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Abstract 
Normal distributions are commonly used in many modeling techniques to describe reality yet in 

many cases, reality follows a fat-tailed distribution not a normal one. This critical assumption 

results in potentially inaccurate models especially when modeling extreme events such as risk 

or financial market changes. The aim of this project is to develop distribution models that more 

accurately represent the reality of these extreme scenarios as well as apply this model in option 

price and Value at Risk calculations. 

 

Context 

Financial Engineering 
Financial engineering is a multidisciplinary field that involves the use of mathematical 

techniques and analyses to solve financial problems. It uses a variety of tools such as statistics, 

concepts of economics, computer science, and applied mathematics to help address the 

financial market, present and future. Financial engineering is primarily used as an analysis 

technique for financial corporations such as corporate banks, hedge funds, and investment 

banks. 

 A common factor in most of the definitions of Financial Engineering is risk. Risk can be defined 

as the lack of a certain or favorable outcome to a given situation/investment. Investments are 

generally made in anticipation of a positive return but the value of this return is uncertain and 

unpredictable. The practice of financial engineering facilitates tools to determine a set of 

decisions to minimize future risk. 

 

Financial Modeling Techniques 
Financial markets have some peculiarity in that they are subject to randomness. This 

randomness mostly arises from a countably infinite number of actions or decisions of intelligent 

market participants, investors and regulators. Of course, this claim does not neglect effects of 

some natural phenomena like natural disasters or other external occurrences.  

One may conclude that the data which reflects convolution of countably infinite number of 

random events leads to normal distribution behavior when we consider two fundamental 

theorems of probability theory, namely Central Limit Theorem (CLT) and Strong Law of Large 

Numbers (SLoLN). However, financial markets generally deviates from this property because of 

human interaction, through rational or quasi rational decisions by participants. This property of 

financial markets has been a topic of interest for researchers since the 1960`s.  

The first comprehensive explanation of this property of financial markets came from B.B. 

Mandelbrot (1963), in his seminal paper, The Variation of Certain Speculative Prices, followed 

by Fama E (1965), and many others.  A significant amount of knowledge has been accumulated 

since those times and some of the theoretical approaches suggested by research papers have 

found their way into the financial industry.  Since that time, some properties of financial markets 

have been compiled as “stylized facts” of financial markets, they are: 
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● Volatility Clusters: Large price changes tend to be followed by large price changes and 

small price changes tend to be followed by small price changes (Reflection of human nature-

movement of crowds). 

● Fat Tails: The tails of probability density models for financial markets are thicker than 

those proposed by the normal distribution. The implication of this fact for financial returns is that 

the probability of extreme profits or losses is much larger than predicted. 

● Autoregressive Behavior: Positive price changes tend to be followed by positive price 

changes. 

● Skewness: There is an asymmetry in the upside and downside potential of price 

changes. 

● Temporarity of Tail Thickness: The probability of extreme returns on assets (both 

positive and negative returns) can change through time; it is smaller in markets with low volatility 

and much larger in markets with high volatility.  

Hence, any modelling attempt for financial markets should incorporate those stylized facts into 

the model under consideration to some extent, otherwise the model will lose its crucial part for 

applicability. Unfortunately, the current state of modeling techniques make a serious assumption 

regarding the distribution followed by the financial markets. By assuming a normal distribution, 

much of the modeling logic becomes simplified at the risk of accuracy of the model. 
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Problem Statement 
The quest for reliable financial modeling techniques has increased in response to the highly volatile and 

seemingly unpredictable nature of the financial markets. Large returns are shown to occur more 

frequently than predicted under the assumption of normality.    

Therefore, there is a need for a financial model that accounts for the fat tailed nature of change in asset 

value, as opposed to the current (log)normal assumption. The aim of this project is to develop a model 

that meets this need. 

Scope 
The scope of the project is to develop a probability distribution that reliably estimates the “black 

swan” events in financial markets. Models will be developed to fit S&P500 data for 1 year, 5 

years, 20 years, 40 years and 50 years. These models will then be used to calculate value at 

risk (VaR) as well as option prices based on historical volatility. The calculated values will then 

be compared to other models as well as actual values where applicable. 

