Optimization of Fleet Profile -Circulation Dispatch at *The Washington Post*

> James Costa Anne Crowell Greg Koch

George Mason University SYST 798/OR 680 December 8, 2011

The Washington Post

Agenda

- Problem Description
- Washington Post Distribution Process
 - CONOPS
 - System Structure
 - System Behavior
 - Data
- Modeling Approaches
 - Dynamic Truck Scheduling IP
 - Fleet Mix Prediction for Lease Analysis
 - Model Validation
- Results
 - Business Case for Truck Scheduling Model
 - Fleet Mix Recommendation
 - Washington Post Model Implementation
- Follow-on Work
- Questions

WPCD Descriptive Diagram

Problem Definition:

- Optimize Cost of Truck Scheduling and Routing
- Predict Necessary Fleet Composition
- Dynamically schedule drivers based on demand and production schedule

Problem Definition:

- Optimize Cost of Truck Scheduling and Routing
- Predict Necessary Fleet Composition
- Dynamically schedule drivers based on demand and production schedule

Understand Existing System

- System and Process Analysis Goals
 - Document current WPCD system:
 - Structure
 - Behavior
 - Needs
 - Constraints
- Lack of existing WPCD system documentation

System Data Collection & Analysis

- Collected quantitative data for each system component
 - Washington Post has comprehensive data tracking system
 - WPCD provided two full months worth of shipping data
 - Received truck fleet mix, truck pallet capacity, and facility address list
- Elicited additional information from POC
 - Visited the WPCD Production Facility in Springfield, VA
 - Collected data that was not obvious through historical data analysis
 - Priorities, preferences, external influences, etc.
 - Questionnaires for process details

WPCD Operational Concept Diagram

MASON

WPCD System Process

act [Activity] WPCD_Activity_2 [WPCD_Activity_2] Washington Post Newspaper Product Washington Post Facility Washington Post Truck Fleet Washington Post Driver Fleet Warehouse Facility Production Facility Paper Product Produced Paper Available for Shipment Pallets Loaded **Drive Truck to** to Truck Warehouse Pallets Paper Product Unloaded from Received Truck **Drive Truck to** Second Warehouse If another trip on schedule Pallets Paper Product Unloaded from Received Truck **Drive Truck to** Production Facility If no additional trips on schedule

WPCD System Schedule: Mon-Thurs

			MONDAY -			THURSDAY							
			F	Pro	od.	R	uns	5	ç	Shi	ip'	Tiı	ne
12:00am	-	1:00am											
1:00am	-	2:00am											
2:00am	-	3:00am											
3:00am	-	4:00am											
4:00am	-	5:00am											
5:00am	-	6:00am											
6:00am	-	7:00am											
7:00am	-	8:00am											
8:00am	-	9:00am											
9:00am	-	10:00am											
10:00am	-	11:00am											
11:00am	-	12:00pm											
12:00pm	-	1:00pm											
1:00pm	-	2:00pm											
2:00pm	-	3:00pm											
3:00pm	-	4:00pm											
4:00pm	-	5:00pm											
5:00pm	-	6:00pm											
6:00pm	-	7:00pm											
7:00pm	-	8:00pm											
8:00pm	-	9:00pm											
9:00pm	-	10:00pm											
10:00pm	-	11:00pm											
11:00pm	-	12:00am											

- Monday Thursday daily schedule is consistent from a shift perspective
- Daily details are variable
 - Product availability times for various warehouse locations
- Product volume
 Daily Paper Advanced Runs

Daily Paper - Headsheets

Sunday Paper - Packages

Sunday Paper - Front Page

Sunday Paper - ADV1

Sunday Paper - ADV2

WPCD System Schedule: Fri-Sun

	FRIDAY		SATU	RDAY	SUN	DAY	Daily Paper - Advanced Runs			
	Prod. Runs	Ship Time	Prod. Runs	Ship Time	Prod. Runs	Ship Time				
12:00am - 1:00am							Daily Paper - Headsheets			
1:00am - 2:00am										
2:00am - 3:00am							Sunday Paper - Packages			
3:00am - 4:00am							Constant Dansen, Fursut Danse			
4:00am - 5:00am							Sunday Paper - Front Page			
5:00am - 6:00am							Sunday Danar ADV/1			
6:00am - 7:00am							Sunday Paper - ADVI			
7:00am - 8:00am							Sunday Paper - ADV2			
8:00am - 9:00am							Sunday raper - ADV2			
9:00am - 10:00am										
10:00am - 11:00am						•••••	Friday – Sunday daily			
11:00am - 12:00pm							schodulo is uniquo			
12:00pm - 1:00pm							schedule is unique			
1:00pm - 2:00pm							A accurate for differing			
2:00pm - 3:00pm							Account for differing			
3:00pm - 4:00pm		_					weekend products and			
4.00pm - 5.00pm							weekend products and			
6:00pm - 7:00pm							deliveries			
7:00pm - 8:00pm										
8:00pm - 9:00pm										
9:00pm - 10:00pm							GEORGE			
10:00pm - 11:00pm					and the second second		IVIASON			
11:00pm - 12:00am					i data					

