Values are typically grouped close to the mean and then tail off symmetrically
away from the mean with the spread defined by standard deviation.

The normal distribution is a commonly occurring statistical pattern which has been
observed in distinct phenomena such as product manufacturing, and biological variables
including height, blood pressure etc. The distribution enables us to specify that majority of
the possible values of any unknown distribution are likely to be limited between two real
limits.

Normality is assumed in many problems initially as the distribution is understood
comprehensively through many prior studies and the foundational central limit theorem
infers that for a sufficiently large data-set the mean is distributed normally. This enables us
to draw effective conclusions from a data-set and explain the observations using
well-defined principles.

S&P500’s Normality

The normal distribution assumption is so prevalent in many domains including financial
asset pricing models of S&P 500. The normal distribution is often utilized because of its
universal occurrence in many phenomena as well as its relative simplicity. A key feature of
its simplicity is the three-sigma rule specifying that virtually all of the values are constrained
within three standard deviations of the distribution’s mean.



S&P 500 data is assumed to be normal because analysis and plotting of the sufficiently

large data set actually shows that most of the price movements are described adequately

by the normal distribution (bell-shaped curve). However, the key problem with applying this
assumption with S&P 500 data is that the exceptional price movements in the distribution

are not as extremely infrequent as assumed with a data-set explained by normal
distribution.

The following graph represents daily percent returns of the S&P 500 Index for the past 20
years. The graph shows how the daily percent returns (y axis) change over time (x axis) in
days since January 1st 1994. We can clearly see that the percentage change is not always
the same , there are also many extreme results which the normal distribution would not take
into consideration.
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The following histogram represents the daily returns of S&P 500 Index with a normal fit
shown in red. We can see that normal distribution does not account for the fat tailed nature
of the data and therefore, is not a good representation of the data for the purposes of this
project..
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The following are the Q-Q plots of the 1, 5, 20, 40 and 50 years data sets of S&P 500 Index
daily returns. From the plots we can notice that the 1 year is very much close to the normal
but as duration of the is increasing the data is going away from the normal, this is due to
the occurrence of more and more extreme outcomes over the period of time.
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Objective

The quest for reliable financial modeling techniques has increased in response to the
highly volatile and seemingly unpredictable nature of the financial markets. Large losses
and returns occur more frequently than predicted under the assumption of normality. This
was seen in the figures above describing S&P500 daily percent returns data which has
lead to the following objective:

The aim of this project is to develop a fat-tailed distribution model that fits the S&P500’s
daily percent returns to be applied in standard financial calculations.

Financial Applications

There are several standard financial calculations being done by all stakeholders interested
in financial modeling. Of those calculations, we chose to focus on two of the most popular;
Value at Risk (VaR) and Options pricing.

Value at Risk (VaR)

Value at Risk has been established as a standard tool among financial institutions to
depict the downside risk of a market portfolio. It measures the maximum loss of the
portfolio value that will occur over some period at a specific confidence level due to risky
market factors. Value at risk is used by risk managers in order to measure and control the
level of risk which the firm undertakes. VaR is measured in two variables; the confidence
level in percent, and the time frame in days. Technical details about VaR will be covered in
the model applications section below.

Importance of VaR

VaR is an important metric used by the firms to determine the capital amount that serves as a
reserve for unexpected losses.The most important application of VaR is in Basel Ill. Basel lll is
a comprehensive set of reform measures, developed by the Basel Committee on Banking

Supervision, to strengthen the regulation, supervision and risk management of the banking
sector. These measures aim to:

e improve the banking sector's ability to absorb shocks arising from financial and
economic stress, whatever the source

e improve risk management and governance

e strengthen banks' transparency and disclosures.

The VaR-based market risk capital requirement for a portfolio under the Basel Il requires
daily calculation of a basic VaR metric for the portfolio. This metric is usually calculated
using the normal distribution but is multiplied by a factor to take into consideration the



fatter-tailed nature of reality. More information about Basel Ill can be found at
http://www.bis.org/bcbs/basel3.htm.

