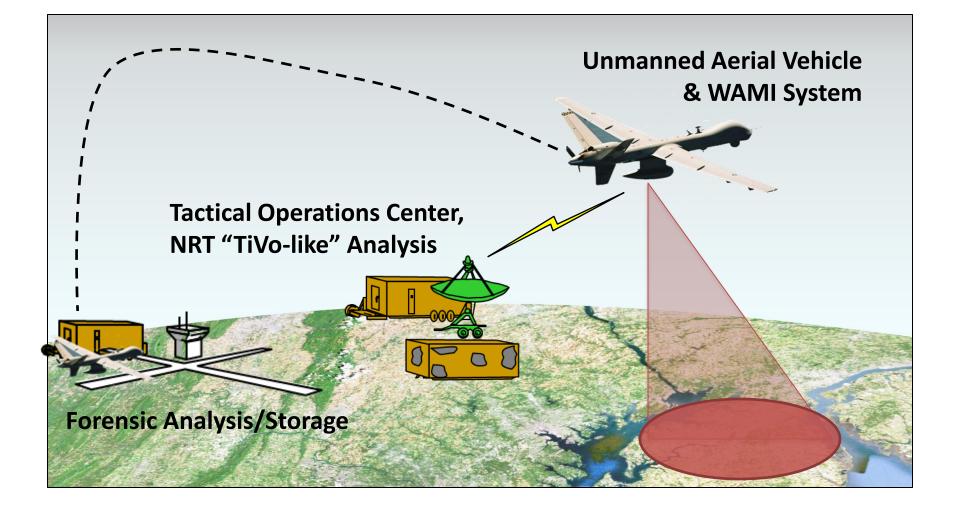


Wide Area Motion Imagery

Dwayne Jackson, MSSE David Lamartin, MSSE Jacqui Yahn, MSSE


Agenda

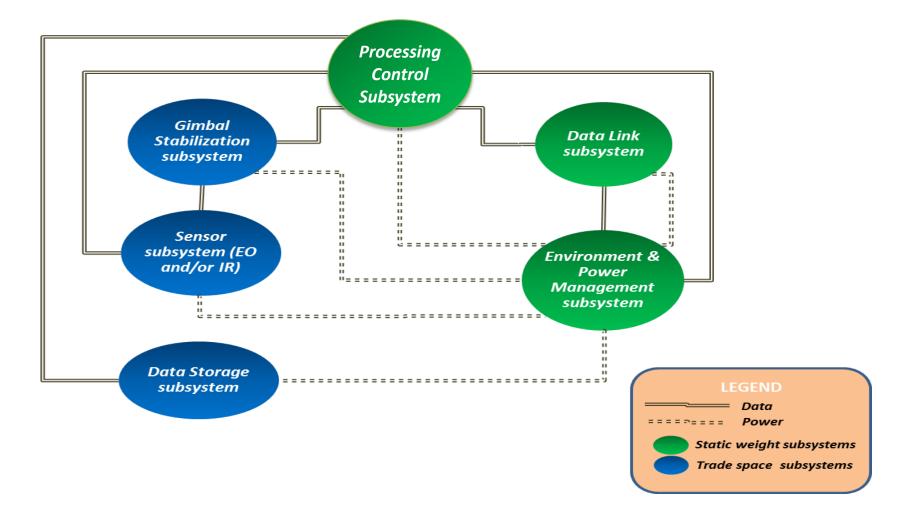
- Background
- Problem Definition
- Approach
- Conceptual Design Results
- Performance Analysis Results
- Trade-Off Analysis Results
- Conclusion

Background

- Wide Area Motion Imagery (WAMI) systems drive combat operations by finding and fixing targets
- Bring persistence, precision, and unprecedented situation awareness by identifying low signature targets and providing real-time intelligence to troops on the ground or at home
- Typically mounted on small aircraft, helicopters, balloons, or UAVs to allow a bird's eye-view of ground operations
- Key Attributes:
 - Weight
 - Geospatial Resolution (Ground Sampling Distance (GSD) (meters/pixel)
 - Temporal Resolution (Frame Rate) (Frames/Second or Hz)
 - Processing Power
 - Storage
 - Area of Coverage (Field of View (FoV))

