UAS Loss of Link (UL2) Project Overview

Sponsor: GMU, Andy Lacher (MITRE Corporation)

March 29, 2012

Rob Dean

Steve Lubkowski

Rohit Paul

Sahar Sadeghian

Background

- MITRE Corporation
 - This project is being sponsored by The MITRE Corporation, which
 is a not-for-profit organization that manages Federally Funded
 Research and Development Centers (FFRDCs).
 - Work is specifically from the Center for Advanced Aviation System Development (CAASD)
- Unmanned Aircraft System (UAS)
 - A UAS is remotely piloted from ground stations via a real-time command and control (C2) data link.

Unmanned Aircraft (UA)

UA is unpredictable to ATC

- ATC cannot adequately control airspace
- Risk of a loss of separation or collision
- Unnecessary rerouting of air traffic
- Excess workload for ATC

Standardized procedures for loss of link situations are necessary to make these events more predictable and easier to manage

Ground Station

Methodology

- A standardized procedure is a community wide issue
- Develop methodology for evaluating loss of link procedures
 - Purpose is to take a set of procedures and allow the sponsor to narrow down to the top few for further investigation
 - Human in the Loop experiments (HITLs) can then be designed for top procedures
- Expected Results
 - Set of metrics that are important to UAS stakeholders
 - A methodology that can be used to evaluate procedures
 - Repeatable and adaptable to different procedures
 - Capable of being used for further research and analysis by the sponsor

Scope

- In Scope
 - Within non-segregated civil airspace- National Airspace System (NAS)
 - Primary focus on UAS that are capable of extended flight operations in Class A airspace
 - To test/evaluate our approach with proposed procedure
- Out of Scope
 - Identification of optimal procedure for loss of link situations

Next Steps from Last Time

- Continue meeting with Sponsor
 - ✓ Met with sponsor and his UAS research team
 - ✓ Conducted a critical design review with sponsor's UAS team
- Complete proof of concept & develop predictability model
 - ✓ Completed proof of concept
 - ✓ Created model in both Excel and Arena
- Adapt scenarios for airspaceAnalyzer
 - ✓ Created 3 scenarios to analyze with airspaceAnalyzer (automated ATC tool)
 - ✓ Working with lead developer for airspaceAnalyzer to finalize details
- Start documenting our methodology and assemble our report
 - ✓ Started a rough draft of final report

Approach

- Qualitative
 - Interviews to determine metrics from different stakeholders
- Absolute/Binary
 - Determine thresholds that must be met
- Analytical
 - Develop simulations that analyze individual procedures based on specific metrics

SME Interviews

- Met with all the SMEs recommended to us by our sponsor:
 - Global Hawk UAS pilot
 - ATC human-in-the-loop experiment analyst
 - UAS loss of link data analyst
 - Lead developer of automated ATC tool
 - Traffic flow management lead architect
 - Lead UAS Architect

Modeling

- Analytical modeling approaches based on:
 - Feedback from sponsor
 - Interviews with SMEs
 - Feedback led us to focus on predictability and the effect on ATC
- Focus is on two main metrics:
 - Predictability
 - Monte Carlo simulation
 - Process modeling- using Arena as the primary tool
 - Air Traffic Control workload
 - Using a graphical linear programming tool called airspaceAnalyzer

Predictability Model

Predictability Model Assumptions

- Times of UA maneuvers based on sample procedure provided by sponsor
- The pilot/ATC knows the sample contingency procedure
- All other functions (other than C2 link) on the UA are operating properly
- Loss of Link is indicated by change of transponder code- Radio Frequency loss (RDOF)
- If the pilot gets in contact with ATC (before the controller realizes LL from UA broadcast), the pilot will tell ATC exactly what/when maneuvers will happen
- There will be no conflicts within two minutes because ATC probes for conflicts up to two mins in advance

Predictability Model - Timeline

Predictability Model - Details

- Pseudo-measure for predictability will be time
- Aimed to have a flexible model that can incorporate new data easily
- Input
 - Controller reaction times to UA signaling loss-of-link
- Outputs
 - Times of interest:
 - Delta between UA broadcasting loss of link and the controller identifying the UA as loss of link
 - Delta between when the controller estimates the UA will initiate its first maneuver and the actual time of initiation
- Enhanced Output
 - To enhance the model, the model will also include the possibility of conflict
 - Tc is the time to conflict (loss of separation)
 - Analyze the probability the UA will be in conflict before the controller realizes there is a loss of link situation

MITRE Predictability Model - Sample Output

Controller Detection of UA Times

Time of when the **UA** performs its first maneuver

Controller Workload Model

airspaceAnalyzer - Controller Workload

- Simulation tool developed by MITRE to automatically separate, sequence, and space aircraft
- Measures sector complexity based on the amount of effort required to separate traffic
- Evaluates the impact of changes to sector on controller workload. Examples of potential changes include:
 - New Traffic Flows
 - New Sector Boundaries
 - Airspace Restrictions
 - Moving weather systems
- What about UAS?

airspaceAnalyzer
Sample Display

airspaceAnalyzer - Adaptation for UAS

- Tool can be used to evaluate the impact of a specific UAS loss of link procedure on sector complexity and controller workload
- Specific metrics can be gathered to evaluate the increase in controller workload if UA goes lost link
 - Lateral separation effort
 - Vertical separation effort
 - Lateral spacing effort
 - Vertical spacing effort
- Some maneuver uncertainty can be modeled by adjusting the amount of protection required for UA (e.g. increase from 5 NM to 10 NM in En Route airspace)

[lava - aa/sce/scenarios.tx... | 4 lava

Terminal

☐ VNC config

Terminal

airspaceAnalyzer - Methodology

- Run three scenarios
 - Controlled UA
 - UA will respond to ATC commands like normal aircraft
 - 2. Unresponsive, predictable UA (normal separation)
 - UA will not respond to ATC commands
 - Normal separation around aircraft is 5nm
 - 3. Unresponsive, unpredictable UA (greater separation)
 - UA will not respond to ATC commands
 - ATC expands separation around lost link UA to 10 nm
 - Note: Separation is estimated- can be adjusted depending on how conservative a controller is

Schedule

Earned Value Management

ITRE Feedback from our Sponsors

- Sponsors team was very excited about our project
- Many ideas to extend this work
- Sponsor requested that we submit this work for a company funded MITRE Innovation Project (MIP)
- UAS group requested that we conduct a Tech Talk
- The lead UAS Architect wants to put this in the work program

Next Steps

- Continue meeting with Sponsor
- Complete predictability model
 - Get most accurate data
- Adapt scenarios for airspaceAnalyzer
 - Analyze outputs
- Draw overall conclusions
 - Provide team's insight/recommendations
- Finalize Report/ Methodology

Questions?

