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Abstract 
As time goes on, our world continues to become more networked, and more advanced sensors become 

part of the devices we use daily.  Our cell phones, watches, and cars will soon be able to connect 

regularly with one another, creating a ubiquitous network of communication.  This network can be used 

in a variety of ways.  One such application that we will discuss in this paper is the detection and 

surveillance of unregulated Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) materials.  

These detections are crucial for safeguarding the nation from weapons of mass destruction.  Ubiquitous 

sensors can be used to detect some of these materials.  By communicating detections in time and 

location, illicit materials can be localized, tracked, and ultimately interdicted.   

We created a model of a ubiquitous sensor network using Excel Visual Basic and modeled a network of 

people carrying sensors at the Macy’s Thanksgiving Day Parade in New York City.  The parameters of this 

event are discussed in the Scope Section of this report.  The model generates a crowd (each with their 

own sensor) and several groups of parade participants.  It then generates a source (with a 

radioactive/nuclear type of emanation)  that enters the simulation at a fixed point and moves either 

directly or in a random manor to a fixed drop off location.  The sensor network detects the movement of 

the source and estimates its position.  The model outputs various metrics that are used to analyze the 

relationship of the various ubiquitous sensor networks’ parameters.  We analyze the effects of 

randomness of source movement, crowd movement, sensor density, “see distance”, various 

distributions for sensor efficiency, and negative and false detections.  From our results we have 

compiled a framework of desired parameters for a ubiquitous (CB)RN(E) sensor network to aid in a 

(CB)RN(E) event interdiction. 

This project is being sponsored by TASC, Inc. with the purpose of introducing a framework and analysis 

for the detection of CBRNE materials through ubiquitous sensor networks. 
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Intro 

The Sponsor 
TASC, Inc. is a provider of systems engineering resulting in scientific, engineering, and technical services 

to federal, state, and local government agencies, as well as the military.  Our sponsor, TASC, Inc., based 

out of Lorton, Virginia, is working to solve many of the most pressing national security and public safety 

challenges facing our nation and the world.  In terms of defense, TASC, Inc. plays a key role in supporting 

the protections which prevent illicit agents from entering the United States.  TASC, Inc. has requested an 

investigation of parameters and the introduction of a framework for further analysis.  This study will be 

continued by future teams and eventually company computational scientists within a classified setting 

once more advanced sensor technologies exist. 

History of Security Concerns 
The United States’ susceptibility to a CBRNE attack has increased over the years due to prior terrorist 

intentions and events.  From the 1990’s, the Department of Defense acknowledged both the creation of 

a growing number of CBRNE weapons of mass destruction and their impact on the United States.  Since 

the terrorist attacks of September 11, 2001 and the Anthrax incident of 2001, there has been a 

heightened concern that nuclear weapons and chemical and biological materials pose a grave, future 

threat to the citizens of the United States. The Department of Homeland Security (DHS) was created to 

safeguard the country against terrorism and respond to any future attacks (Creation of the Department 

of Homeland Security).  In addition to smuggling hazardous materials into the country, there are several 

chemical agents that are easy to obtain and produce that can be used as weapons or explosives (Nelson, 

2012).  Since the fear of chemical and radioactive agents getting into the wrong hands is so concerning 

and because of the detrimental effects of a CBRNE event or attack, it is a goal of the United States to 

focus their defense and security-related research toward the detection of explosive and chemical 

weapons that can be used as weapons of mass destruction. 

Detection of explosive or chemical devices can be difficult due to the way they are concealed.  Often, 

they are placed in crowded areas or main areas of travel so that it is difficult to be detected within the 

environment (Stankovic, 2006).  More recently, explosive devices have been placed in overcrowded 

areas of high value and high visibility.  In the United States, there are many public and transportation 

venues that are susceptible to a CBRNE incident.  Such venues consist of, but are not limited to airports, 

sporting events, concerts, races, and speeches.  Some examples from recent decades consist of the 

Boston Marathon tragedy, the World Trade Center bombings, and the New York City subway plot  

(Chakraborty, 2013).  Thus, it is extremely important to provide an appropriate sensor network 

framework and architecture to protect the people present at these and other similar events. 

Wireless Sensor Networks 
A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network.  

The sensors will communicate wirelessly and self-organize when deployed, whether in an ad-hoc 

manner or not (Stankovic, 2006). To support the TASC, Inc. initiative to protect the United States from a 

CBRNE attack in particular, our group has created a model to simulate a network of sensors that detects 

and tracks a nuclear/radioactive source prior to its release or detonation.  
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Ubiquitous refers to the idea that anyone, anywhere, at any time, can be a part of a network (Park, 

2005).  Ubiquitous sensor networks allow for CBRNE detectors to continuously monitor the presence of 

illicit materials in any venue in order to prevent an incident from occurring, and just as importantly, to 

provide the proper authorities a timely warning (Nelson, 2012).  The use of these detectors can provide 

intelligence and greatly reduce the time to discovery of a CBRNE source, as well as the interdiction of a 

CBRNE incident.  The instantaneous feedback on the conditions of a venue’s environment and the 

localization of a source are critical for a more rapid and well-organized response.  If successful, an 

effective WSN will enable the quick detection and localization of an illicit source (Nelson, 2012). 

The characteristics of a WSN are important for its efficacy.  Firstly, the network must consist of a large 

number of sensor nodes ranging from ten to ten thousand dispersed throughout a venue (Park, 2005).  

These nodes can be arranged in an ad-hoc scenario or can be part of a ubiquitous and mobile network of 

sensors.  The density and architecture of a network greatly influences its success.  The more nodes that 

can hone in on a CBRNE source, the greater the area of detection overlay.  Second, it is important that 

the sensors have a way to communicate, process, and transmit data among one another in order to 

cooperatively summarize observations of their environmental conditions (Park, 2005).  Without this 

communication and data fusion, a network is nothing more than thousands of individual nodes acting 

alone, with no common purpose to track, detect, or monitor uncertain and illicit materials.  What 

happens with this data that is collected is just as important as communication among one other.  A 

network can have a gateway or a sink node that connects a network of sensors to other networks and 

the outside world.  This gateway is a central location that combines the collection of information to be 

analyzed (Park, 2005).  Lastly, a ubiquitous sensor network is useless unless the information is dealt with 

appropriately.  Thus, the proper authorities must be alerted of any CBRNE incident as soon as the data is 

analyzed. In addition to the way the networks work together, their individual characteristics are 

significant in CBRNE source detection as well.  In the case of detecting and preventing a CBRNE incident 

through a ubiquitous network, sensor nodes will consist of small, low cost, low-power devices that can 

communicate within short distances, sense environmental data, and perform minor data processing.  

The reduced size and reduced cost of these advanced sensors will not only be required but crucial for an 

omnipresent “surveillance.”  The reduced size would allow for the sensors to be used in numerous 

locations and allow them to be easily portable. The reduced cost would allow for the sensors to be used 

in a wide variety of devices without an increase in cost thus allowing for higher density networks. 

One such sensor platform that is currently portable and used daily is the cell phone.  Most cell phones 

have both a microphone and a camera, and can be connected to other phones via Bluetooth.  Cell 

phones are actually part of their own network and have predictable power supplies and life 

expectancies.  What makes them a significant entity within a large-scale ubiquitous network is the large 

number that exist and the vast spatial territory they encompass (Kansal, Goraczko, & Zhao, 2007).  In the 

event that a CBRNE source is present at a public venue, cell phones that are equipped with the proper 

detectors can work together to collect and store location and detection data, which could be sent to a 

universal storage cloud.  The network can localize the hazardous source and have authorities alerted.  It 

is extremely likely that cell phones, combined with other electronic devices such as cars, watches, and 

cameras, can be used in unison to work together for the detection of harmful agents in the goal to 

protect the United States from CBRNE incidents in the near future. 
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Assumptions 
For our scope, the team has decided to rule out topics that are not relevant to the specific goal of this 

project, which is to analyze the relationships between variables and metrics of wireless sensor networks.  

One significant assumption is that sensor implementation is feasible.  The team will assume that these 

sensors could be implemented in order to analyze relationships between parameters of a sensor 

network that localizes a (CB)RN(E) source.  This assumption also implies that the technology for sensors 

small enough to fit in a cell phone will be capable of detecting CBRNE materials in the future.  This is not 

an unrealistic assumption.  In fact, much work has already been done in this area (Cell-All: Super 

Smartphones Sniff Out Suspicious Substances) (Sutter, 2010). 