Modeling Approaches

- VRP with multiple tours, multiple product types, a nonhomogeneous fleet, and time windows
- Time-Space Network

Definitions

> Trucks:
$$x_{i,j}^k \in \{0,1\}$$

> Products: $y_{i,j}^p \in \mathbb{Z}^+$

MTMPMFVRP...

$$\begin{split} \min \sum_{r} \sum_{k} \sum_{t} \sum_{j=1}^{n} F_{k_{t}} X_{0,j}^{k_{t}^{r}} + \sum_{r} \sum_{k} \sum_{t} \sum_{j} V_{ij}^{k} X_{ij}^{k_{t}^{r}} + \sum_{r} \sum_{k} \sum_{t} L_{k_{t}^{r}} L_{k_{t}^{r}} \\ \sum_{i=0}^{n} X_{i,n+1}^{k_{t}^{r}} = 1 & \forall r, k, t \quad (1) \\ \sum_{j=1}^{n+1} X_{0,j}^{k_{t}^{r}} = 1 & \forall r, k, t \quad (2) \\ \sum_{i=1}^{n} X_{i,j}^{k_{t}^{r}} \leq 1 & \forall j \in \{1 \dots n\} | i \neq j, \forall r, k, t \quad (3) \\ \sum_{j=1}^{n} X_{i,j}^{k_{t}^{r}} \leq 1 & \forall i \in \{1 \dots n\} | i \neq j, \forall r, k, t \quad (4) \\ \sum_{j} Y_{i,j}^{k_{t}^{r}} \leq \bar{D} X_{i,j}^{k_{t}^{r}} & \forall i, j | i \neq j, \forall r, k, t \quad (5) \\ \sum_{r} \sum_{k} \sum_{t} \sum_{i} \sum_{j} Y_{i,j}^{k_{t}^{r}} = D_{j}^{p} & \forall j, p \quad (6) \\ \sum_{i} \sum_{j} \sum_{p} Y_{i,j}^{k_{t}^{r}} \leq Q_{k} & \forall i \neq j, r, k, t \quad (7) \\ \sum_{i} \sum_{j} \sum_{l,j} X_{i,j}^{k_{t}^{r}} = L_{k_{t}^{r}} & \forall r \in \{1 \dots R-1\}, \forall k, t \quad (9) \\ \sum_{j} Y_{0,j}^{k_{t}^{r}, p} \leq \bar{D}(1 - z_{k_{t}^{r}}) & \forall r, k, t, p \quad (11) \\ X_{i,j}^{k_{t}^{r}} \in \{0,1\}, Y_{i,j}^{k_{t}^{r}, p}, S_{k_{t}^{r}} \in \mathbb{Z}_{+} & \forall i, j, k, t, r, p \quad (12) \\ \end{split}$$

Arcs are feasible flow. Here product flow is restricted to waiting at the depot.

Time

Arcs determined by travel times between warehouses

Time

- Multi-commodity min-cost flow problem*
- Input: network, production schedule, truck availability
- Output: How much of each product on each truck type as well as the route schedules for all trucks
- Solves fleet mix problem

- Multi-commodity min-cost flow problem*
- Input: network, production schedule, truck availability
- Output: How much of each product on each truck type as well as the route schedules for all trucks
- Solves fleet mix problem
- Much more compact than initial vehicle routing formulation

- Objective: Minimize costs of driving the trucks
- Constraints: Product flow across arc is capacitated by truck type. (Arcs between the same location are uncapacitated)
- $\succ \quad Flow in = Flow out$

MCMCF Formulation

$$\min \sum_{(i,j)\in A,p} V_{i,j}^p y_{i,j}^p$$

$$\sum_{p} y_{i,j}^{p} \leq C_{i,j} \qquad \forall (i,j) \in A \qquad (1)$$

$$\sum_{i,p} y_{i,k}^{p} - \sum_{j,p} y_{k,j}^{p} = b_{k} \qquad \forall k \in N \qquad (2)$$

$$y_{i,j}^{p} \in \mathbb{Z}^{+} \qquad (3)$$

MCMCF Formulation

min $\sum V_{i,j}^p y_{i,j}^p$ $(i,j) \in A, p$

 $\forall (i,j) \in A \tag{1}$

 $\forall k \in N \tag{2}$

(3)