 

The developed model must meet the following requirements: 

1. Generated to fit data for 1 year, 5 years, 20 years, 40 years and 50 years of S&P500 

data 

2. Fitted data in requirement 1 must obtain a mean value within a 99% confidence interval 

of the respective dataset’s mean 

3. Fitted data in requirement 1 must obtain a standard deviation value within a 99% 

confidence interval of the respective dataset’s standard deviation 

4. Fitted data in requirement 1 must obtain a kurtosis value within a 95% confidence 

interval of the respective dataset’s kurtosis 

5. Fitted data must pass the K-S statistic test. (see the model verification section for more 

details) 

 

More requirements may be developed as the model verification metrics researched are ironed 

out as well as when preliminary results are developed. Using preliminary results, appropriate 

requirements can be set for the scope and expectation of this project given its short duration. 

Technical Approach 
General data analysis will be conducted to better understand the data and develop parameters 

that can be used in generalizing the data’s distribution. After that, the parameters and further 

analysis of the data will be used in two approaches in finding a generalized distribution for the 

data. The first approach involves inspecting the entire data set and finding a general fit for the 

data. The second approach involves inspecting the extreme values of the data (the black 

swans) to develop a model that describes them alone. This extreme scenario approach can 

then be combined with the “whole data” approach to develop a model that accurately represents 

both extreme and non-extreme scenarios. 
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General Data Analysis 
General analysis of the dataset will be conducted to understand critical metrics of the data. 

Mean, standard deviation, kurtosis and skewness values will be calculated in order to 

understand the shape of the data’s distribution. These metrics can then be used in generalizing 

a distribution for the data.  

The data will also be checked for normality using the Anderson Darling and the Shapiro Wilk 

tests to verify the assumption of fat tailed-ness.The data’s density will also be plotted so that the 

distribution can be easily visualized and compared to a normal distribution. An example of this 

analysis for the last 250 days of S&P 500 data is as follows: 

 

Mean: 0.0009688516 

Standard Deviation: 0.006825034 

Kurtosis: 1.083292 

Skewness: -0.4975298 

 

Graph: 

 
 

 

 

Whole Data Modeling  
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After obtaining the key parameters of the data, we attempt to generalize the distribution of the 

data with two types of distributions. The t-distribution and a mixed normal distribution. These 

distributions are commonly used to describe fat tail data sets since they can have fat tails. 

 

t Distribution  

The t distribution, also commonly known as the Student’s t- distribution, has a density function 

of:  

 
 

Where v is the number of degrees of freedom. 

The degrees of freedom parameter is the key parameter that describes how fat-tailed the 

distribution is. This can be better understood by looking at the following graph of t-distributions 

with varying degrees of freedom. 

 

 
 

Since the t-distribution has fatter tails than the normal distribution it should be a more realistic 

approximation of the distribution for the data set. The “fitdistr()” function in R will be used to 

obtain the most accurate generalization of the dataset. This function uses maximum likelihood 

fitting to reach the most accurate distribution. Further information about this function can be 

found at http://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html . 

 

http://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html
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Mixed Normal Distribution 

The second distribution used to generalize the data’s behavior will be obtained by mixing two 

normal distributions of varying standard deviations. This aggregation of normal distributions with 

varying standard deviations creates fatter tails than a normal distribution and can hopefully more 

accurately represent the data’s distribution. 

 

The procedure used to generate a mixed normal distribution is as follows: 

1. Generate a Boolean distribution (Y) whose values are 1 with probability p and 0 with 

probability 1-p 

2. Generate two Gaussian random variable 𝑋1 and 𝑋2 to be mixed with standard deviations 

(  and 𝛽) such that the variance of the mixed model is equal to 1. This method results in only 

one of the standard deviations being a parameter to the distribution while the other one is 

calculated as follows 

𝛽 = √
1 − 𝑝𝛼2

1 − 𝑝
 

3. Generate a standard normal distribution Z 

4. Loop through all values of the generated Boolean distribution (Y) and for each value 

a. If it is equal to one, equate the output model value to α times the 

value from the standard normal distribution Z,  

b. otherwise equate the output model value to β times the value from 

the standard normal distribution Z 

 

In mathematical terms: 

𝑌 = 𝐵𝑜𝑜𝑙(𝑝) 

𝑍 = 𝑁𝑜𝑟𝑚(0,1) 

𝛽 = √
1 − 𝑝𝛼2

1 − 𝑝
 

 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑌 

𝑖𝑓 𝑌 =  1, 𝑋 =  𝛼𝑍 

𝑖𝑓 𝑌 =  0, 𝑋 =  𝛽𝑍 

This generated distribution has a mean of 0, standard deviation of 1 and a kurtosis value equal 

to  
 

𝛾 =  3(𝑝𝛼4 + (1 − 𝑝)𝛽4) − 3 

 

Graphs of mixed normal distributions with varying p, 𝛼 and kurtosis values are included in the 

appendix. 