The team assumes agnostic sensors; that is, the sensor in the network is not a specific make or model.  

The model assumes that there is one sensor per person.  For the purpose of studying parametric 

relationships, the sensors’ strength will remain constant for a single run or single data set of runs; 

varying from one set of data to the next throughout our study.  In addition, the team will assume a 

single, agnostic source, classified by either of the following: radioactive or nuclear. 

Due to the time available, we have decided that the model will only generate and track a single source. 

We created a preliminary algorithm to track multiple targets and gain better insight into its effects.  It 

was concluded that multiple target tracking would add excessive time to the model creation and limit 

the time allotted for analysis. Simulating a single source provided the necessary data for a good 

understanding and analysis of the network parameters.  It is to be noted that if the model generated 

more than one source, then multiple sources could be detected and properly tracked.  However, to 

simulate more sources additional coding would have been required and thus exponentially expanding 

the required code. The biggest effect on the current model, resulting from not being able to track 

multiple targets, is the increased position errors when false detections are enabled.  Finally, in the 

model, a generic source emanation function is used, which can be adjusted accordingly in order to allow 

a future team to conduct follow up analytics in anticipation of a particular source.   

Detections by sensors will be modeled as a binary action.  The source emanation will be consistent with 

the inverse square law.  For our simulation, this emanation level will not have noise associated with it.   

There will be a threshold which will set off a sensor.  If, at a particular range, the emanation is lower 

than the threshold a detection will not occur.  If, at a particular range, the emanation is equal to or 

greater, then a detection will occur.  The sensors will reset and show no detection once the emanation 

level decreases below the threshold level. 

The variability of the source movement through the network has been limited.  The source will enter the 

simulation area near the green square, as indicated in the diagram below, which will be fixed for all 

replications.  It is a logical assumption for the source to enter into the area from a side street to start his 

movement through the simulation, as opposed to walking across the parade for example.  The source 

will move through the simulation area either directly or with random movement, which will be discussed 

later.  The simulation will end when the source reaches the drop off location indicated by the red square 

in the diagram below.  We assume the source will be dropped off near the front of the sidewalk in order 

to cause significant damage.  There are more people at the front of the sidewalk, and in addition, parade 

participants will be possible targets.  This drop off location is fixed for all replications.   
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Diagram 1 - Source Path 

Bandwidth and transmission speeds of the sensor network will be assumed adequate for the data 

requirements of the sensor networks in this study.  

The team will not investigate the effects of weather on sensor detection or source emanation.   

We will not be addressing the legalities of personal privacy.   

The Model 
Our team has created a model to simulate a sensor network in Excel Visual Basic that detects and 

localizes a single radioactive/nuclear source moving through an area.  We created our model from 

scratch with input from Allen Harvey at TASC, Inc.  The model has three main variables: density, source 

strength, and sensor strength.  The model is initially run with a base-case to analyze the relationships 

between these variables.  Excursions are then run to compile data on the efficiency of the sensor 

network.  The model is broken down into sensor creation, source movement, sensor localization, and 

error calculation.   

Crowd Density 
At major public events such as parades, crowds of all forms and sizes can be seen depending on time 

and location.  The model can step through these densities in as many steps as the user desires.  In all of 

our simulation runs, the model steps from .25 people/m2 to 7 people/m2 by an interval of .625 

people/m2.  The lower bound, .25 people/m2, was chosen as a small enough density to emulate a very 

early point in the day of the parade.  The team chose 7 people/m2 as the maximum observed density to 

capture a very high density.  See Appendix 2 for a visual example of each density. 

Source and Sensor Strength Measurement 
In this study, source and sensor strength measurement do not have units assigned to them.  It is 

unknown what level of radiation will emanate from a source.  There can be a large variance in 

radiological emanation. For example, an unexposed pound of uranium-238 would emanate .00015 

curies, whereas a pound of cobalt-60 would emanate 518,000 curies. (Measurement: Activity: How 

Much Is Present?)  Additionally there are different ways in which radiation can be measured.  For 

example, a Geiger Counter can read out in roentgens per hour, milliroentgens per hour, rem per hour, 

millirem per hour, and counts per minute; another sensor such as a MicroR Meter can read out in 

microroentgens per hour and/or counts per minute (Radiation Basics: How Can You Detect Radiation?).  

There are other detectors as well.  For our study, we will use sensing strength units and source strength 

units, which is simply a level of sensor or source strength.   

Source Strength  
The model can step through as many source strengths as the user desires.  In all of our simulation runs, 

the model goes through 7 steps from .5 source strength units to 7 source strength units.  
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Sensor Strength 
The model can step through as many sensor strengths as the user desires.  In all of our simulation runs, 

the model goes through 7 steps from .5 sensing strength units to 7 sensing strength units.  The lower 

bound of the sensor strength is based on the upper bound of the source strength.  The lower bound of 

sensor strength is equal to 1/(upper bound of source strength). Using this ratio in our simulation runs, 

the weakest sensor is able to detect the strongest source of at least a distance of one grid unit.  If the 

lower bound of the sensor strength is stronger than this, data points would be excluded.  If the lower 

bound of the sensor strength is weaker than this, then no sensor will be able to see the strongest 

source. The upper bound of sensor strength should be strong enough to detect the weakest sensor: 

1/(upper bound of sensor strength), which will at most be the lower bound of the source strength.  The 

upper bounds for source and sensor strength are chosen to give a max “see distance” of 7 grid units 

(“see distance” will be discussed in the next section).  The upper bound of 7 grid units is chosen because 

this is approximately the width of the sidewalk from the edge of the street to the side of the building, so 

this ensures nearly everyone along this dimension will see the source.   

See Distance 
“See distance” is the relationship between source strength and sensor strength.  A nuclear/radiological 

emanation is determined by the inverse square law (Nave, 2014).  The relationship is given by: 

                                                                  

Therefore, for a detection to occur, the distance from source to sensor must be less than or equal to this 

value.  In addition, the “see distance” of a sensor must be at least 1 in order for a detection to occur.  

The reason for this is that we are using 1/R2 for the decay rate of the source.  If the “see distance” is less 

than 1 grid unit, then the decay would be greater than the initial source strength.  The derivation of this 

is provided in the Appendix 1. 

Sensor Creation 
The first part of the model generates sensors on a grid that overlay the area of focus within the Macy’s 

Thanksgiving Day Parade.  There are two sensor groups created; the crowd and the parade participants.  

These groups can be seen in Figure 1 in Appendix 3.  The top portion represents the crowd and the 

bottom portion represents the parade participants.  These sensors are assumed to be located on an 

electronic device carried by either a person at the parade or a person in the crowd; each person has 

exactly one sensor.  

The Grid  

The grid is determined by the parade dimensions and the maximum crowd density; both of which are 

predetermined.  The average person has a minimum space requirement of .085 square meters 

(Oberhagemann, 2012).  This space requirement gives a density of 11.8 people/m2.  However, taking 

into account clothing and actual observed densities, maximum crowd density is between seven to nine 

people/m2  (Oberhagemann, 2012). As a result, the team has decided that 8 people/m2 is an appropriate 

value for maximum density.  Therefore, each person must be at least 1/√8 meters from another person.  

This value is used as the unit of length in our grid (one grid unit = 1/√8 meters).  As for parade 

dimensions, our grid takes into account the outline of the parade.  The vertices of the rectangular 

sidewalk and street area used in our model have latitude and longitude as follows: 
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                           Sidewalk Grid Area                                   Street Grid Area 

40.77816° N 73.97472° W 40.77807° N 73.97449° W

40.77815° N 73.97469° W 40.77815° N 73.97469° W

40.77763° N 73.97511° W 40.77762° N 73.97508° W

40.77762° N 73.97508° W 40.77754° N 73.97486° W  

The parade starts at 77th Avenue, but viewing is not permitted until 75th Avenue, and only on the west 

side of the street (Macy’s Thanksgiving Day Parade, 2011).  The dimensions above cover the west side 

sidewalk along Central Park West from 75th Avenue to 74th Avenue. 

The Parade Spectators 

Parades are made up of packs of people.  The way people arrive and form these crowds is not an exact 

science.  Crowds rarely pack in regular formation, but rather with some random distribution (Still, 2014).  