Single Unit Flow*

$$\min\sum_{(i,j)\in A,k} D_{i,j} V^k x_{i,j}^k$$

$$\begin{split} \sum_{p} y_{i,j}^{p} &\leq C^{k} x_{i,j}^{k} \qquad \forall (i,j) \in A \\ \sum_{p} y_{i,l}^{p} - \sum_{j,p} y_{l,j}^{p} &= b_{l} \qquad \forall l \in N \\ \sum_{i,k} x_{i,l}^{k} - \sum_{j,k} x_{l,j}^{k} &= b_{l}' \qquad \forall l \in N \\ y_{i,j}^{p} \in \mathbb{Z}^{+}, \; x_{i,j}^{k} \in \{0,1\} \end{split}$$

Single Unit Flow*

$$\min\sum_{(i,j)\in A,k} D_{i,j} V^k x_{i,j}^k$$

Depot causes problems

Single Unit Flow*

$$\min\sum_{(i,j)\in A,k} D_{i,j} V^k x_{i,j}^k$$

$$\sum_{p} y_{i,j}^p \leq C^k x_{i,j}^k$$
$$\sum_{i,p} y_{i,l}^p - \sum_{j,p} y_{l,j}^p = b_l$$
$$\sum_{i,l} x_{i,l}^k - \sum_{j,p} x_{l,j}^k = b_l'$$

 $y_{i,j}^p \in \mathbb{Z}^+, \ x_{i,j}^k \in \{0,1\}$

$$\forall (i,j) \in A$$

 $\forall l \in N$

$$\forall l \in N$$

DCs cause problems

 i,k

 $_{j,k}$

Batch Flow*

$$\min\sum_{(i,j)\in A,k} D_{i,j} V^k x_{i,j}^k$$

$$\sum_{o} P^{o} y_{i,j}^{o} \le C^{k} x_{i,j} \qquad \qquad \forall (i,j) \in A \qquad (1)$$

$$\sum_{i,o} P^o y^o_{i,l} - \sum_{j,o} P^o y^o_{l,j} = b_l \qquad \forall l \in N$$
(2)

$$\sum_{i,k} x_{i,l}^{k} - \sum_{j,k} x_{l,j}^{k} = b'_{l} \qquad \forall l \in N \qquad (3)$$
$$y_{i,j}^{o}, \ x_{i,j}^{k} \in \{0,1\} \qquad (4)$$

$$y_{i,j}^o, \ x_{i,j}^k \in \{0,1\}$$

Defining Arc Sets

➢ How do we force trucks back to the depot?

Defining Arc Sets

- ➢ How do we force trucks back to the depot?
- ➢ How do we manage truck flow out of depot?

 $\bar{\mathbf{x}}^k$ Integer!

Correct Formulation (SU)

$$\min\sum_{(i,j)\in A,k} D_{i,j} V^k x_{i,j}^k$$

$$\begin{split} \sum_{p} y_{i,j}^{p} &\leq C^{k} x_{i,j}^{k} \qquad \forall (i,j) \in Y \\ \sum_{p} (y_{i,l}^{p} + \bar{y}_{i,l}^{p}) - \sum_{j,p} (y_{l,j}^{p} + \bar{y}_{l,j}^{p}) = b_{l} \qquad \forall l \in N \\ \sum_{i,k} (x_{i,l}^{k} + \bar{x}_{i,l}^{k}) - \sum_{j,k} (x_{l,j}^{k} + \bar{x}_{l,j}^{k}) = b_{l}' \qquad \forall l \in N \\ y_{i,j}^{p}, \ \bar{y}_{i,j}^{p}, \ \bar{x}_{i,j}^{k} \in \mathbb{Z}^{+}, \ x_{i,j}^{k} \in \{0,1\} \end{split}$$

0-1 Flow

- Same formulation as Batch Flow
- Truck Type replaced by Truck
- \succ Truck availability = 1
- Increases the number of variables substantially
- > All variables are now binary

Model Parameters

- How do we manage the size of the network?
- Time Interval: Larger TI => Smaller Network Larger TI => More Conservative
- Time Bound: Larger TB => Larger Network
- Max Hold: Larger MH => Larger Network

Time Bound

Solving Strategy

- Iterative network expansion
- > Initialize with small network (TB = 0)
- Add arcs and resolve using previous solution as initial basis

Parameter Tuning (8/18/11-8/19/11)

1,800.00 1,600.00 1,400.00 1,200.00 1,000.00 800.00 600.00 400.00 200.00 0.00 $Pa^{annewsork}$ Pa^{annews