Options Pricing

European Options provide the holder with the right to buy or sell a specified quantity of an
underlying asset at a fixed price (called a strike price or an exercise price) at or before the
expiration date of the options. Since it is a right and not an obligation, the holder can
choose not to exercise the right and allow the option to expire. There are two types of
options - call options (right to buy) and put options (right to sell). Throughout this paper, the
term option refers to a European Option.

A call option gives the buyer of the option the right to buy the underlying asset at a fixed
price (strike price or K) at any time prior to the expiration date of the option. The buyer
pays a price for this right.
e By expiration, if the value of the underlying asset (S) > Strike Price (K)
Buyer makes the difference: S - K when they exercise the option
e If the value of the underlying asset (S) < Strike Price (K)
Buyer does not exercise.
More generally, the value of a call increases as the value of the underlying asset increases
and vice versa.

A put option gives the buyer of the option the right to sell the underlying asset at a fixed
price at any time prior to the expiration date of the option. The buyer pays a price for this
right.
e By expiration, if the value of the underlying asset (S) < Strike Price (K)
Buyer makes the difference: K - S when they exercise the option
° If the value of the underlying asset (S) > Strike Price (K)
Buyer does not exercise
More generally, the value of a put decreases as the value of the underlying asset increases
and vice versa.
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Black Scholes Model

As expected, options pricing is a very important field and so many financial models attempt
to accurately value them. Of these, Black-Scholes model is the most popular. It takes into
account the option of investing in an asset earning the risk-free interest rate. It also
acknowledges that the option price is purely a function of the volatility of the stock's price
(the higher the volatility the higher the premium on the option). Volatility of a stock is the
standard deviation of the daily percent returns. Black-Scholes treats a call option as a
forward contract to deliver stock at a contractual price, which is, of course, the strike price.

The value of a call option in the Black-Scholes model can be written as a function of the
following variables:
S = Current value of the underlying asset
K = Strike price of the option
t = Life to expiration of the option
r = Riskless interest rate corresponding to the life of the option

o2 = Variance of the underlying asset
n Z 7 62 =
dlzl(K)+(:+ )t,dzzdl_c\/t
oVt
The value of a call option is :
C=S8N(d,)—Ke™ N(d,)

Implied Volatility

The implied volatility of an option contract is the value of the volatility that, when input in an
option pricing model, will return a theoretical value equal to the current market price of the
option. In principle, the implied volatility can be inferred from computed options prices by
inverting the Black-Scholes formula.

VIX is a trademarked ticker symbol for the Chicago Board Options Exchange Market
Volatility Index, a popular measure of the implied volatility of S&P 500 index options. It
shows the market's expectation of 30-day volatility and is a widely used measure of market
risk and is often referred to as the "investor fear gauge”.
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Scope

The scope of the project is developing models to fit daily returns of S&P 500 for each of 1
year, 5 years, 20 years, 40 years and 50 years. The developed models will be compared
against each other as well as the normal distribution. All developed models will then be
used to calculate Value at Risk and options prices.

The final selected model must meet the following requirements:

1. The model must obtain a mean value within a 99% confidence interval of the
respective dataset’'s mean

2. The model must obtain a standard deviation value within a 99% confidence interval
of the respective dataset’s standard deviation

3. The model must obtain a kurtosis value within a 95% confidence interval of the
respective dataset’s kurtosis

4. A Kolmogorov-Smirnov (K-S) statistical test shall not reject the hypothesis that the
data arise from the fitted model. (see the model verification section for more details)

Models will then be used to calculate VaR as well as options prices to measure their
effectiveness.
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Modeling Approach

Standard statistical analysis is conducted to better understand the data and develop
parameters that can be used in generalizing the data’s distribution. After that, the
parameters and further analysis of the data is used in two approaches in finding a
generalized distribution for the data. The first approach involves inspecting the entire data
set and learning a general fit for the data. The second approach involves inspecting the
extreme values of the data to develop a model that describes them alone.

The major assumption being made in this project is that the daily percent returns are
independent of each other. That is to say that if the S&P500 goes down 2% today, that
does not affect in any way how the S&P500 will behave tomorrow.