In an attempt to portray the spectators of the parade, they are given randomly generated grid 

coordinates.  The coordinates of each crowd member is then stored to prevent more than one person 

from being in the same grid cell.  The x-coordinate is drawn from a discrete uniform distribution from 1 

to 191 with 191 being the length of the simulated area in grid units.  The team has chosen a uniform 

distribution because we have assumed it is equally probable for a spectator to line the parade route at 

each location.  The y-coordinate is drawn from a geometric distribution with parameter p = .3.  We 

assume that in a parade setting a person has an inclination to be closer to the parade.  A geometric 

distribution with p=.3 appropriately distributes the spectators so that a majority of the spectators line 

up in the front rows of the crowd.  In the model, as an input to our base case sensor network, the 

parade spectators are stationary.  As an excursion, however, a crowd movement option can be selected.  

If crowd movement is selected, the model allows for the input of the uniform probability that each 

crowd member moves.  This chance ranges from 0% (no chance for movement) to 100% (crowd member 

must move).  The spectators will move in a random direction to one of the eight adjacent grid locations 

but will never share the same position as another spectator on the grid; for example, one spectator 

could move one block away as another one enters its previous location but if all adjacent grid locations 

are occupied, the spectator would not move and remain in the same location. 

The Parade Participants 

The parade participants are mobile and are not randomly generated; they have predetermined 

coordinates.  The participants form three separate entities: a band, a balloon, and a float.  These three 

entities will continually loop through the area of focus until the end of each run.   

Source Movement 
The model moves a source through the parade grid from a designated entrance point to the point where 

the source is abandoned.  The source has a generic walking speed, which is modeled as a series of 

discrete events.  In the base-case, the source moves through the parade grid in a shortest path (least 

amount of steps), moving directly from the designated entry point to the source abandonment point.  As 

an excursion, the model can be altered by enabling the “Random Walk” mode, which adds another 

stochastic input to the model.  When enabled, for each step the source moves, the source has a chance 

to randomly move from its current location to any grid location one cell away or remain in the same 

spot.  The randomness of the source movement is variable and ranges from 0% (no deviation from the 
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shortest path) to 100% (completely random movement, in which case the simulation will only end if the 

source happens to randomly make it to the drop off location). 

Source Localization 

Source Emanation and Sensor Detection 

The source and each sensor will have a strength associated with it. The maximum distance that a sensor 

can detect a source is calculated using the Inverse Square Law from these values (Nave, 2014).  The 

team refers to this relationship as the “see distance,” which is the radius around the source. 

Location Estimate 

As the source moves through the parade area, sensor detection turns “on” and “off” as the source 

radius overlaps the sensor or distances itself from the sensor, respectively.  A false positive and/or 

negative parameter is used to add realism to the model.  

For each step the source takes towards the drop off location, the model will determine an estimated 

position for the source.  Using the source strength and sensor strength, the model will determine which 

sensor should have detections.  If there are no negative detections, all detections will be added to the 

detection list.  If negative detections are on, then for each detection, the model will generate a random 

uniform number and compare it against the negative recur rate for that sensor.  If a negative detection 

is generated, then that detection is not added to the detection list. Next, if false detections are enabled, 

the model will determine if any sensor(s) generate false detections which is based on their false 

detection recur rate in a similar manner to negative detections.  If a false detection occurs, it will be 

added to the detection list.  When false detections occur, the model uses additional parameters, called 

attenuation parameters, to eliminate these false detections (and possibly true detections).  These 

parameters include a range and number.  The attenuation range gives a radius (in terms of grid units) in 

which to communicate with other sensors who may also detect the source.  The attenuation number 

gives the number of sensors required to detect a source within the attenuation range for that sensor to 

be a true detection.  An example of attenuation range and number can be seen in the diagram below. 

 

Diagram 2 – Attenuation Parameters 

 

Each detection in the list of detections is checked for these parameters.  If a sensor has a detection and 

the required number of detections are present in that range, then a detection remains on the detection 
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list and is used for position estimation.  If the number of detections is not met, the detection is 

eliminated.  While this can eliminate false detections, it also has the chance to eliminate true detections 

when densities are low.  

The model calculates an estimation of the source location by calculating the center of mass of all 

detections that remain on the detection list.  The equations used are as follows: 

         
 

  
   

             
  

   

    

 

   

 
   

             
  

         
 

  
   

             
  

   

    

 

   

 
   

             
  

Where: 

 Eff[i]=efficiency of sensor I; 

 Str[i]=strength of sensor I; 

 n=number of sensors in detection list; and 

 xi, yi are the x and y positions of the ith sensor respectively. 

 

The model allows the following variables to be altered before each run: crowd density, source strength, 

sensor strength, minimum sensor efficiency, chance of false detection and negative detection, and an 

attenuation distance and factor.  In Appendix 3, Figure 2 shows a source being detected as a source 

moves through the parade area.  As previously stated, randomness of source movement, option for 

crowd movement, and parade movement can be adjusted as well. 

Outputs 
The model outputs consist of the error of actual source location and estimated source location, which 

includes the calculation of average error, minimum error, maximum error, the error of the distance from 

the source drop off location to the last estimated position when the source is seen, and the error of the 

distance from the last position the source is seen to the next time the source is seen.  Other results 

calculated consist of total steps, total time, percentage of time that the source is seen within the 

network, and average number of sensors used to localize the source. 

The model also outputs the locations of the crowd spectators, parade participants, source location, 

source estimate, false detections, and detecting sensors at each step that the source moves.  The 

number of outputs can be altered as needed.  The outputs are in Cartesian coordinate notation, but can 

be converted to a latitude and longitude to create a visual of the model. 

GIS Model 

The GIS model is a visualization of the team’s localization results.  It aids viewers in understanding how 

the model works.  The model shows the parade spectators on the west-side sidewalk from the corner of 

Central Park West and 75th avenue to the corner of Central Park West and 74th avenue, as well as the 
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parade participants in the street from the corner of Central Park West and 75th avenue to the corner of 

Central Park West and 74th avenue.  The localization model writes an output of sensor detections, 

source position, and source estimation that is plotted over a Google Maps overlay within Quantum GIS. 

These areas are shown in Appendix 4, Figure 3.  Using the Quantum GIS experimental plug-in, Time 

Manager, the model visualizes and mobilizes the location of the above outputs over 30 steps (or 

seconds) of time, creating the effect that the source, source detects, and parade are mobile.  The model 

is set to estimate localization at the Macy’s Thanksgiving Day Parade around 10:04 AM, over 30 seconds, 

assuming that one step is tantamount to one second of time.  From this model, the team created a video 

of this time period for visual understanding of the VBA model and base-case parameters. 

Model Verification 
The model has been verified.  Due to the fact that the model creates visual outputs, the team was able 

to ensure that the model was working the way it was intended.  Through debugging the model and 

watching visual runs, it was verified that the model is working and calculating what it is supposed to 

calculate. 

Analysis and Results 

Metric Relationships 
In order for the team to analyze the relationships between the input variables of the sensor network 

model, the team graphed and did minor statistical analysis of the outputs of the following metrics: 

1. Percent of Time Source is Seen 

2. Average Error When Source is Seen 

3. Maximum Error When Source is Seen 

4. Last Position Error 

5. Maximum Location Error 

Percent of Time Source is Seen 

It is difficult for one to deem a particular percentage of time the source is seen as good or bad.  Instead, 

the team decided to analyze the overall trend of this metric in relation to different input variables of the 

model.  The percent of time the source is seen is described as the quotient of the number of steps a 

source is seen and the total steps in the model. 

Average Error when Source is Seen 

The average error when the source is seen is described as the average of the distance from the 

estimated source position to the actual position of the source.  The team analyzed the overall trend of 

this metric in relation to different input variables of the model. 

Maximum Error when Source is Seen 

The maximum error when the source is seen is described as the maximum of all the distances from the 

estimated source position to the actual position of the source.  The team analyzed the overall trend of 

this metric in relation to different input variables of the model. 
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Last Position Error 

The last position error is described as the difference of the last estimated source position and the source 

abandon location. The team analyzed the overall trend of this metric in relation to different input 

variables of the model. 

Maximum Location Error 

The maximum location error is described as the distance the source is able to move away from the point 

that the network last detected it.  This metric closely relates to the Percent of Source Seen. The team 

analyzed the overall trend of this metric in relation to different input variables of the model. 

Base Case Analysis 
After running the base case, it is clear that “see distance” has a significant effect on the percent of time 

the source is seen, the maximum and average position error, and the last position error.  