High Level Operational Concept

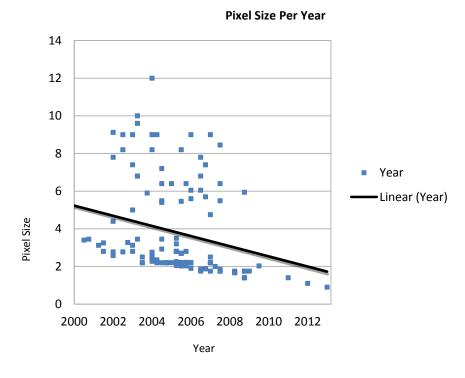
Problem Definition


- Of the WAMI sensors fielded today, there is not a solution compatible to be fielded on current platforms such as the Air Force's MQ-1 Predator, Army's MQ-1C Grey Eagle or future platforms such as the Air Force's Aurora's Orion.
- The payload weight limit for each of these platforms is approximately 500lbs which is significantly less than current WAMI systems.
- The challenge is to find a WAMI solution that is "good enough" within the 500lb threshold.
- The operational altitude is 20,000 ft and it must be able to detect dismounts (~75% of the demand)
 - EO: GSD ~0.2m/pixel
 - IR: GSD ~0.7m/pixel

Approach

- <u>Conceptual Design</u> Decompose the system, research historic data and perspective trends, and assess opportunities to reduce the weight
- <u>Performance Analysis</u> Model performance for each alternative and understand the impacts that weight reductions have on performance
- <u>Trade-off Analysis</u> Determine solutions that deliver the greatest value with respect to performance

Conceptual Design – Subsystems


Conceptual Design - Gimbal

- A gimbal at its most basic is a pivoted support that allows the rotation of an object about a single or multiple axis.
- Current WAMI Sensor technology requires gimbals mounted in or on airborne platforms.
- Gimbals that are primarily used on airborne platforms are for stabilization and steering (two – six axis gimbals)

Conceptual Design - Sensor

- EO and IR sensors weigh 100 200 lbs each on current systems
- Shrinking pixels means smaller focal length and focal plane for same resolution (linear relationship)
- Expect to reach 0.9 µm in 2013
- Pixel reduction by 50% has the potential to reduce the weight of the sensor by up to 40%
 - IR sensor weight reduction = 40%
 - EO sensor weight reduction = 30%

Conceptual Design - Storage

	HDD	SSD				
Weight	1.7 lb.	0.17 lb.				
Cost	Class dependent	Class dependent				
Reliability	Moving parts susceptible to shock/damage	Non-mechanical design, less heat				
Performance	7200 R	PM HDD PCZ SSD 0 2 4 6 8 10 Random Read Latency				

Conceptual Design

Alternative Selection Requirements

- The system shall be less than 500lbs.
- The sensor subsystem shall be able to detect dismounts at an operational altitude of 20,000ft.
- The gimbal subsystem alternatives shall support a total sensor weight less than or equal to its own weight.
- The storage subsystem alternatives shall include HDD and SSD media that are readily available in the current market
- The storage subsystem alternatives shall include HDD and SSD media that are projected to be readily available in the 2013/2014 market
- The storage subsystem alternatives should include HDD and SSD media that are projected to have an acceptable impact on the total system cost.

Conceptual Design Alternative Selection

- Weight-reducing alternatives were selected for each of the subsystems
- Resulted in 320 different combinations of WAMI alternatives

Gimbal Size (in)	Weight (lbs)	EO Sensor Pixel	Weight	IR Sensor Pixel	Weight	Storage (GB)	Weight (Ibs)
26	144	Width (µm)	(lbs) Width (μm)		(lbs)	3000 HDD	1.7
25	135	0	0	0	0	6000 HDD	1.7
23	120	1.32	76	1.32	68	500 SSD	0.17
21	103	1.1	70	1.1	60	750 SSD	0.17
18	79	0.9	64	0.9	52	130 330	

Performance Analysis "Good Enough"

- Performance values selected from fielded systems and future mission needs
- Resulted in 3645 different combinations of WAMI performance requirements.