 

In order to find a mixed normal distribution that fits the dataset accurately, MS Excel Solver is 

used to obtain values for p and 𝛼 based on the kurtosis value of the data. From there, the model 

is generated and plotted on a graph alongside the data for visual comparison. 
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An example of this procedure was conducted on S&P 500 data for the last 250 days. The 

parameters for this dataset were covered above in the General Data Analysis section. Using MS 

Excel Solver the p and α values are calculated. The following graph shows a plot of the 

generated model and the actual data set. 

 

 
 

Extreme Scenario Modeling 
As briefly mentioned above, when modelling the extremes (max/min) of random variable, 

Extreme Value Theory (EVT) plays the same fundamental role as the Central Limit Theorem 

(CLT) when modelling aggregation of random variables. In both cases, theory suggests what 

the limiting distributions are.  

EVT has two significant results:  

First, the asymptotic series of maxima(minima) is modelled and under certain conditions the 

distribution of standardized maxima (minima) is shown to converge to a Generalized Extreme 

Value (GEV) distribution.  

The second significant result concerns the distribution of excess values over a given threshold, 

where one is interested in modelling the behavior of excess loss once a high threshold is 

reached. This type of distribution is called the Generalized Pareto Distribution (GPD). 

Before fitting any extreme data series to the above mentioned distributions, one needs to 

confirm whether there are extremities or rare events in the dataset. Advanced statistical 

techniques are available for this analysis, however correctly designed Q-Q plots provide good 

insight into the matter. Keeping in mind the principle of maximum parsimony, we prefer to work 

with Q-Q plots for this project. Once the extremities are detected, the parameter of distribution 

will be estimated through Maximum Likelihood Estimation (MLE) procedures which are already 

available within several R programming language packages. 



10 
 

A problem with the EVT approach is deciding where the tail starts for any distribution’s original 

data set. This problem can also be solved by visual examination of the distribution fit graphs. 

Since extremities are rare by definition, we will work with large data sets of S&P 500 daily 

returns. 

Generalized Extreme Value (GEV) Distribution 

The Generalized Extreme Value distribution can be developed as follows: 

Let 𝑋𝑛 be a series of iid random variables and 𝑀𝑛 be the maxima of values of 𝑋 within certain 

blocks of size 𝑚 such that 𝑀𝑛 = 𝑀𝑎𝑥 (𝑋1, 𝑋2, … 𝑋𝑛). Then 𝑀𝑛 follows the GEV distribution and 

H(x): 

  

 
 

The parameters 𝜇, 𝜎, 𝜉 correspond, respectively, to location, scale and shape (tail index) 

parameters. 

The basic problem before applying GEV to any dataset is defining the appropriate block size for 

maxima evaluation. There is no closed form solution to this problem but there are some rules of 

thumb derived from experience. For long term analysis, grouping of daily data into annual 

blocks gives the best results since they cover seasonal effects. However this approach creates 

problem of data availability since for 5 years, for example, there will be only 5 data points. We 

are planning to define the blocks as yearly whenever applicable, otherwise we will define 

smaller size blocks, e.g. weekly, monthly or quarterly. This will also allow us to test these rules 

of thumb and prove their accuracy. 

Although the distribution above is defined for maxima, it is easily converted to minima by 

multiplying x by -1. (invariant property). 

 

Generalized Pareto Distribution (GPD) 

The Generalized Pareto Distribution can be developed as follows: 

Let X be a random variable with distribution F and a threshold given xf, for U fixes < xf, Fu is the 

distribution of excesses of X over the threshold U.  

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢 <= 𝑥𝐼 𝑋 > 𝑢), 𝑥 >= 0 

Once the threshold, u, is determined by an estimation procedure, the conditional distribution of 

F is approximated by a GPD. 
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The parameters 𝜎, 𝜉 correspond, respectively, to scale and shape (tail index) parameters. The 

interesting property of tail index parameter is that there is a relationship between this parameter 

and the t distribution’s degrees of freedom. 

 

Combined Whole Data & EVT Distribution 

Since the EVT approach only provides a distribution for the extreme scenarios, a model may be 

developed that combines the whole data models developed with the extreme value distributions 

to obtain a model that accurately represents the dataset as a whole. 