For the base case, each data point is an average of each metric over 200 simulation runs for a specific 

“see distance” and density. 

Percent Seen 

Refer to Chart 12 in Appendix 5.1.  Holding see distance constant, as density increases, the percent of 

time the source is seen increases, but at a decreasing rate.  This relationship is one that was expected 

because the more sensors one adds to the network the higher chance the source will be seen.   

Holding density constant, as “see distance” increases, the percent of time the source is seen increases, 

but at a decreasing rate.  Each density curve concaves downward and is equivalent to one at some “see 

distance” and greater.  The reason for this concavity for a given density is as “see distance” increases, 

the “see distance” of each sensor overlaps with the “see distance” of the other sensors.  For example, 

imagine two sensors and a given source location between them.  At a low “see distance,” neither sensor 

detects the source.  At a higher “see distance,” one sensor can see it, but the other cannot, so there is a 

detection.  At an even higher “see distance,” both sensors can now see the source; but since there is 

overlap in their “see distances,” there is no increase in percent seen because a sensor closer to the 

source already sees it.  Therefore, an increase in “see distance” becomes less important as it gets higher.  

The same type of argument holds for why when holding “see distance” constant, as density increases, 

the percent of the time the source is seen increases as well, but at a decreasing rate.  When adding 

more sensors to the network (increase in density), there again will be overlap.  So a sensor that was just 

added may not contribute anything if its “see distance” is overlapped completely by other sensors in the 

network.  An interesting observation is that all networks with a “see distance” of 3 grid units or greater 

and density greater than or equal to .925 people/m2 can see the source at least 90% of the time.   

Average Error When Seen 

Refer to Chart 13 in Appendix 5.1.  Holding see distance constant, as density increases, the average error 

when the source is seen decreases.  As more sensors are added, more detections are likely at each step; 

therefore, the source is pinpointed more accurately. 

Holding density constant, as see distance increases, the average error when the source is seen increases.  

Increasing the “see distance” increases the area of detection which allows for more possible error.  For 

example, a single sensor with a “see distance” of one also has a possible maximum error (when the 
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source is detected) of one.  Increasing the “see distance” to ten would increase the maximum error to 

ten.   

As “see distance” increases to the point of approaching the length of the crowded region, the source 

estimate becomes less useful for that dimension.  For example, at a “see distance” of 7 grid units (about 

the length of the grid in the y direction as seen below) the y-coordinate of the estimate is no longer 

beneficial because it will only change due to the position of the sensors rather than the position of the 

source.   As seen below, sensors activated from the building to the street. 

 
Diagram 3 – Vertical Estimate of Source 

As the source moves up and down there are no more sensors that can turn “on” or “off” to give a better 

y estimate.  Alternatively, the x-coordinate still provides a good estimate for the fact that as the source 

moves from side to side sensors turn “on” and “off,” moving the estimate based on the path of the 

source.  All densities greater than or equal to .925 people/m2 have an average error when seen less than 

2.14 grid units.  Note that all the density curves except for a density of .25 people/m2 are nearly identical 

in shape (with the exception of a vertical shift of values).   

Maximum Error When Seen 

Refer to Chart 14 in Appendix 5.1.  Similar results are experienced with maximum error as with average 

error.  The only significant difference is that the maximum error has a higher magnitude of results.  

Last Position Error  

Refer to Charts 15 through 17 in Appendix 5.1.  For a density of .25 people/m2, as “see distance” 

increases, the last position error decreases.  This density has the worst (highest) last position error 

regardless of “see distance.”  There are too few sensors, and so, any increase in “see distance” increases 

the chance that a sensor will see the source closer to its end point.  The following relationships 

discussed exclude a density of .25 people/m2.   

In general, from a “see distance” of 1 to 2 grid units, as density increases, last position error decreases.  

Refer to Chart 17 in Appendix 5.1.  Densities of 4.975 people/m2, 5.65 people/m2, 6.325 people/m2, and 

7 people/m2 start out with the lowest last position error and end up with the highest as “see distance” 

increases.  Densities of 2.95 people/m2 and higher start out lower and then increase, with the higher 

densities increasing at a quicker rate therefore having a higher last position error at a “see distance” of 7 

grid units.   

Refer to Chart 16 in Appendix 5.1.  Lastly, densities of 2.275 people/m2 and below start out high, then 

decrease until about a “see distance” of 3 grid units, and finally start increasing again either immediately 

or around a “see distance” of 4 grid units.  The lower densities have the higher last position error 

regardless of the “see distance.”  The higher densities seem to increase quicker, but never get to the 

point where they go above a lower density, which is the case for densities higher than 2.275 people/m2.    

Densities of 2.275 people/m2 and below start decreasing since increasing “see distance” increases the 

chance of having a sensor closer to the end point seeing the source.  Another effect of increasing “see 

distance” is that it increases the number of sensors involved in detecting the source.  This higher density 
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decreases detection error.  However, as soon as see distance gets to about 3 grid units, this distance is 

now large enough to offset the increase in sensor density near the source drop off point. More sensors 

in the middle and back are pulling the estimated position from the front where the source really is.  

Therefore, error starts to increase. Questions may arise as to why this trend of decreasing then 

increasing does not occur for average error when seen at low densities.  The reason lies in the fact that 

error is higher at the back of the viewing area (fewer sensors) than at the front of the viewing area 

(more sensors).  At the back, an increase in “see distance” is less likely to increase the number of sensors 

detecting the source, thereby only exacerbating the error.   

Maximum Location Error 

Refer to Chart 18 in Appendix 5.1.  Holding “see distance” constant, as density increases, maximum 

location error decreases.  Meanwhile, holding density constant, we see a decrease in maximum location 

error and then an increase (for lower densities this change occurs at a higher “see distance”).  The 

reason for the decrease is because when increasing “see distance” the source is seen more often, and so 

it can’t step as far without being seen.  The reason for this increase is that when you get to a certain 

“see distance,” the network is seeing the source most of the time.  Therefore, the curve will start to look 

like maximum error when source seen. 

Significant findings: Base Case 

In terms of percent of time the source is seen, it is preferable for a network to have higher densities with 

higher “see distances.”  However, percent seen becomes marginally important at some “see distance”, 

for each density.  In terms of average error when the source is seen it is preferable to have higher 

densities with lower see distances.  In terms of last position error, it is preferable for a network to have 

higher densities and low “see distances” or medium to low densities with lower “see distances.”  In 

terms of maximum location error it is preferable for a network to have higher densities and lower “see 

distances.”  Overall, for each density it is necessary to have a certain “see distance” to obtain a good 

percent of time the source is seen.  Once this “see distance” is obtained, increasing it more will only 

increase error. 

Excursion Variables 
In order to analyze the results of our sensor network model, the team explored the relationships 

between the model’s variables by altering the ones deemed to be significant.  Once the team 

determined the feasible region of sensor networks and ran the base-case of the model varying crowd 

density, sensor and source strength, the team conducted additional excursions for the following 

variables: 

1. 50% Random Walk 

2. Negative Detections 

3. False Detections 

4. Crowd Movement 

5. Varying Distributions for Sensor Efficiencies 

The model does 200 runs for each excursion and records the outputs as data and visual graphs for 

analysis (with the exception of Random Source Movement with a source strength, sensor strength, and 

density of 7 people/m2, where 50 simulations were run).  Each excursion was run with the same 

densities, source strengths, and sensor, strengths unless otherwise noted.   
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It is important to take note that when nothing is seen, the model will not average a zero value for a 

metric like maximum error. The difference between the base case and excursion along with the half 

widths were used to compare the excursion to the base case. 

                     
                   

 
 

If the difference was large enough to affect the network’s performance, a quick investigation as to 

whether it was statistically significant was conducted. Since some intervals have more than one data 

point, the average of the difference in each interval is taken and then all these values are averaged to 

obtain the overall average for the density 

Negative Detections 

A negative detection is defined as a sensor’s failure to see the source when it should see it.  Keeping the 

base-case variables as is, the model is set so that 100% of the sensors have a chance to false detect.  For 

each sensor, three different probabilities were run giving each sensor a chance of giving a negative 

detection.  The three probabilities run were 5%, 25%, and 45%. 

Overall, by including negative detections, there is no change in trends, only change in magnitudes.  In 

other words, the curves have similar shapes to the base case.   