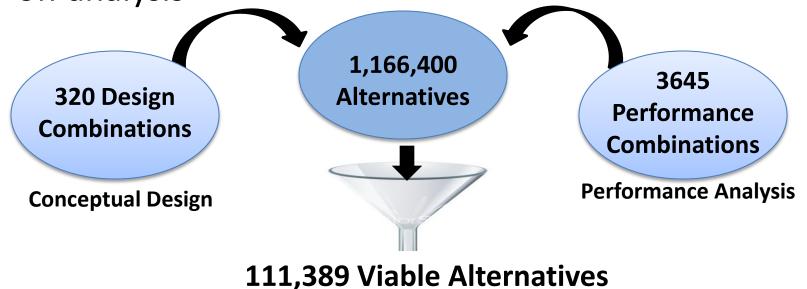
EO GSD (m/pixel)	IR GSD (m/pixel)	EO FoV (km)	IR FoV (km)	EO Frame Rate (frames/sec)	IR Frame Rate (frames/sec)	(hr) 12 24
0.2	0.7	6	6	2	1	48
0.15	0.65	8	8	5	2	72
0.1	0.6	10	10	8	4	96

* Most desirable

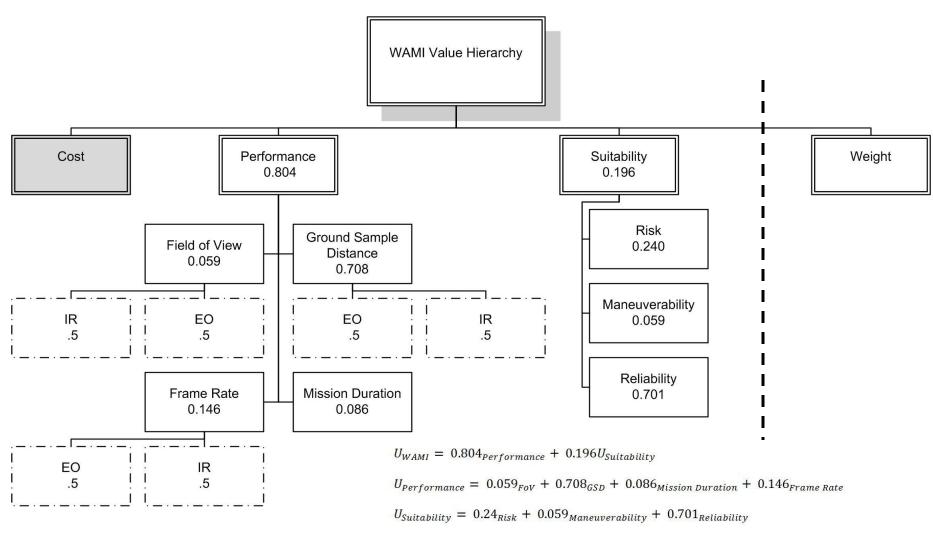
Performance Analysis – Storage

- Required storage capacity calculated for each performance combination
- Storage weight determined for each performance combination

(1) Ground Sampling Distance (GSD) = $\left(\frac{PixelWidth}{FocalLength}\right) * Range$


(2) Sensor Length = 2 * Focal Length * tan $(\frac{1}{2}Angle \ of \ View)$

(3) Resolution = $\left(\frac{SensorLength}{PixelWidth}\right)^2$


(4) Storage = Size Constant * Resolution * Frame Rate * Mission Duration

Performance Analysis Results

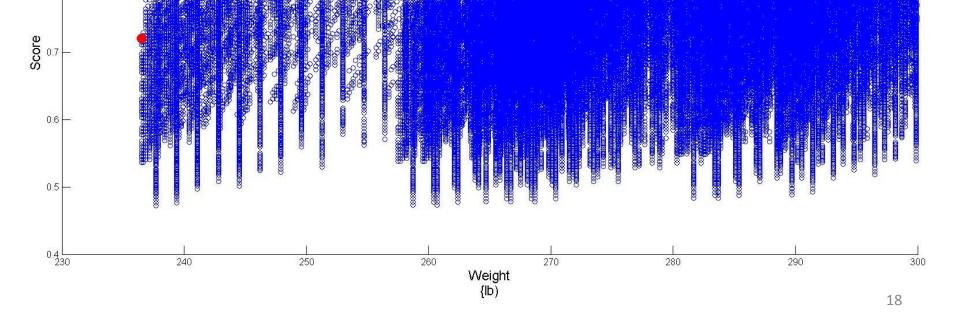
- Synthesis yielded 1,166,400 total alternatives, BUT
 - 207,256 exceed weight threshold (eliminated)
 - 933,418 inadequate sensor-gimbal pairing (eliminated)
 - 72,900 EO only, IR only, or neither (eliminated)
- 111,389 <u>viable alternatives</u> considered for the tradeoff analysis