Whole Data Modeling

After obtaining the key parameters of the data, we generate a distribution to fit the data.
We will be looking at two types of distributions; the t-distribution and a mixture of normal
distributions. These distributions are commonly used to describe fatter than normal tailed
data sets.

t Distribution
The t distribution, also commonly known as the Student’s t- distribution, has a density
function of:

Where v is the number of degrees of freedom.

Since the t-distribution has fatter tails than the normal distribution it should be a more
realistic approximation of the distribution for the data set. The std() and stdfit() functions
found in the fGarch package in R are used to develop this model. Further information about
this package can be found at http://cran.r-project.org/web/packages/fGarch/index.html

13
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The following are sample graphs of the fit of the t-distribution model generated for the 20
year data set. First we have a graph of the density of the model compared to the data and
the normal fit of the data followed by a QQ plot of the distribution and the data.
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We can see that even though the t distribution seems to have a very good fit around the
mean of the data, there are much more extreme scenarios found in the t distribution than
the data.
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Mixed Normal Distribution

The second distribution used to fit the data will be obtained by mixing two normal
distributions of varying standard deviations. This aggregation of normal distributions with
varying standard deviations creates fatter tails than a normal distribution and can hopefully
more accurately represent the data’s distribution.

The procedure used to generate a mixed normal distribution is as follows:
1. Generate a Boolean random variable (Y) whose values are 1 with probability
p and O with probability 1-p
2. Generate two Gaussian random variable X, and X, to be mixed with
standard deviations a and B such that the variance of the mixed model is equal to
1. This method results in only one of the standard deviations being a parameter to
the distribution while the other one is calculated as follows

_ l—poc2
B_ ]7p
3. Generate a standard normal random variable Z

4. Loop through all values of the generated Boolean random variable (Y) and for
each value

a. If it is equal to one, equate the output model value to a times
the value from the standard normal random variable Z,

b. otherwise equate the output model value to 8 times the value
from the standard normal random variable Z

In mathematical terms:
Y = Bool(p)
Z =Norm(0,1)

_ l—poc2
B_ v lfp

ForeachY
ifYy =1,X =oZ
ifYy =0, X =pZ

This generated distribution has a mean of 0, standard deviation of 1 and a kurtosis value
equal to

v=3(pa’+(1-p)p*) -3
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In order to find a mixed normal distribution that fits the dataset accurately, MS Excel Solver
is used to obtain values for p and a based on the kurtosis value of the data. From there,
the model is generated and plotted on a graph alongside the data for visual comparison.

The following are sample graphs of the fit of the mixed normal model generated for the 20

year data set. First we have a graph of the density of the model compared to the data and
the normal fit of the data followed by a QQ plot of the distribution and the data.
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We can see that the mixed model doesn’t do as well as the t-distribution for the values
close to the mean but it does better in terms of extreme scenarios.
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Extreme Scenario Modeling

As briefly mentioned above, when modeling the extremes (max/min) of random variable,
Extreme Value Theory (EVT) plays the same fundamental role as the Central Limit
Theorem (CLT) when modeling aggregation of random variables. In both cases, theory
suggests what the limiting distributions are.

EVT has two significant results. First, the asymptotic series of maxima (minima) is
modeled and under certain conditions the distribution of standardized maxima (minima) is
shown to converge to a Generalized Extreme Value (GEV) distribution.

The second significant result concerns the distribution of excess values over a given
threshold, where one is interested in modeling the behavior of excess loss once a high
threshold is reached. This type of distribution is called the Generalized Pareto Distribution
(GPD).

For the purpose of the project, values greater than 2% in magnitude were considered
extreme scenarios. These are days in which the daily percent gain or loss was greater than
2%.