Percent Seen 

Refer to Charts 19 through 27 in Appendix 5.2.  By including negative detections, the percent seen is 

lower than the base case.  With 5% chance of negative detection, the average difference in the percent 

seen between the excursion and base case for a density of .25 people/m2 is about 1.4%, and the 

difference gets smaller as density increases.  Therefore, there is no significant effect on the percent of 

time seen for 5% (see Charts 19 and 20 in Appendix 5.2).   

Refer to Charts 21 through 23 in Appendix 5.2.  With a 25% chance of negative detections, the average 

difference of percent seen for a density of .25 people/m2 is about 7.83% and gets smaller as density 

increases.  A large part of this difference occurs at lower “see distances.”  Therefore, at low densities or 

low “see distances,” there is a moderate effect (11% difference is the absolute largest that occurs at a 

density of .25 people/m2).  The average difference from 1 grid unit to 1.1412 grid units remains at about 

10% for densities up to 2.95 people/m2.  However, as density increases, the difference at lower “see 

distances” becomes less pronounced.  All networks with a “see distance” of 3 grid units or greater and 

density greater than or equal to .925 people/m2 can see the source at least 84% of the time.   

With a 45% chance of negative detection, the average percent seen difference for a density of .25 

people/m2 is about 16.6% (see Chart 24 in Appendix 5.2), and the difference gets smaller as density 

increases.  For densities greater than .25 people/m2, a large part of this difference occurs at lower “see 

distances.”  At a density of .925 people/m2, for see distances between 1 grid units and 4 grid units, the 

average is 15% with a maximum 19.9% and minimum at 9.6% (see Chart 25 in Appendix 5.2).  As density 

increases this difference lessens.  However, it is still fairly substantial.  At a density of 4.3 people/m2 and 

“see distance” between 1 unit and 2 units, the average difference is about 12% (see Chart 26 in 

Appendix 5.2).  At a density of 4.975 people/m2 and “see distance” above 2 grid units, the differences 

are less than 2% (see Chart 27 in Appendix 5.2).  All networks with a “see distance” of 3.6 grid units or 

greater and density greater than or equal to .925 people/m2 can see the source at least 87% of the time. 
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 Average Error When Seen 

Including negative detections generally will result in higher average error in estimated position because 

there are fewer sensors to pinpoint the source.  With a 5% chance, the results are nearly identical to the 

base case.  The average difference from the base case is .014 grid units.  With a 25% and a 45% chance, 

the average difference is .074 grid units and .17 grid units respectively.  At low densities, higher “see 

distances” have larger differences.  As density gets higher, the difference becomes more pronounced at 

lower “see distances” (especially between 1 grid units and 2 grid units).  However, the largest difference 

(high density, low “see distance”) is about .18 grid units (25%) and .32 grid units (45%).  These 

differences are small enough to not have a major effect on the network.  At a 45% chance all densities 

greater than or equal to .925 people/m2 have an average error when seen less than 2.5 grid units (see 

Chart 28 in Appendix 5.2). 

Maximum Error 

Including negative detects generally results in a higher maximum error in estimated position than the 

base case.  With a 5% chance, the results are nearly identical to the base case.  With a 25% and a 45% 

chance, the average difference is .19 grid units and .38 grind units respectively.  At low densities, higher 

“see distances” have larger differences, and as density increases, the difference becomes more 

pronounced at lower “see distances.”  However, the largest difference (high density, low “see distance”) 

is about .4 grid units (25%) and .76 grid units (45%).  These differences are small enough to not have a 

major effect on the network. 

Last Position Error  

The following numbers were taken from a 45% chance which shows that a smaller chance will be better.  

All differences are less than 3.7 grid units for a density of .25 people/m2 with the overall average being 

.89 grid units, and less than .7 grid units for a density of .925 people/m2 (see Charts 29 and 30 in 

Appendix 5.2).  As density increases the overall difference lessens. 

Maximum Location Error 

The following numbers were taken from a 45% chance which shows that a smaller chance will be better.  

All differences are less than 7.24 grid units for a density of .25 people/m2 with the overall average being 

1.98 grid units (see Chart 31 in Appendix 5.2).  As density increases the overall difference lessens. 

Significant Findings: Negative Detections 

From our analysis, we have concluded that negative detections take a density and lower it a certain 

degree.  At 5% there is no significant effect regardless of density and “see distance.”  At higher 

probabilities the only major effect negative detection has on the network is with percent seen and 

maximum location error, and it is only at low densities and/or low “see distances” where this effect may 

have cause for concern.   

Random Source Movement 

Keeping the base-case variables as is, the random source movement variable is set to 50%.  This means 

the source has a 50% chance that in any given step, that the source will move one cell in a random 

direction and possibly deviate from the shortest path from the source starting point to the source 

abandon point.   

Overall, by including random source movement, there is no change in trends, only change in 

magnitudes.  In other words, the curves have similar shapes to the base case.   
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Percent Seen 

When analyzing the percent time that a source is seen, we found the results to be nearly identical to the 

base case.  For a majority of the see distances, the difference is negligible (see Charts 32 and 33 in 

Appendix 5.3).  

Average Error 

The average error when source is seen shows the resulting curves to have a close resemblance in shape 

to the base case.  The only differences are that the random source movement generally gives a higher 

average error.  As density increases, the difference becomes more pronounced and the higher the “see 

distance,” the more pronounced the difference.  The results are nearly identical to base case at a density 

of 2.275 people/m2 and lower (average errors are less than .05 grid units).  The reasoning for this is that 

at higher densities and “see distances,” nearly every sensor from back to front can see the source.  

Therefore, the estimated source position will be in the vertical middle of the grid regardless of the 

source movement.  With random source movement, the source is more able and likely to go to the 

extremes of the grid (very top or very bottom) thereby creating a larger average error.  However, this 

larger error is not substantial with a density of 7 people/m2 having the largest overall average difference 

of error of .178 grid units.   

Maximum Error 

Maximum error when the source is seen shows similar results to the base case.  As density increases, 

the difference becomes more pronounced and the difference starts to appear at lower “see distances.” 

The maximum error occurs when the source is “outside” the majority of sensors that detect it.  With 

lower densities, this can occur horizontally and vertically in the grid.  As densities increase, this will 

generally occur at the top of the grid because fewer sensors are present. This could also occur at the 

bottom of the grid when both density and “see distance” are high.  When random source movement is 

added, there is more chance that the source is traveling at the very top of the grid.  This allows the 

source to be at the extremes of the detection ranges, which will result in a larger maximum error.  

Without the random source movement, the source starts at the line below the very top and never 

reaches the very top or the very bottom.  The largest overall average difference is .38 grid units for a 

density of 7 people/m2 (see Chart 34 in Appendix 5.3).  

Last Position Error 

The last position error shares the same trend as the base case, making it nearly identical for this metric 

as well.  The reason for this is that since it measures last position, it should be almost exactly the same, 

especially at higher densities. 

Maximum Location Error 

Maximum location error is a little higher with random source movement, but still follows the same trend 

as the base case.  This reasoning is similar to the argument about maximum error.  The source is more 

likely to roam around sensor-less spaces or be at the very top of the grid where there are no/fewer 

sensors, thereby increasing the chance for a higher maximum location error. 

Significant Findings: Random Source Movement 

Adding in random source movement does little to nothing to affect the network. 
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Crowd Movement 

In reality, people do not stand absolutely still.  For the crowd movement excursion, keeping the base-

case variables as is, the model is set so that each parade spectator has a 50% chance of moving.  This 

means that each step for the simulation, each crowd member has a 50% chance of moving in a random 

unoccupied adjacent grid location.  If there are no unoccupied spaces the crowd member will remain in 

their current location. The excursion is run with three densities: .25 people/m2, 2.5 people/m2, and 4.3 

people/m2. We assumed that at the highest of densities, crowd movement would not matter as much. 

It appears that over time the crowd becomes more uniform over the vertical axis as opposed to 

geometric.   

Percent Seen 

The percent of time a source is seen shows a similar trend to that of the base case.  For a density of .25 

people/m2, results are nearly identical to the base case.  For a density of 2.5 people/m2 and “see 

distances” between 1 and 2 grid units, the average difference is 3.7%.  For a density of 4.3 people/m2 

and “see distances” between 1 and 2 grid units, there is an average difference 1.4%.  As “see distance” 

increases, the difference decreases as well.   