Trade-Off Analysis

 $U_{FoV} = 0.5_{IR} + 0.5_{EO}, U_{GSD} = 0.5_{IR} + 0.5_{EO}, U_{Frame Rate} = 0.5_{IR} + 0.5_{EO}$

Trade-Off Analysis - Scales

- Symmetrical scales developed to assess each component's impact on risk, reliability, and maneuverability
- Used Min-max normalization to preserve relationships in the data

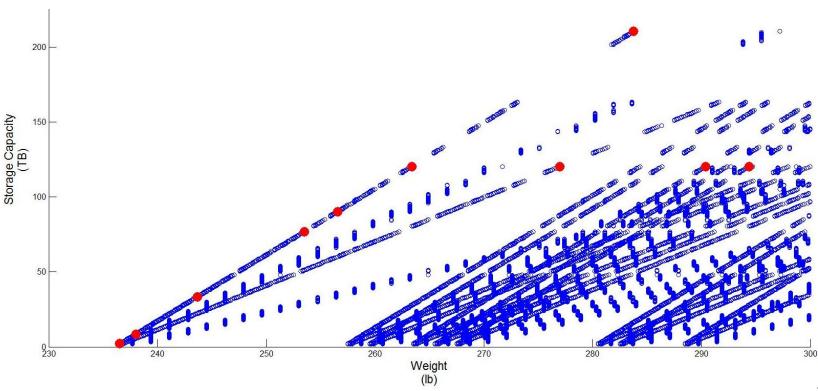

Risk							
Level	Impact	Likelihood					
1	Minimal	Very Low					
2	Low	Low					
3	Moderate	Moderate					
4	Major	High					
5	Unacceptable	Very High					

Trade-Off Analysis - Alternatives

Best value alternatives selected for a variety of
system weights

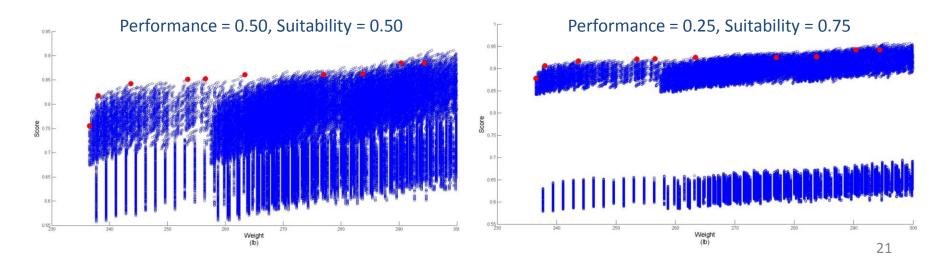
0.9

0.8


Trade-Off Analysis - Alternatives

Weight	Pixel Width (in)	GSD (m/pixel)	FoV (km)	Resolution (Pixels)	Frame Rate	Gimbal (size)	Storage (GB)	Mission Duration (hr)	Perform. Score	Suitability Score	Total Score
	0.9	0.2	6	9E+08	2	23	750 SSD	24	0.669936	0.950515	0.679356
236.51	0.9	0.6	6	1E+08	4		(x3)				
238.04	0.9	0.1	6	3.6E+09	2	23	750 SSD	24	0 050720	0.950515	0.821523
256.04	0.9	0.6	10	2.78E+08	4	25	(x12)	24	0.858736		
243.65	0.9	0.1	6	3.6E+09	2	23	750 SSD	96	0.93245	0.950515	0.87703
243.03	0.9	0.6	10	2.78E+08	4	23	(x45)	30	0.93245		
253.51	0.9	0.1	6	3.6E+09	5	23	750 SSD	96	0.959825	0.950515	0.897643
233.31	0.9	0.6	10	2.78E+08	4	25	(X103)	50			
256.57	0.9	0.1	6	3.6E+09	8	23	750 SSD	72	0.962629	0.950515	0.899754
250.57	0.9	0.6	10	2.78E+08	4	25	(X121)	, 2			
263.37	0.9	0.1	6	3.6E+09	8	23	750 SSD	96	0.9872	0.950515	0.918256
203.37	0.9	0.6	10	2.78E+08	4	25	(X161)	30	0.9872	0.950515	0.918230
276.97	0.9	0.1	6	3.6E+09	8	23	500 SSD	96	0.9872	0.950515	0.918256
270.57	0.9	0.6	10	2.78E+08	4	25	(X241)				
283.77	0.9	0.1	8	6.4E+09	8	23	750 SSD	96	0.9931	0.950515	0.922699
203.77	0.9	0.6	10	2.78E+08	4		(X281)				
290.37	1.32	0.1	6	3.6E+09	8	25	750 SSD	96	0.9872	0.965361	0.920988
290.37	0.9	0.6	10	2.78E+08	4		(X161)				
294.37	0.9	0.1	6	3.6E+09	8	25	750 SSD	96	0.9872	0.965361	0.920988
234.37	1.32	0.6	10	2.78E+08	4	25	(X161)				