17



Generalized Extreme Value (GEV) Distribution

The Generalized Extreme Value distribution can be developed as follows:

Let X, be a series of iid random variables and M, be the maxima of values of X within
certain blocks of size m such that M, =Max (X,, X,,...X,). Then M, follows the GEV
distribution and H(x):

H

{

Lme) [EXP(—[]_ +8(x _M}XG]_M::]}{-‘{'%*D

exp {_ E—rx—p}.‘l.'!)

while 1+{(x-p)/a>0

The parameters , o, & correspond, respectively, to location, scale and shape (tail index)
parameters.

To find and generate accurate models for the data sets, the gev() and gevFit() functions of
the fExtremes R package were used. Further information about these functions can be
found at http://cran.r-project.org/web/packages/fExtremes/index.html

Sample outputs for the GEV models for the 20 year data set are as follows:

1994-2013 1994-2013

— GEV Model —— GEV Model
— Normal T - — Normal

20
20

15
15

- nﬂmﬂmwﬂvﬂ%ﬂ& R . Mﬂuﬁﬂwuwuﬁml_um "o

1 1 T T 1 T T T T T T T T 1T T T T T T T T T T T T T T T T T T T 1T
-0.0803498  -0.0753498  -0.0603498  -0.0453498  -0.0303498 0.020 0030 0.040 0050 0.060 0.070 0.080 0.090 0.100 0.110

Frequency
10

Frequency
10

Daily Returns Daily Returns

We can see that GEV has fatter tails than the normal and seems closer to the data.
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Generalized Pareto Distribution (GPD)
The Generalized Pareto Distribution can be developed as follows:
Let X be a random variable with distribution F and a threshold given x;, for U fixes < x,, F is
the distribution of excesses of X over the threshold U.
F.x)=PX-u<=xIX>u), x>=0

Once the threshold, u, is determined by an estimation procedure, the conditional
distribution of F is approximated by a GPD.

1—(1+ 5;;}_”5 if £5£0

Gealy) =
1—e /e if £€=0

The parameters o, £ correspond, respectively, to scale and shape (tail index) parameters.
The interesting property of tail index parameter is that there is a relationship between this
parameter and the t distribution’s degrees of freedom.

To find and generate accurate models for the data sets, the gpd() and gpdFit() functions of
the fExtremes R package were used. Further information about these functions can be
found at http://cran.r-project.org/web/packages/fExtremes/index.html

Sample outputs for the GPD model for the 20 year data set are as follows:

1994-2013 1994-2013

— GPD Model — GPD Model
— Normal — — Normal

20
20
|

Frequency

10 15
Frequency
e

m Mm/&ﬂﬂmwg}ﬁl : :_ iﬂ%ﬁ%ﬁ“ﬁ&%@ .

LI T T T T T T T T T T T T T T T T T T 1T
00903438  -0.0753498  -0.0603498  -0.0453498  -0.0303498 0.020 0.030 0.040 0.050 0.060 0070 0.080 0.0%0 0.100 0.110

Daily Return Daily Return

We can see that GPD has fatter tails than normal and seems to better fit the data as well. It
also has fatter tails than GEV. GPD’s tails also maintain their thickness further away from
the mean.
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Model Verification

The requirements developed for the models during the proposal stage had focused on the
whole data models. The extreme scenario models will be considered in their VaR results.

For the verification of the developed whole-data models with our requirements, we get the
following results:

1. The model must obtain a mean value within a 99% confidence interval of the
respective dataset’'s mean

Data Set Model Mean Mean Diff Mean Pass?
1 year Mixed Normal 0.001050733 0.002809 Pass
5 years Mixed Normal 0.000674637 0.00609 Pass
20 years Mixed Normal 0.000340924 0.017166 Fail
40 years Mixed Normal 0.000340405 0.030595 Fail
50 years | Mixed Normal | 0.000313388 0.019198 Fail
1 year T - Dist 0.001275583 0.210583 Fail
5 years T - Dist 0.001015543 0.514486 Fail
20 years | T - Dist 0.000680093 0.96061 Fail
40 years | T - Dist 0.00043666 0.24352 Fail
50 years | T - Dist 0.000405344 0.318256 Fail