Average Error 

Crowd movement also shares a similar trend to the base case in terms of average error when a source is 

seen.  The only difference is that crowd movement results in lower average errors. This is believed to be 

a function of the crowd density change that occurs over time.  The density from the front of the 

sidewalk is denser than the back of the sidewalk.  The original geometric distribution of crowd shifts 

towards a more uniform distribution and this seems to account for the lower average errors.  For a 

density of .25 people/m2, results are nearly identical to the base case.  The maximum difference occurs 

at higher “see distances” where the overall average difference is .04 grid units.  For a density of 2.5 

people/m2, the average difference is .12 grid units and for a density of 4.3 people/m2, the average 

difference is .1 grid units. 

Maximum Error 

The maximum error when a source is seen has similar results to the base case as well, although crowd 

movement results in lower maximum errors when seen.  For a density of .25 people/m2, results are 

nearly identical to the base case (the average difference is .0032 grid units).  For a density of 2.5 

people/m2, the overall average difference is .1374 grid units, and the maximum difference is .2511 grid 

units.  For a density of 4.3 people/m2, the overall average difference is .089 grid units, and the maximum 

difference is .17 grid units.   

Last Position Error 

Crowd movement has higher last position error than the base case, but follows the same trend.  This 

makes sense because the vertical is now more uniform as opposed to geometric and thus fewer people 

than before are in front of the crowd which is where the source ends.  For a density of .25 people/m2, 

the overall average difference is 1.5 grid units and the maximum difference is 5.4 grid units (R=1) (refer 

to Chart 35 in Appendix 5.4).  For a density of 2.5 people/m2, the overall average difference is .552 grid 

units and the maximum difference is 1.03 grid units (R=7) (refer to Chart 36 in Appendix 5.4).  For a 

density of 4.3 people/m2, the overall average difference is .4236 grid units and the maximum difference 

is .8383 grid units (R=7) (refer to Chart 37 in Appendix 5.4). 
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Maximum Location Error 

Crowd movement has smaller maximum location error as compared to the base case.  For a density of 

.25 people/m2, the overall average difference is 1.9 grid units and the maximum difference is 7.96 grid 

units (R=1.71).  This difference seems large, but at the “see distance” for which this occurs, both crowd 

movement and base case have very large maximum location errors which is considered poor.  For a 

density of 2.5 people/m2, the overall average difference is .4597 grid units and the maximum difference 

is 2.3 grid units (R=1.71).  For a density of 4.3 people/m2, the overall average difference is .1645 grid 

units and the maximum is .7866 grid units (R=1.71). 

Significant Findings: Crowd Movement 

Crowd movement changes the geometric distribution of the y-axis into a uniform distribution over time.  

This distribution change in the crowd has a small effect on the network’s performance. There is a very 

minor effect on percent seen at the lowest “see distances” for a density of 2.5 people/m2.  Also, there is 

a moderate effect on last position error for the density of .25 people/m2.     

Triangular Vs. Uniform Vs. Base case 

The minimum sensor efficiency percent is set to 0, and sensors get assigned efficiencies based on a 

distribution.  The two distributions run were Uniform[0, 100] and Triangular with mean 75. 

Percent Seen 

The uniform distribution has the lowest percent seen of all three with the base case being the highest.  A 

“see distance” in the interval [1,1.33) grid units regardless of density has a large average difference 

between the base case and the distributions due to the fact that nearly no sensor has a high enough 

“see distance” to detect the source.  Excluding this “see distance” interval, as density increases, the 

average differences decrease and follow the same trend as the base case, just at a lower magnitude.  At 

a density of 1.6 people/m2 and “see distance” of 2.5 grid units, the uniform and triangular distribution 

networks are seeing the source about 80% of the time (refer to Charts 38-40 in Appendix 5.5). 

Average Error  

See Charts 41-44 in Appendix 5.5.  The uniform and triangular distributions initially have higher average 

error than the base case, but at a certain “see distance” (depending on the density) they begin to have a 

lower average error.  We have seen already that smaller “see distances” have smaller average errors in 

the base case.  Therefore, it makes sense for the triangular and uniform to have smaller average errors 

than the base case as “see distance” increases.  This is because the distributed efficiencies cause a 

reduction in “see distance” for all the sensors.  As density increases, the base case benefits from having 

more sensors to detect the source (reducing the average error); however, with the uniform and 

triangular excursions, an increase in density at a low “see distance” does little to increase the actual 

number of sensors that can detect the source, hence, the reason we see the difference between the 

base case and distributions grow as density increases.  The reason for the decrease then increase in the 

curves is a similar reasoning as previously mentioned for last position error of the base case.  An 

increase in the “see distance” recruits more sensors to help pinpoint the source; however, the “see 

distance” eventually becomes large enough that the reduction in error from the additional sensors 

recruited is outweighed by the increase in error from having a larger region the source can be in.  

Despite the excursion having a different shape than the base case, it is still not too much different with 

the maximum difference being around .8 at the higher densities with low “see distances.” 
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Maximum Error  

Overall results are similar to the base case in magnitude with a difference no larger than .9 grid units. 

Last Position Error  

The last position error of the excursion has a similar trend as the average error.  Comparing it to the 

base case, the largest differences occur at low “see distances” (less than or equal to 1.33 grid units).  The 

difference lessens for 1.33 grid units as density increases.  At a density of 1.6 people/m2 and “see 

distances” greater than 1.33 grid units, the difference is less than 1 grid unit.  At “see distances” greater 

than around 3-4 grid units the last position error of the distributions is less than the base case for 

densities greater than .25 people/m2.  Though, the largest difference here is about .77 grid units. 

Maximum Location Error  

The maximum location error of the excursion has a similar trend as the base case.  The curve starts out 

decreasing and then it increases.  The uniform and triangular excursions have a much steeper decrease 

than the base case.  The error is also larger than the base case during the decrease.  For the distribution 

of efficiencies, increasing the “see distance” at low values substantially increases the number of sensors 

likely to detect the source. .  Eventually the curve becomes nearly identical to the max error curve 

because the "see distance" reaches a point where the source is seen all the time.   

Significant Findings: Distribution of Sensor Efficiency 

By giving a distribution to the efficiencies, there is a substantial impact at “see distances” less than 1.41 

grid units for percent seen.  A see distance of 1 grid unit is nearly useless since it is highly unlikely that a 

sensor will be able to detect the source.  Changing the distribution of the sensor efficiency (triangular vs. 

uniform) does not have a significant impact on the effectiveness of the sensor network.  We conjecture 

that a normal distribution would have similar results as the triangular.  By having a distributed sensor 

efficiency the only major effect on the network is with percent seen and maximum location error, and it 

is only at low densities and/or low “see distances” where this effect may have cause for concern.   “See 

distances” in the interval [2, 4] grid units seem to give the most effective network with a “see distance” 

of 4 grid units being used for the lower densities, and as densities increase, lowering the “see distance” 

to 2 grid units for a lower average error. 

False Detections 

A false detection is defined as a sensor showing a detection when there is no source present within its 

“see distance” range.  With this excursion we introduce attenuation parameters: range and number. For 

a sensor detection to be considered in the estimated position, there must be a certain number 

(attenuation input parameter) of sensor detections within the range (attenuation input parameter) of 

the sensor in question.  This will be referenced as attenuation (number of sensors required for detection 

to occur, range of detection in grid units).  Keeping the base-case variables as is, the model is set so that 

100% of the sensors can be bad sensors. From the base-case, for each sensor, the probabilities were run 

giving each sensor a 5% chance of getting a false detection.  The three densities run were .25 people/m2, 

2 people/m2, and 4 people/m2.  At each density, attenuation parameters are varied. 

For a density of 4 people/m2, at all see distances, in terms of percent of time the source is seen and 

average error, the attenuation parameter that gave the best results was an attenuation range of 2 grid 

units and a sensor detection requirement of 5 sensors: attenuation (2,5).  If we specifically look at “see 

distances” higher than 2.5 grid units, attenuation (3, 5) is best (see Charts 49 and 50 in Appendix 5.6).  
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Using this trend, looking at a density of 2 people/m2, we found that the best attenuation parameters for 

percent of time the source is seen and average error are attenuations (3, 4) and (4, 5) (see Charts 47 and 

48 in Appendix 5.6).   

Lastly, with a density of .25 people/m2, there were no acceptable ratios because the density is too low 

and the sensors from the parade were confounding the network (see Charts 45 and 46 in Appendix 5.6).  

