Right Sizing Navy Fire & Emergency Services

OR 680/SYST 798 Final December 8, 2011

Nellie Coronado Alan "Zip" Duda Ehsan Foroudi Amon Tarakemeh

Purpose & Agenda

Purpose

•Present results and methodology from the Fire & Emergency Services Effectiveness BaseLine Evaluator "FESEBLE" tool

Agenda

- Introduction
- •Background
- •System
- •Approach
- •Model
- •Results
- •Conclusion

Introduction

 "Secretary of Defense Robert Gates has set a goal of saving \$150 billion from the Pentagon budget over the next five years. \$35 billion of those proposed savings would come from the US Navy." - PRI's The World, January 10, 2011

Background

- Sponsor
 - Created FESPOM cost model to calculate resources required to meet policy requirements
 - Study needs to adjust to budget and model needs to explain possible effects of change
 - Requests loss function (L) as L = F(A, I)
 - A FE&S Asset, I Base Installation Features
- Problem
 - Develop a mathematical model of the expected loss at an installation given an application of F&ES resources
 - Determine the risk levels and minimize/level the fire and emergency risk against an enterprise budget
 - Altering the risk, resources, mix of F&ES capabilities across and within the Navy's 70+ installations

Goal

- Create an installation level simulation tool
 - Simulate the events, response, and loss
 - Vary the response due to changed resources

Assumptions

- Assumptions:
 - Requested resources to an event
 - Pre-determined time for resolving false alarm
 - Pre-determined response/priority to overlapping events
- Uncertainties:
 - Events time duration
 - Providing resources to an event (first 5 minutes)
 - Providing proper resources to an event

Existing Process

System Interactions

Alternatives

• 3 Alternatives

		Overall Familiari		iarity	Availability			
	Licensing/Cost	Power	Sponsor	Team	Sponsor	Team	Expandability	Legend
ExtendSim	\$\$\$					Δ		High
Arena	\$\$\$			Δ				Medium
Excel	\$	\triangle					\triangle	Low

- ExtendSim & Arena
 - Powerful, Expensive, Limited knowledge base, limited availability
- Excel (Chosen)
 - Slower processing power, cheap, widely available

Standards

- NFPA 1710 Organization and Deployment of Fire Suppression Operations, Emergency Medical Operations, and Special Operations to the Public by Career Fire Departments
- Minimum of 4 firefighters per apparatus
- Arrive within 4 minutes 1st company
- 8 minutes all companies for 1st alarm
- Process and notify in 1 min, 95% of the time

Approach

- Used grid to calculate location
- Fitness center, University hall, and Mason Inn renamed as Mason base fire stations
- Types/frequency of events and resources are based by reviewing Navy F&ES PCA data

Map

Data Collection

- Locations for Events and Stations
 - Longitude
 - Latitude
- Vehicles
 - Capability
 - Station
 - % maintenance

- Events
 - Type
 - Priority
 - Probability of False Alarm
 - Time Required
 - Frequency

Model Flow

- Identify vehicles required and current status
 - Send available vehicles, or
 - Reroute vehicles based on the distance and priority
- Determine Loss

Model Limitations

- Vehicle provide 1 capability
 - System Effect: Worst case assumption. Cross capable vehicles not modeled. Lowers benefit for some vehicles.
- Loss is binary: ALL vehicles must be at the event for the FULL duration
 - System Effect: Worst case assumption. The critical moments are the 1st 30 minutes.
- All vehicles are fully crewed
 - System Effect: Best case assumption. SMEs generally agreed with this assumption.