The mixed model is the only model that passes this requirement and this only occurs for the
1 and 5 year data sets.
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2. The model must obtain a standard deviation value within a 99% confidence interval

of the respective dataset’s standard deviation

Data Set Model Standard Dev. SD Diff SD Pass?
1 year Mixed Normal | 0.006962838 0.0014 Pass
5 years Mixed Normal | 0.01227532 0.0002 Pass
20 years | Mixed Normal | 0.01216536 0.0011 Pass
40 years | Mixed Normal [ 0.01100889 0.0003 Pass
50 years | Mixed Normal | 0.01023801 0.0057 Pass
1 year T - Dist 0.006985151 0.0018 Pass
5 years T - Dist 0.01404796 0.1446 Fail
20 years | T - Dist 0.01312552 0.0801 Fail
40 years | T - Dist 0.01137252 0.0333 Fail
50 years | T - Dist 0.01039655 0.0097 Pass

All mixed models pass this requirement as well as the t-models for 1 and 50 years.
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3. The model must obtain a kurtosis value within a 95% confidence interval of the

respective dataset’s kurtosis

Data Set Model Kurtosis Kurt. Diff Kurt. Pass?
1 year Mixed Normal 1.316811 0.011529 Pass
5 years Mixed Normal 4.069714 0.001355 Pass
20 years | Mixed Normal 8.352593 0.00371 Pass
40 years | Mixed Normal 19.531 0.003376 Pass
50 years | Mixed Normal 20.91449 0.002748 Pass
1 year T - Dist 2.224212 0.669617 Fail
5 years T - Dist 46.59059 10.46364 Fail
20 years | T - Dist 77.11566 8.266795 Fail
40 years | T - Dist 181.9548 8.284757 Fail
50 years | T - Dist 0.010397 0.102399 Fail

All mixed models pass this requirement while all t models fail it.
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4. A Kolmogorov-Smirnov (K-S) statistical test shall not reject the hypothesis that the
data arise from the fitted model. (see the model verification section for more details)

Data Set Model K-S

1 year Mixed Normal D =0.0521 p-value = 0.5006
5 years Mixed Normal D =0.0272 p-value = 0.3076
20 years | Mixed Normal D = 0.0554 p-value = 7.916e-14
40 years | Mixed Normal D = 0.0994 p-value < 2.2e-16
50 years | Mixed Normal D =0.0972 p-value < 2.2e-16
1 year T - Dist D = 0.0088 p-value = 0.3473
5 years T - Dist D =0.0212 p-value = 0.6325
20 years | T - Dist D =0.0181 p-value = 0.08711
40 years | T - Dist D = 0.0089 p-value = 0.4554
50 years | T - Dist D = 0.0088 p-value = 0.3473

In agreement with the sponsor, this requirement is removed to focus on results of the
applications of the developed models.

Model Verification Conclusions

Based on the results of the model verification process we can see that the preliminary
requirements may have been too conservative for the models. Results from the VaR and
options pricing applications of the models will be used to come to general conclusions
about applications of the chosen fat tailed models.
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Model Applications

Two applications of the developed fat tail model will be pursued. Of the most common
fields of modeling in financial markets, risk mitigation and options pricing are extremely
interesting. For risk mitigation, the application chosen will be calculating value at risk (VaR)
and for options pricing, a Monte Carlo simulation for options pricing will be developed.

Value at Risk (VaR)

Value at Risk, or VaR, is a very important metric for taking risk into consideration when
making important financial decisions. It can be calculated as the x-value of the density of
the N-day returns at which the area under the curve is equal to one hundred minus a set
confidence level.

Calculation Method

The method used to calculate this value for the generated models is quite simple. The
model of 1 million points is provided and the code then sorts the entire data set in
ascending order. Based on the confidence level, the number of points that are needed to
generate one hundred minus the confidence level is calculated. Using that value, we find
that point in the ordered data set to find the VaR. For example, for a 95% confidence level,
5% of 1,000,000 is the number of points. We then find the 50,000th point in the ordered
data set and that gives us the VaR.

This method is applied to all models using daily % returns to calculate the 1-day 95%, 99%
and 99.9% Values at Risk.