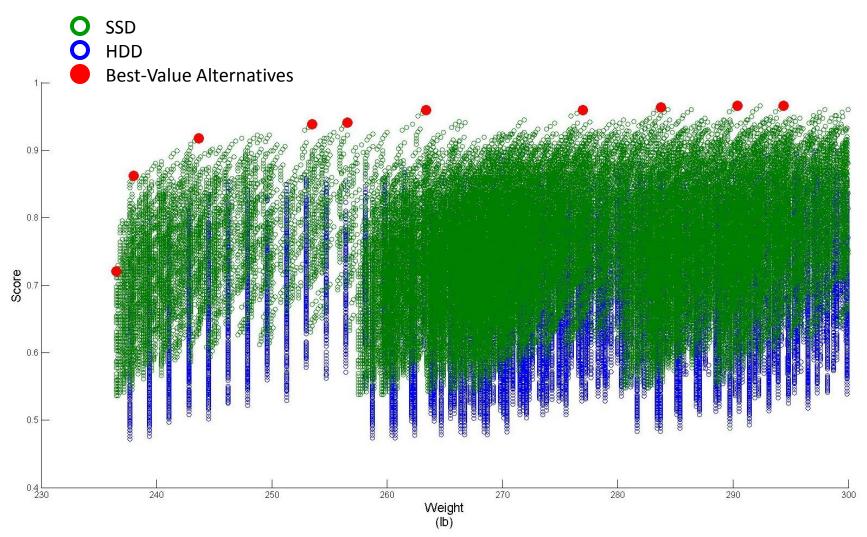
Denotes EO	
Denotes IR	

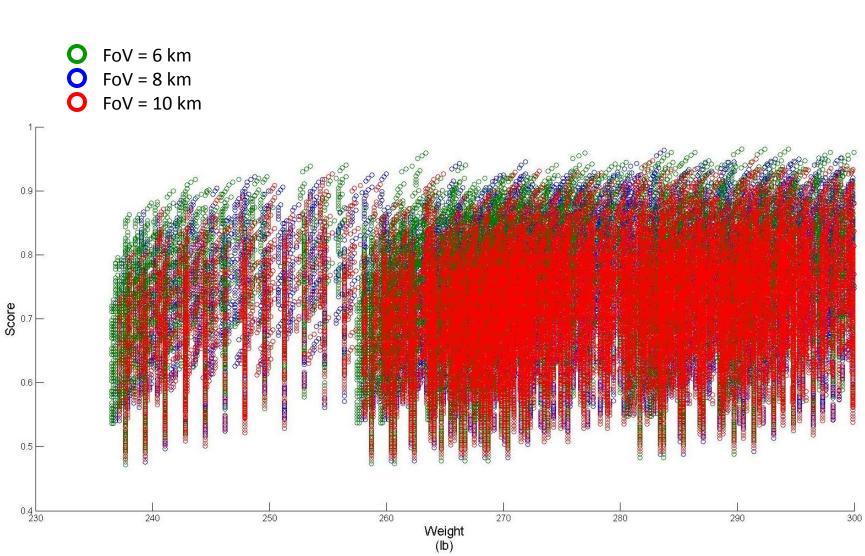

Trade-Off Analysis - Storage Capacity

 Both trade-off analysis and performance analysis (exclusive of stakeholder preference) suggest EO FoV as a trade for system weight