On-site station #1 with no loss

On-site station #2 with no loss

On-site station #3 with loss

3 on-site & off-site stations, no loss

No resources, loss

Off-site station with loss

On-site station #3 with no loss

On-site station #1 with no loss

Scenario Design & Runs

• Scenarios

	Scenario 1	Scenario 2	Scenario 3
Design	 3 on-site stations 1 off-site station	 3 on-site stations 0 off-site station	 2 on-site stations 1 off-site station
Purpose	 Real world configuration Baseline scenario 	• Stress the capabilities of the base	• Cost savings measure (shut down 1 station)
	- Dasenne seenario	• Not all bases have a community station available	• Vehicles from the closed base were NOT relocated

- Runs and Run Times
 - 1 year; 100 replications
 - 1 replication: 6 minutes; Full Model: 30 hours
 - For accurate distributions ~50 replications

Outputs

Main Matrice		Run 1		
		Total Monetary	124.2	
– Monetary Los	S	Total Lives Los	2	
T T T	Lives Lost Median Arrival Time for the	Arrival Time for the 1 st	Median	1.17
– Lives Lost			1st Quartile	0.60
– Median Arriv			3rd Quartile	2.19
First Respond	er	Responder	μ	2.23
- # of Failed Fx	vents		σ Median	4.21
		Arrival Time	1st Quartile	0.61
– # of Events w	hen lives were lost	for the Last	3rd Quartile	2.20
		Responder	μ	2.27
			σ	4.28
• Secondary Me	trics	Count t(1st Res	2328	
Counta when	1st roomondor	#of Failed Even	ts	93
- Counts when	responder	#of Events Whe	4	
arrived late			ARFF	0
- Arrival Time	for the Last		Battery Chief	0
Descender	 Annual Time for the Last Responder Vehicles that were not available 		Hazmat	0
Responder		Vehicles	Ladder	0
– Vehicles that			Rescue	0
			Structural	95
			Engine	
			Tanker	

Results

- Scenario Results calculated from run outputs
- Monetary Loss Results
 - Scenarios 2 & 3 had higher average monetary loss and higher deviation
- Lives Lost Results
 - Scenario 2 had a significant increase in lives lost
 - Scenario 3 had a comparable lives lost value
- Scenario 2 had no community station so certain capabilities were unavoidable
- Scenario 3 had limited resources but the full range of capabilities

		Scenarios			
		1	2	3	
Monetary	μ	110	341	362	
Loss	σ	16	106	28	
Lives	μ	1	28	2	
Lost	σ	4	5	1	

Results (cont.)

- Failed Events & Events when Lives were Lost
 - Scenario 1 performed the best (most resources)
 - Scenario 2 performed horribly
 - Metric rules Scenario 2 as an infeasible option
 - Scenario 3 had a high # of failed events but performed for high casualty events
 - Represents acceptable risk

			# of Events when Lives		
	# of Failed	d Events	were lost		
	μ	σ	μ	σ	
Scenario					
1	94.77	15.50	1.87	4.09	
Scenario					
2	403.58	49.43	28.23	5.01	
Scenario					
3	366.21	25.53	2.54	1.53	

Conclusions & Recommendations

- Conclusions
 - Useful, accurate results based on the input data
 - Flexible, adaptable, and scalable
 - Additional metrics can be captured
 - All station and equipage assumptions are located in the spreadsheets; allowing for easy sensitivity analysis
- Recommendations
 - Continue to run model with different scenarios
 - User will comprehend the depth and breadth of the tool
 - Identify useful metrics and additional metrics needed
 - Improve on the input assumptions

Next Steps & Lessons learned

- Next Steps
 - Run for an actual base; site surveys
 - Expand the model
 - Vehicles with multiple abilities
 - Personnel as data
 - Training dependencies and cross-training assumptions
 - Maintenance assumption and model application
 - Degradation of Loss
 - Obtain the Fairfax County Automatic Vehicle Location data
- Lessons Learned
 - Quickly nail down the real problem and solution and vet it against the sponsor
 - Don't speak to the interviewees (SME) about the model
 - Programmers should use the same logic

Experts

- Fred Woodaman (Sponsor)
 - Principal Analyst
 - Innovative Decisions
- Captain Tom Arnold
 - Operations Bureau
 - Fairfax County Fire and Rescue
- Steve Burke
 - Volunteer Firefighter
 - 20 years experience

Questions