Benchmark Calculation

After the model values are calculated they must be compared to a benchmark value for
verification of the results. The benchmark used is calculated by running a simulation of the
data set. Using a function in R called sample(), which produces a random sample of n data
points from a dataset, we generate 500 and 1000 days of daily % returns. From these
values, we can calculate the VaR using the method described previously. We then repeat
this run for 1,000,000 replications and take the average VaR from all the simulations. This
provides two benchmark values for each data set.
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Results

Below are the Values at Risk results shown on a chart The chart is organized by data set in
order of smallest to largest followed by each model in the order of Normal, Mixed, T, GEV,
GPD and the two benchmark outputs from the simulation. The bars are then displayed for
each model, 95% then 99% and finally 99.9%. The Values at Risk are shown as a
percentage of the assets’ value.
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The following are the important observations from the chart:

1. As the confidence level increases the Values at Risk increase.

2. As the data set increases the Values at risk also increase. This is due to more
extreme results being included in the data set.

3. The extreme value models also show larger Values at Risk due to fatter tails in the
models. However, with less data they are closer to the whole data models due to
less availability of extreme results.

4. The simulation results appear to be closer to the whole data models, specifically the
normal model, than the extreme scenario models.
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To better compare the results to the simulation outputs, we analyze the difference between
the 1000 day simulation and the models. First, we compare the differences and then the %
difference as shown in the graphs below. The graphs are organized the same way with the

data sets followed by the models (excluding the simulations) and the bars showing the
same 95, 99 and 99.9% confidence levels.

Difference from 1000 day Simulation's 1-day VaR
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We can see that the normal distribution is generally the closest to the simulation results but
it shows results that are less in magnitude than the simulation results. The next best whole
data model is the Mixed model as long as we don’t take into consideration the 95% level.

Since this confidence level is, in fact, rarely used in practice the Mixed model seems to be
the best approximation after normal.
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For more accurate comparison we look at the percent difference from the VaR simulation:

% Difference from 1000 Day Simulation 1-day VaR
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The normal model is the closest to the results however it provides values that are smaller
than the actual results. The mixed model is the next best one and its results are larger than
the simulation results. The mixed model should however, only be considered in cases
where a 99% or larger VaR is considered. Since, in practice the 99% VaR is the most

common, we conclude that for VaR, the mixed model is the next best model to the normal
model.
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Options Pricing

For analyzing the effects of fat-tailed models on options pricing we looked at options of
S&P500 with varying expiration dates and strike prices. Namely options expiring 30,60
and 90 days with strike prices above and below the start price by 1, 2 and 5%. Option
prices for each model as well as the historical data were calculated using a Monte Carlo
simulation.

Simulation

The simulation takes the input as the model of S&P 500 daily % returns and then runs for
the duration of the options, simulating the underlying asset. The difference from the strike
price is then calculated to obtain the value of the options. This value is then discounted
using the interest rate input to the simulation. This is then repeated for 100,000 replications
and the average value for the call and put options are calculated to provide the final result
for each model. The entire procedure follows the following equations:

Vin,m) = S*[1(1+d+m,)
i=1

M =

g Max(V(n,m)—K,O)*eiglé A Max(V(n,m)—K,O)*e:zgli
C(n,K,m) = = 7 , P(n,K,m) = — 7

V(n,m) = value of the asset after n days using model m
S = Start price of the asset
n = number of days to model the asset
d = drift rate (used as 0.1)
m; = the value generated from model m for day i
C(n,K,m) = the price for a call options with expiration n trading days and strike price K using model m
P(n,K,m) = the price for a put options with expiration n trading days and strike price K using model m
r = the risk— free interest rate (used as 0.05)

R = the number of replications for the simulation (used as 100,000)
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Benchmark Calculation
For comparing the simulation to actual results, historical options prices were not freely

available so we used an approximation for them. Using Black-Scholes with the implied
volatility value from VIX on December 31st 2013 we were able to create a metric for

comparison to the simulation results.
The % difference from the calculated values of Black Scholes is used to measure each

model’s effectiveness. This is calculated as follows:

__ BlackScholesp,;.,— Simulationp,,
Benchmark = BlackScholesp,;,

From now on, this value shall be referred to as the benchmark.