Sensitivity Analysis

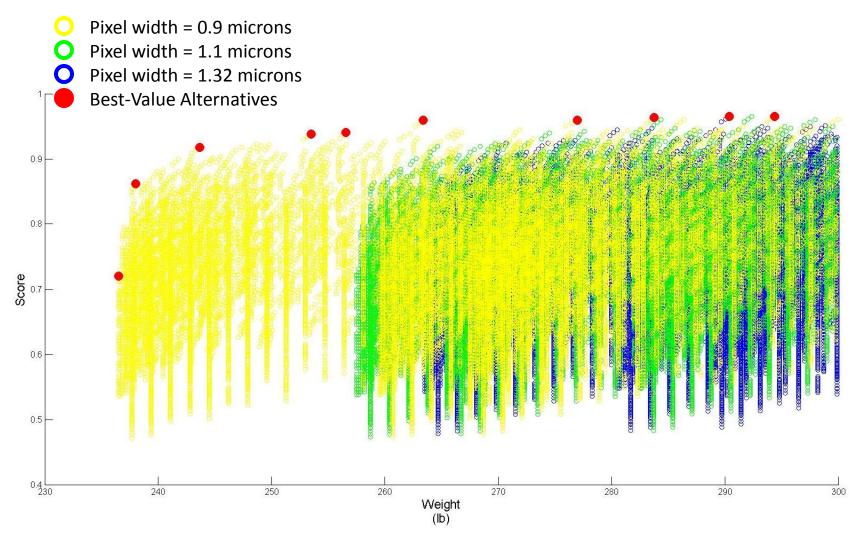
- Objective: Understand relationships between inputs and outputs
- Varied stakeholder weights for Suitability and Performance
- Greatest variability for alternatives with greater weight

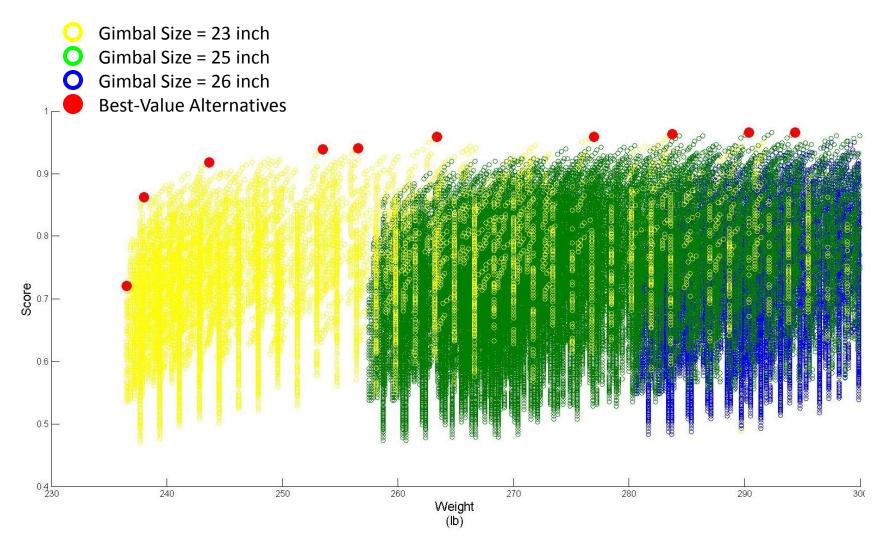

Recommendations / Way Forward


- System requirements can be written with greater specificity
 - Recommend using solid state drives
 - Redefine "good enough" -- Consider trades and adjust least/most desirable performance measures
- Analysis to determine the maximum performance achievable with a single alternative or set of technologies
- Size and power need consideration, since they too can greatly impact design considerations
 - Additional requirements to narrow the set of alternatives; redo tradeoff/sensitivity analysis with different objectives
- Reassess key assumptions, minimally to understand their impact
 - Storing only 2% of mission data
 - A weight reduction of 30%/40% for the sensor with a pixel width reduction of 50%

Questions?

Backup


Results - HDDs vs. SSDs



Results - FoV

Results – Sensor Types

Results - Gimbal