Data Clusters  
There are times the data from the simulation runs occur in clusters.  The reason for these clusters is due 

to the grid structure of our model.  Recall that for a detection to occur the distance from source to 

sensor must be less than or equal to the “see distance” for that sensor.  Sources and sensors can only be 

located on integer coordinates; therefore, this creates intervals for the “see distances.”  For example, in 

the chart below the sensor is located at (0, 0).  The distance from this sensor to source location 1 is 1 

grid unit.  If the “see distance” of the sensor is 1 grid unit, it can see the source at location 1, but not at 

locations 2 and 3.  If the sensor has a “see distance” of 1.2 grid units, it has the same effect on the 

network as if it had a “see distance” of 1 grid unit.     

 
Diagram 4 - Clustering 

Not until the “see distance” of the sensor becomes 1.41 grid units will it be able to see a source further 

away than 1 grid unit.  Diagram 5, on the next page, shows an example of clustering.  The clusters are 

more pronounced at the lower left of the chart, but can be seen throughout the data series. 

 
Diagram 5 - Clustering Example 
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Framework 
From our analysis, we have introduced a framework for a (CB)RN(E) event interdiction using a 

ubiquitous sensor network.  The framework takes into consider the variables that can be controlled, 

rather than those like crowd density (which can only be controlled to an extent) or source strength. 

Sensors  
If we can estimate source strength, we can estimate what “see distance” is necessary and thus can 

adjust the strength of a sensor, since “see distance” is based on a source and sensor ratio.  

 A beneficial characteristic of a ubiquitous sensor network is having sensors that are strong and can be 

dampened for a given density.  For example, if a sensor sees a source, its strength can be dampened to 

better localize the source.   

Additionally, it would be beneficial for a sensor to be able to detect levels of source emanation.  This 

would allow for the localization algorithm to better approximate source location and reduce estimate 

errors. 

Negative Detections 
Limiting the percentage chance of a negative detection occurring would be beneficial to a ubiquitous 

sensor network.  This can be done by creating a manufacturing standard for all sensors that are placed 

within cell phones and other electronics.  However, if negative detections cannot be reduced, we 

recommend having a sensor strength that gives a “see distance” of at least 3 grid units.  This allows for a 

high percent seen for all but the smallest of densities. 

False Detections 
There are three ways that false detections should be managed.  Firstly, given a known density about the 

network, an attenuation range and number should be chosen in order to reduce false detections.  (See 

False Detection discussion for some initial suggestions).  Secondly, based on our analysis, false 

detections have a much greater effect on the network than negative detections.   

We suggest that in order to counter and reduce false detects, sensors have an internal capability of 

turning “off” or going into a “non-detect mode.”  Once a sensor realizes that it is detecting when there is 

no threat, the sensor will cease to detect and become a negative detector.  This will stop unnecessary 

data overload.  A sensor realizes there is no threat by communicating with surrounding sensors.  No 

surrounding detects or detection patterns should signify there is no real threat.  Setting an attenuation 

range and number should aid in this process.  Often, one sensor going off in a field of sensors will not be 

a determining factor of a threat being present.  

Lastly, as a look into the future, looking at the effects of other localization methods (i.e. time based) and 

multi targeting algorithms are significant things that will aid in lowering error.  This aspect is left for a 

future team to complete and analyze the model using multiple targets and exploring other localization 

models. 

Distributions 
Distribution of sensor efficiency cannot be changed, however, randomized distribution can be created 

within an AD HOC sensor network.  Sensors of varying efficiencies are better and dampening sensors will 

help create such a network.  Adding larger sensors within the network is another way to make the 



26 
 

sensor AD HOC with different strengths of sensors.  With this dampening, random distribution creation 

can be achieved. 

Final Note 
When considering characteristics for the framework, random sensor movement and crowd movement 

for example, are variables in real life that there will be little to no control over.  Characteristics such as 

these where not be considered for the framework. 

Future Work 
Due to the existing research and time constraints, the team does not intend to model nor include 

analysis for some variables and metrics.  However, we have compiled work that would advance the 

research of ubiquitous sensor networks for future findings. 

Since the model only localizes a Radiological and Nuclear source, an extension of the model is a 

possibility for future groups.  There is potential to insert code for chemical, biological and explosive 

sources that the current team did not have time to complete.  Some initial research and modeling has 

been conducted for a future team to continue and complete.  Other areas for future research include 

multiple target tracking, time based tracking, and fluid type dispersion. 

Multiple Target Tracking 
There are two areas in which multiple target tracking will be of importance; first, there can be multiple 

sources, and second, in determination of false positives.  A rough coding idea was considered but the 

schedule did not allow for implementation.  Below is an example of the code where there are four 

targets originating from the same location.  Target one will move up at one grid per chart.  Target two 

will move right one grid and up one half a grid per chart.     

 

               Diagram 6: Direction                      Diagram 7:  Time Step 1                   Diagram 8: Time Step 2 

Target three moves right one grid per chart and target four moves right at two grids per chart.  The 

actual paths are shown in Diagram 6 above by the arrows. The “blue diamond” icons represent 

detections and the “red X” icons represent estimated positions. 

The first and most important characteristic for separating multiple targets in order to be considered a 

new target is the distance between detections (or resolution).  If this distance is too small each 

detection would be considered a target.  If the distance is too large, many false targets are then included 
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in the target location estimation which will result in larger location errors.  The six charts representing a 

multiple sources uses 1.5 grid as a required resolution. In Diagram 7, the detections are grouped close 

together and only a single source is identifiable.  In Diagram 8, visually, it appears as if there are several 

targets, but the resolution is insufficient to break them out. 

 

 

 
            Diagram 9: Time Step 3                   Diagram 10: Time Step 4                 Diagram 11: Time Step 5 

 

In Diagram 9, it is apparent that there is more than one target, but again due to the chosen resolution, 

only a single target is seen.  If a smaller resolution were chosen, two targets could be broken out in 

Diagram 9.  With the chosen resolution, the model sees three target groups in Diagram 10 and can track 

them as separate targets until the distance between them falls below the chosen resolution.  The last 

chart in Diagram 11, shows that the two center targets do not have sufficient space between them to 

differentiate them.  The above example is just one method of multiple target tracking and a simplistic 

one at that. 

 

Adding multiple targeting ability will increase the performance of the sensor grid.  The first benefit is the 

ability to track multiple sources.  The second and closely related is that the model would be able to 

differentiate between groups of detections.  These groups could fall into one of three different 

categories.   The first, as mentioned earlier, is an actual source.  The second is a group of false detections 

(there happen to be several erroneous detections in a given area even though nothing of significance in 

the area).  The third is a group of detections that were set off by something that wasn't actually a 

source, but something in the area and it is being detected as one.  Using time in conjunction with 

multiple target tracking will enhance the models ability to differential between the three categories of 

detections. 

 

Time Based Tracking 
As mentioned above time based tracking will help to differential types of targets when multiple targets 

are seen.  The first category is the group of false detections, in which there was a random group of 

detections in the same area.  It is likely these will not persist for a long duration and not have a 

movement associated with them.  By using a timeframe requirement for the group to exist, these false 

targets can be eliminated and improve estimated position.  The other two groups will be harder to 

differential.  An actual source and a false source could have very similar characteristics. It is possible this 
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may only be eliminated through sensor design, unless there is a possible behavior different associated 

that could be programmed to separate the two. 

 

Time based tracking will also allow for better positioning though future estimation of position.  With 

multiple positions and times, speed and direction can now be estimated and future positions can be 

estimated.  With map overlays, additional information could be gleaned.  One parameter studied was 

distance from last estimated position.  This position was a stationary position until the source was seen 

again.  With time based tracking, new estimates could be produced and this error could be reduced as 

well as adding new metric to fine tune future estimations.  Multiple target and time based tracking open 

up new areas to study.  