Results
Below are the results of the benchmark values for call options. The graph is grouped again

by the dataset but now followed by the strike prices in ascending order and the bars show

each model’s w benchmark value.
ith the Data followed by Normal, Mixed and T. The extreme value models were not used for

options pricing due to them not modeling the rest of the scenarios.
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The following are the important observations from the chart:
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1. As the strike price increases the benchmark increases.
This is due to the benchmark being a percent value and the values of lower strike call
options having a much higher magnitude. For example, a $5 increase on a $20 option will
result in a much smaller benchmark than a $2 increase on a $1 option.

2. The benchmark values for the data, normal model and mixed model are closer to

each other whereas the T model is significantly higher.

This is due to the extreme scenarios that are more frequent in the T model which lead to
higher price estimates for the options.

3. Using larger datasets stabilizes the effect of larger differences of T from the other

models due to more extreme scenarios being available in the data.
4. The mixed model is generally the closest to the data followed by the normal model.
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As the duration of the option prices increases, the benchmark value increases as well. This
is due to more extreme scenarios occurring and may also be due to the fact that VIX is an
accurate estimate for 30 days but may prove less accurate for a longer duration.
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The trend noticed in the option duration of 60 days is again noticed in 90 days. We can
also see that the benchmark for the larger strike prices decreases. This is due to the price
of the 5% greater strike price rising and the the benchmark (percent difference) decreasing
since the difference from Black Scholes is smaller than the difference due to increase in

duration.
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Conclusions

Based on the model verification, Value at Risk calculations and Options pricing
application, we've reached the following conclusions:
1. The data does indeed have fatter tails than the normal distribution, but the
developed models have a fatter tail than the data and by a larger magnitude.

Normal,,;; < Data,,; << MixedModel,,;

2. The normal model is the most accurate general model for financial applications but
it is not good enough.

The normal model produces the closest VaR'’s but they are smaller than the actual data. A

better way of using the normal model would be to introduce a multiplier of the normal model

or a base value that is added to the normal for VaR calculations.

For options pricing, the normal and mixed models are quite close in comparison with no

significant difference.

3. The mixed model is the next best model.
The mixed model can be a valid estimator for VaR as long as a 99% or higher VaR is
considered. It will still provide values that are larger than accurate which means that the
investor would be on the safe side.
For options pricing, the normal and mixed models are quite close in comparison with no
significant difference.
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Recommendation

The normal distribution is not a good enough estimator in financial applications that deal
with risk and extreme scenarios such as Value at Risk calculation . We recommend the
use of the normal and mixed normal models in making investment decisions. This allows
the investor to have a lower and upper bound of risk to their investment:

e The normal model underestimates the actual risk

e The mixed model overestimates the actual risk

Future Work

For next steps or future plans of the project, we recommend investigating the best
approach of calculating VaR from the recommended methods as well as testing other
scenarios of options pricing to validate our expectation that the mixed model would be a
more reliable model for calculating options prices.

Another approach going forward with this project is to model the standard deviation of the
daily % returns as opposed to the daily % returns themselves. This could investigate the
dependence of daily returns on each other and relax that assumption that is made in this
project.
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Appendix - EVM and Project Management

The earned value chart for this project is as follows:
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The project required a lot of effort up front regarding researching the topic and better
understanding the context. After understanding the context we began coding the analyses
and the model which was somewhat time consuming since we attempted to manually code
all necessary functionality or rely on built-in functions in R. After coding extensively in R, we
found packages that could assist in the analysis of the model. This required some
additional coding but resulted in the speeding up of our progress afterwards. We also
spent more time documenting our results than expected as well as less time coding than
expected which resulted in somewhat of a balance. The final earned value is less than
planned due to not pursuing the initially proposed combined model approach and
postponing it to future work.
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The following is our WBS followed by our Gantt Chart with the critical path marked in red:
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