 

Model Verification 
In order to verify the developed models’ goodness of fit, several metrics will be used. Of these 

metrics, the Kolmogorov-Smirnov (K-S) statistic will be used. 

Other metrics are still being researched and developed in order to obtain more solid 

requirements for the developed model. 

 

Applications  
Two applications of the developed fat tail model will be pursued. Of the most common fields of 

modeling in financial markets, risk mitigation and option pricing are extremely interesting. For 

risk mitigation, the application chosen will be calculating value at risk (VaR) and for option 

pricing, a Monte Carlo simulation for option pricing will be developed.  

Value at Risk (VaR)  

Once complete models have been developed and verified, VaR calculations will be made for 

each model type and normal distribution as well for benchmarking. We will also develop some 

measures of effectiveness (MoE) in order to compare each models outputs and try to identify 

best approach for risk measurements. The MoE’s will be defined on principles of conservatism, 

accuracy and efficiency. 

Option Pricing 

Once complete models have been developed and ve3rified, a Monte Carlo Simulation can be 

run to simulate the expected value of an option.  

The simulation will work by taking several inputs (Strike price, duration, risk free rate, discount 

rate, and replication count) in addition to model information (volatility, distribution). It will then 

generate daily values for change in price based on the model. Once the duration given to the 

simulation has run, it can calculate an expected value for option prices than can be compared to 

actual prices of options, as well as Black-Scholes prices using historical volatility, to verify the 

model. 

Expected Results 
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The results of this project are twofold, to reach a model that can accurately depict a data set of 

a fat tailed distribution and to be able to apply the developed model in financial applications to 

achieve more realistic values and be capable of making more informed decisions. 

Expected Model Results 
 

In general, the expected results for the modeling portion of the project are to find at least 1 

model that can accurately depict the dataset’s distribution. The expected model results are 

described for each of the attempted modeling techniques as follows: 

 

t-Distribution 

 

The t-distribution model should be an effective method in accurately generalizing a distribution 

for the data obtained for S&P500. This distribution has been used by several research parties in 

depicting a fat tail distribution. The t-distribution is expected to be the best generalized model for 

a an entire data set as opposed to splitting up the dataset into extreme and non-extreme values.  

 

Mixed Normal Distribution 

 

Based on preliminary results of the mixed normal distribution shown above, it seems that the 

approach used to achieve an accurate model is valid. Further inspection with quality metrics 

needs to occur in order to accurately know how well the model is at fitting the data. With 

applying this model, we can also find out how well it is compared to the t distribution. 

 

GEV and GPD Distributions 

We expect to estimate the parameters of those distributions for S&P 500 Index data for different 

time frames within some confidence levels. If we have enough time, we are planning to conduct 

sensitivity analysis of those point estimations on developed models. 

 

Expected Application Results 
For VaR calculations, we expect different estimates for each type of modelling approaches. 

After we compare those estimates with respect to MoE’s that we will develop, hopefully we will 

select best model for S&P 500 index. We also plan to compare each modelling approach with a 

range of confidence levels of VaR calculations. In theory, EVT modelling approach performs 

better at high confidence levels, i.e. %99 or more. 

For options pricing, we plan to compare option price estimates of each modelling approach 

including normal distribution with historical market prices for set options with given maturity and 

strike price. In order to make meaningful comparisons of option prices, we will use series of 

price estimates and apply statistical tests. Hopefully, we expect to define better estimation 

methodology than current Black Scholes model, which depends upon normality assumption. 
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Project Plan 
This project aims to follow the following work breakdown structure and schedule: 

 

 

Project

1.0 Definition

1.1 Context

1.2 Problem

1.3Scope

2.0 Model

2.1 Data Analysis
2.2 Whole Data 

Model

2.2.1 Mixed 
Normal Model

2.2.2 t 
Distribution 

Model

2.3 Extreme 
Scenario Model

2.3.1 GEV Model

2.3.2 GPD Model

2.3.3 Combined 
Model

3.0 Model 
Applications

3.1 VaR 
Calculations

3.2 Option 
Pricing

4.0 Deliverables

4.1 Problem 
Presentation

4.2 Scope 
Presentation

4.3 Proposal

4.4 Progress 
Reports

4.5 Dry Runs

4.6 Website

4.7 Report

4.8 Final 
Presentation
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The following is the Gantt Chart for the schedule. The critical path is highlighted in red. 
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Appendix 
The following are graphs of generated data of mixed normal distributions. 

 

 


