UAS Loss of Link (UL2) Progress Report

Prepared for: Dr. Laskey - Systems 798

Sponsor: Andy Lacher (MITRE Corporation)

March 8, 2012

Rob Dean

Steve Lubkowski

Rohit Paul

Sahar Sadeghian

Background

- MITRE Corporation
 - This project is being sponsored by The MITRE Corporation, which
 is a not-for-profit organization that manages Federally Funded
 Research and Development Centers (FFRDCs).
- Unmanned Aircraft System (UAS)
 - A UAS is remotely piloted from ground stations via a real-time command and control (C2) data link.
 - If the link between the ground station and UAS is lost, the aircraft becomes autonomous until the link is re-established.

Problem Definition

- When an Unmanned Aircraft (UA) becomes autonomous, it becomes unpredictable to Air Traffic Control (ATC)
 - ATC cannot adequately control airspace
 - Risk of a loss of separation or collision
 - Unnecessary rerouting of air traffic
 - Excess workload for ATC
 - Creates a potential risk and/or safety hazard
- Standardized procedures for loss of link situations are necessary
 - Events become more predictable/easier to manage for ATC
 - Standardized procedures assist in bringing UAS to commercial airspace in greater numbers
- Develop methodology for evaluating loss of link procedures

Approach

- Qualitative
 - Interviews to determine metrics from different stakeholders
 - Global Hawk Pilot
 - ATC
 - UAS Experts
 - Data Specialists
- Absolute/Binary
 - Determine thresholds that must be met
- Technical
 - Develop simulations that analyze individual procedures
 - Based on specific metrics (predictability, ATC workload)

Scope

- In Scope
 - Within non-segregated civil airspace- National Airspace System (NAS)
 - Primary focus on UAS that are capable of extended flight operations in Class A airspace
 - To test/evaluate our approach with proposed procedure
- Out of Scope
 - Identification of optimal procedure for loss of link situations

Expected Results

- Set of metrics that are important to UAS stakeholders
- A methodology that can be used to evaluate procedures
 - Repeatable and adaptable to different procedures
 - Capable of being used for further research and analysis by the sponsor

Next Steps from Proposal

- Continue meeting with Sponsor
 - ✓ Met with sponsor to discuss technical approach
 - ✓ Got approval for project proposal
- Develop Functional Requirements for evaluation methodology
 - ✓ Developed and finalized both functional and project requirements
- Set up meetings with Subject Matter Experts (SMEs)
 - ✓ Created questionnaires for each SME
 - ✓ Interviewed all five SMEs recommended by our sponsor
 - ✓ Had several follow-on interviews with people recommended by SMEs
- Finalize draft of project proposal
 - ✓ Finalized project proposal

SME Interviews

- Met with all the SMEs recommended to us by our sponsor:
 - Global Hawk UAS pilot
 - ATC human-in-the-loop experiment analyst
 - UAS loss of link data analyst
 - Lead developer of automated ATC tool
 - Traffic flow management lead architect

Modeling

- Technical modeling approaches were based on:
 - Feedback from sponsor
 - Interviews with SMEs
- UL2 team decided to focus on two main metrics:
 - Predictability
 - Air Traffic Control workload

Predictability Model - Timeline

Predictability Model - Details

- Pseudo-measure for predictability will be time
 - Time it take for the controller to realize the UA is in a loss of link situation
 - T4-T3
 - The difference between the expected time the UA will make its next maneuver and actual
 - T6-T5
- Input
 - Controller reaction times to UA signaling loss-of-link
- Outputs
 - Times of interest:
 - T3, T4, T5, T6
- To enhance the model, the model will also include the possibility of conflict
 - Tc is the time to conflict
 - Analyze the probability the UA will be in conflict before the controller realizes there is a loss of link situation

MITRE Predictability Model - Sample

airspaceAnalyzer – Controller Workload

- Simulation tool developed by MITRE to automatically separate, sequence, and space aircraft
- Measures sector complexity based on the amount of effort required to separate traffic
- Evaluates the impact of changes to sector on controller workload. Examples of potential changes include:
 - New Traffic Flows
 - New Sector Boundaries

airspaceAnalyzer - Adaptation for UAS

- Tool can be used to evaluate the impact of a specific UAS loss of link procedure on sector complexity and controller workload
- Specific metrics can be gathered to evaluate the increase in controller workload if UA goes lost link
 - Lateral separation effort
 - Vertical separation effort
 - Lateral spacing effort
 - Vertical spacing effort
- Some maneuver uncertainty can be modeled by adjusting the amount of protection required for UA (e.g. increase from 5 NM to 10 NM in En Route airspace)

Schedule

Earned Value Management

Next Steps

- Continue meeting with Sponsor
- Complete proof of concept & develop predictability model
- Adapt scenarios for airspaceAnalyzer
- Introduce our models to sponsor's UAS Team for feedback
- Start documenting our methodology and assemble our report

Questions?