Objective Value (\$)

Time Bound (Min.) Time Interval (Min.) Max Hold (Min.) ParameterSet-1 30 0 60 30 30 ParameterSet-2 60 **ParameterSet-3** 30 60 45 ParameterSet-4 60 30 60 ParameterSet-5 90 30 60 30 60 120 ParameterSet-6 30 ParameterSet-7 60 180

4 Day Compare

Distance (miles) 1800 3000 1600 2500 1400 1200 2000 1000 Worst 1500 ■ Moderate 800 Best 600 1000 400 500 200 0 0 14-Aug 16-Aug 17-Aug 18-Aug 14-Aug 16-Aug 17-Aug

Objective Value (\$)

	Time Bound (Min.)	Time Interval (Min.)	Max Hold (Min.)
Worst	0	30	60
Moderate	60	30	60
Best	60	30	120

18-Aug

Worst

Best

■ Moderate

Volume Increase Compare

Distance (miles) 3500 3000 2500 2000 1500 500 0 Given +50%+100%

	Time Bound (Min.)	Time Interval (Min.)	Max Hold (Min.)
Worst	0	30	60
Moderate	60	30	60
Best	60	30	120

Truck Utilization Compare

% Trucks at Warehouse (8/16/11)

	Time Bound (Min.)	Time Interval (Min.)	Max Hold (Min.)
Worst	0	30	60
Moderate	60	30	60
Best	60	30	120

Tours

- > No Repeats!
- Max: 4 Distribution Center tour
 - D Hyattsville South Dakota Seat Pleasant Annapolis – D
- > No obvious pattern, highly dependent on demand
- ➢ Tours even when demand is doubled

What Didn't Work For Us

- > VRP
- Full Network
- Holding Costs
- Batching
- ▶ 0-1
- Modifying Variable Costs

Fleet Mix Model

A Truck sitting at the Depot idle is a wasted resource – Why pay for something you don't use?

- > The Fleet should change over time:
 - Decline in Subscriptions
 - More Efficient Truck Routing
 - Increase in Advertisement Bulk
 - Total Market Coverage
 - Changing Lease Terms

Fleet Mix Modeling Approach

- Use Truck Routing Model
- Assess Future Pallet Demand at each Distribution Center
 - Linear Regression
 - Worst Case Demand?
 - Better Projection Methods?
- Unconstrained Fleet
 - Sufficiently large number of trucks that won't bound a solution
- The Trucks used by the model represent the optimal fleet to meet the predicted demand

Linear Regression of Demand

Linear Regression Performed using all data for each of

27 Distribution Centers

Destination	60 day Pallet Projection
ALEXANDRIA	11
ANNAPOLIS	16
ARLINGTON	9
ANNAPOLIS JUNCTION	8
BOWIE	16
BURKE	18
CHANTILLY	20
COLUMBIA	25
DERWOOD	30
DUNKIRK	3
FREDERICK	9
GERMANTOWN	17
HOLLYWOOD	4
HYATTSVILLE	20
LEESBURG	0
MANASSAS	14
OXON HILL	9
PURCELLVILLE	6
ROCKVILLE	45
SEAT PLEASANT	8
SOUTH DAKOTA	27
SPRINGFIELD	12
STERLING	19
VIENNA	22
WALDORF	12
WARRENTON	2
WHITE OAK	13
WOODBRIDGE	9

Projection Limitations

- Not enough Data: 2 Months of Data August-October
 - Projections show increases likely due to Holiday Ads
 - Need Data over a longer time period for better projections
- Projections are of Average Demand
 - Because of Variability need worst case projections to assess fleet

Unconstrained Fleet Mix

Conclusions

- Bundling orders into multi-distribution center tours generates significant savings.
- Efficient tour routing is not obvious and requires optimization software.
- Given that cost/mile is roughly the same for all tractor trailers, fleet should move towards a mix of straight trucks and 53' trailers.
- Efficiently scheduling truck routes reduces the number of trucks (drivers) needed.

Follow on Work

- Fleet Mix Assessment
 - Collect More Data
 - Establish Better Projections
 - Assess Fleet Mix by performing Trade of long/short lease
- Predictive Driver Scheduling model
 - Predict Weekly Demand
 - Feed demand into truck schedule
 - Generate driver assignments based on schedule
 - Propose process to account for difference between schedule and need for drivers

Acknowledgements

- > Dr. Loerch
- Julio Pascual and Bill Thompson at The Washington Post
- Dr. Hoffman
- Dr. Charbonneau
- Saba Neyshabouri
- Maximal Software

Questions?