 

Fluid type dispersion 
The current model only allows for the tracking of radiological/nuclear type device due to the emanation 
type.  Once multiple targets can be tracked and sensed over time, chemical/biological devices can be 
tracked.  This type of dispersion, which is fluid in the nature of its dispersion, requires time to model 
effectively.  The multiple target tracking is important in estimating the source position. As a 
chemical/biological device moves through an area, it will have characteristics of multiple targets trailing 
behind the actual source location.  Looking at these targets behind the source as discreet points, each 
will start as a concentrated mass with small diameter.  As time continues, it will increase in diameter and 
decrease in strength.  Eventually, it will disperse to be a large area with little strength, and at some point 
in time, the sensor will no longer be able to sense the substance. This brings several new parameters 
into the problem.  Not only is source strength important, but also its dispersion characteristics.  How fast 
will it disperse? What effects will crowd density have on its dispersion?  Weather would have an impact 
and could be modeled.  The research that can take place in this type of sensor network is vast.  The 
major problem facing the next team to look at this is the same one we faced, how to scope the problem 
form the many details that could be included and studied.  
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Appendix 1: Deriving See Distance 
Let  
 R = distance from source to sensor (grid units) 
 So = source strength (source units)  
 Se = sensor strength   
 

A sensors has the ability to detect  
 

    
            

             and greater   

 

The source degrades using the equation:  
  

     

 

Therefore, for a detection to occur,  
  

    
 

  
   

 

This simplifies to            
 

We define        as the see distance of the sensor. 
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Appendix 2: Density Charts 

 

Chart 1: Crowd Density of .25 

 

 

Chart 2: Crowd Density of .925 

 

 

Chart 3: Crowd Density of 1.6 

 

 

Chart 4: Crowd Density of 2.275 
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Chart 5: Crowd Density of 2.95 

 

Chart 6: Crowd Density of 3.625 

 

 

Chart 7: Crowd Density of 4.3 

 

 

Chart 8: Crowd Density of 4.975 

 

Chart 9: Crowd Density of 5.65 
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Chart 10: Crowd Density of 6.325 

 

Chart 11: Crowd Density of 7 
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Appendix 3: VBA Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Excel Chart resulting from a run with a low density distribution of spectators and 

placement of participants 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Excel Chart shows high spectator density distribution in blue, participant distribution in 

pink, source with a black x, and sensors that report source detection with a red highlight. 
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Appendix 4: QGIS Representation 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Quantum GIS model of Parade Viewing and Participant Area from 75th Avenue to 74th Avenue 
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Appendix 5: Data Charts 

Appendix 5.1: Base Case Analysis Charts 

 
Chart 12: Percent of Time the Source is Seen for Base Case 

 

 
Chart 13: Average Error When the Source is Seen for Base Case 
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Chart 14: Maximum Error When the Source is Seen for Base Case 

 

 
Chart 15: Last Position Error for Base Case (All Densities) 
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Chart 16: Last Position Error for Base Case (Low Densities) 

 

 
Chart 17: Last Position Error for Base Case (High Densities) 
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Chart 18: Maximum Location Error for Base Case 
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Appendix 5.2: Negative Detection Analysis Charts 

 
Chart 19: Percent of Time the Source is Seen for Negative Detections (5%) – Density of .925 

 

 
Chart 20: Percent of Time the Source is Seen for Negative Detections (5%) – Density of 2.95 
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Chart 21: Percent of Time the Source is Seen for Negative Detections (25%) – Density of .25 

 

 
Chart 22: Percent of Time the Source is Seen for Negative Detections (25%) – Density of .925 
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Chart 23: Percent of Time the Source is Seen for Negative Detections (25%) – Density of 2.95 

 

 
Chart 24: Percent of Time the Source is Seen for Negative Detections (45%) – Density of .25 
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Chart 25: Percent of Time the Source is Seen for Negative Detections (45%) – Density of .925 

 

 
Chart 26: Percent of Time the Source is Seen for Negative Detections (45%) – Density of 4.3 
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Chart 27: Percent of Time the Source is Seen for Negative Detections (45%) – Density of 4.975 

 

 
Chart 28: Average Error When the Source is Seen for Negative Detections (45%) – Density of .925 
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Chart 29: Last Position Error for Negative Detections (45%) – Density of .25 

 

 
Chart 30: Last Position Error for Negative Detections (45%) – Density of .925 
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Chart 31: Maximum Location Error for Negative Detections (45%) – Density of .25 
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Appendix 5.3: Random Source Movement Analysis Charts 

 

 
Chart 32: Percent of Time the Source is Seen for Random Source Movement – Density of .925 

 

 
Chart 33: Percent of Time the Source is Seen for Random Source Movement – Density of 2.275 
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Chart 34: Maximum Error When the Source is Seen Random Source Movement – Density of .925 
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Appendix 5.4: Crowd Movement Analysis Charts 

 
Chart 35: Last Position Error for Crowd Movement – Density of .25 

 

 
Chart 36: Last Position Error for Crowd Movement – Density of 2.5 
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Chart 37: Last Position Error for Crowd Movement – Density of 4.3 
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Appendix 5.5: Distributions of Efficiencies Charts 

 
Chart 38: Percent of Time the Source is Seen for Distribution of Efficiencies – Density of .925 

 

 
Chart 39: Percent of Time the Source is Seen for Distribution of Efficiencies – Density of 1.6 
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Chart 40: Percent of Time the Source is Seen for Distribution of Efficiencies – Density of 4.3 

 

 
Chart 41: Average Error When Source is Seen for Distribution of Efficiencies – Density of .925 
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Chart 42: Average Error When Source is Seen for Distribution of Efficiencies – Density of 2.275 

 

 
Chart 43: Average Error When Source is Seen for Distribution of Efficiencies – Density of 3.625 
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Chart 44: Average Error When Source is Seen for Distribution of Efficiencies – Density of 7 
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Appendix 5.6: False Detection Analysis Charts 

 
Chart 45: Percent of Time Source is Seen for False Detections – Density of .25 

 

 
Chart 46: Average Error When Source is Seen for False Detections – Density of .25 
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Chart 47: Percent of Time Source is Seen for False Detections – Density of 2 

 

 
Chart 48: Average Error When Source is Seen for False Detections – Density of .25 
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Chart 49: Percent of Time Source is Seen for False Detections – Density of 4 

 

 
Chart 50: Average Error When Source is Seen for False Detections – Density of 4 
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Appendix 6: Earned Value Management Chart 
 

 

Chart 51:  Earned Value Management 
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Appendix 7: “See Distance” Intervals for Data 

  

Chart 52: “See Distance” Intervals for Data 

  

Interval Number of data points 

in interval for each 

density

[1, 1.4142) 3

[1.4142, 2) 6

[2, 2.2361) 1

[2.2361, 2.8284) 5

[2.8284, 3) 0

[3, 3.1623) 4

[3.1623, 3.6056) 3

[3.6056, 4) 3

[4, 4.1231) 0

[4.1231, 4.2426) 3

[4.2426, 4.4721) 1

[4.4721, 5) 3

[5, 5.099) 1

[5.099, 5.3851) 3

[5.3851, 5.6569) 0

[5.6569, 5.831) 2

[5.831, 6) 1

[6, 6.0828) 0

[6.0828, 6.3246) 0

[6.3246, 6.4031) 0

[6.4031, 6.7082) 2

[6.7082, 7) 0

[7,) 1
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Appendix 8:Gantt Chart 

 

Chart 53: Gantt Chart (1) 
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Chart 54: Gantt Chart (2) 
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Appendix 9: Reference of Key Terms 
 

Attenuation Number - The number of sensors that must be detecting within a the attenuation range for 

the sensor to be counted towards estimated position. 

Attenuation Range - The distance a sensor will check to see if other sensors are also detecting . 

Average Error - The average of the distance from the estimated source position to the actual position of 

the source over a single run. 

CBRNE - Chemical, Biological, Radiological, Nuclear, Explosive. 

Efficiency - The original design strength of a sensor is considered to be 100% efficiency.  Over time, 

sensors degrade.  A sensor with a 50% efficiency has .5 the strength of its original design strength. 

False detection - A sensor showing a detection when there is no source present within its “see 

distance”. 

Last Position Error - The difference of the last estimated source position and the source drop off 

location. 

Maximum Error - The maximum of all the distances from the estimated source position to the actual 

position of the source over a single run. 

Maximum Location Error - The maximum distance the source is able to move away from the point that 

the network last detected it. 

Negative Detection - A sensor’s failure to see the source when it should see it. 

Percent Seen - The fraction of time a source is seen by the sensor network. 

Recur Rate - The individual chance a sensor has a negative or false detection. 

See Distance - The largest distance a sensor can be from a source in order for a detection to occur. 

Ubiquitous - Anytime, anywhere, anything. 

WSN- wireless sensor network; a collection of sensor nodes organized into a cooperative network. 

 

 

 

 


