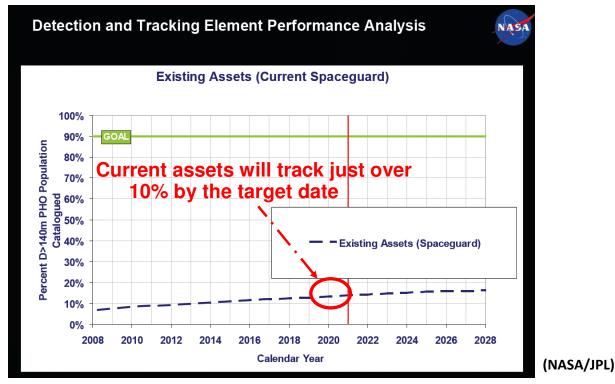
Small Near-Earth Object Observing System (SNOOS)

A Modeling Approach for Architecture Effectiveness

Kervin Cabezas Emily Edwards Aaron Johnson George Lekoudis

SEOR 798/680

Topics


- Problem Background: Planetary Defense
- Team Role
- System Engineering
- Effectiveness Analysis
- Architecture Selection
- Cost Analysis

Terminology

- Astronomical Unit (AU)
 - Distance between Earth and sun
 - 1 AU = 149.6M kilometers
- Near Earth Object (NEO)
 - Comets and asteroids whose closest orbital approach is within 1.3 AU of the sun
- Absolute Magnitude, (H)
 - NEO visible signature at 1 AU

Problem Background [1]

- Near Earth Objects (NEOs) pose a threat to the existence of the human race
- In 2005 Congress directed NASA to detect, track, catalog, and characterize NEOs on a collision course with Earth
- Congressional goal calls for 90% catalog of large NEO (>140 meter diameter) estimated population by 2020
- Current NASA capability cannot meet the goal

4

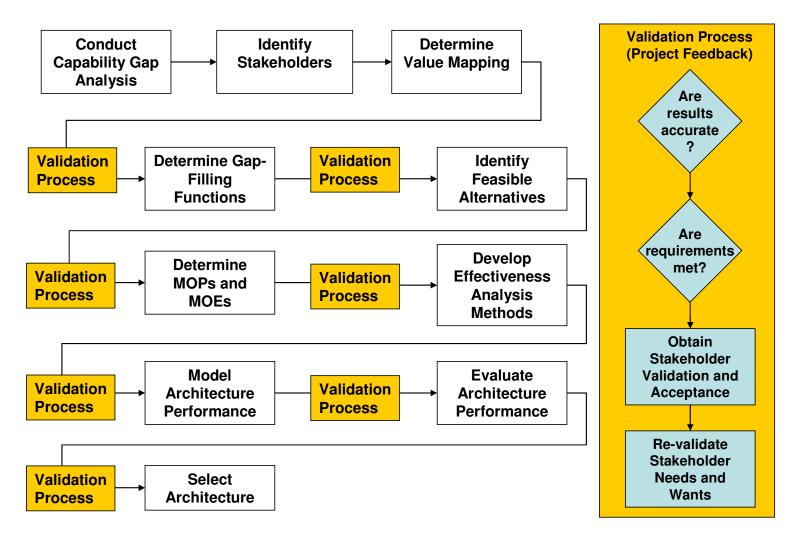
Problem Background [2]

- But what about smaller NEOs (30 140 meters), which can still destroy local populaces and cause economic devastation?
- Small NEO to large NEO population = $36:1^{(1)}$ impact likelihood is higher
- Small NEOs possess enough kinetic energy to cause severe destruction
 - Tunguska, Russia 1908: ~ 50m NEO destroyed 830 mi²
 - Small NEO impact can kill hundreds of thousands, and/or cause economic devastation (e.g. destruction of financial center or oil-producing area)

Size (meters)	Energy Yield (Megatons)	Prob(Earth- impact)*yr ⁻¹	Tunguska	National Capital Region
30	2	0.003	The state of the second second	
40	4	0.002		
50	8	0.001		143.00 2
60	15	0.0006		es et 28°
80	30	0.0004		" Telos
100	61	0.0002		
120	122	0.0001		
140	244	0.00007	0 10	40 km (FAS.org)
		(NASA)	0	25 mi

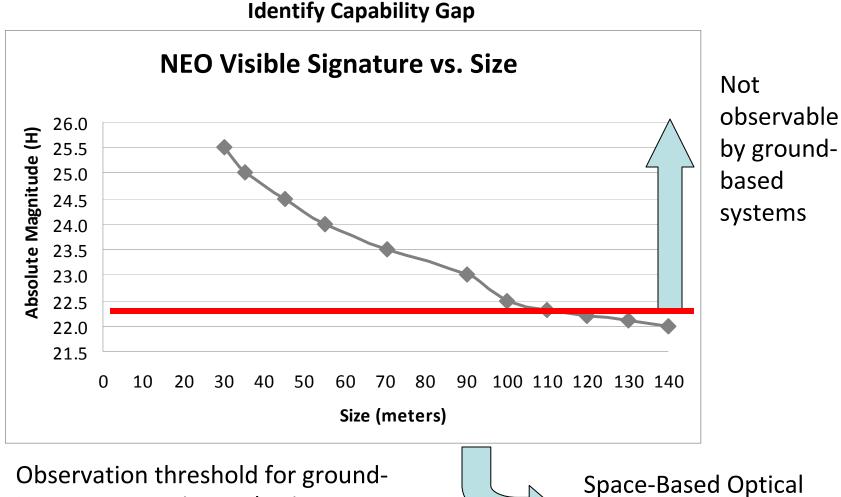
Problem Statement

Small Near-Earth Objects pose a significant threat to life on Earth. No current or planned effort to observe them exists.

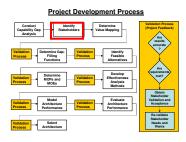

Small NEOs = 30 to 140 meters in diameter

Team Role

- Identify the observation capability gap and propose a solution to observe the more numerous small NEO population
- Project scope:
 - 1. Develop a high-level system architecture for small NEO observation (The S.E.)
 - Identify the functions needed to perform small NEO observation
 - Identify the alternatives capable of assisting in meeting the system goal (Measure of Effectiveness - MOE)
 - 2. Perform Effectiveness Analysis to quantitatively model how well alternative architectures perform (The O.R.):
 - Measure alternative architectures' performance
 - Instantiate architecture using SEOR Team decision criteria


System Engineering [1/11]

Project Development Process



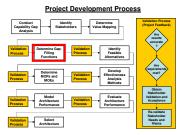
System Engineering [2/11]

Observation Needed

System Engineering [3/11]

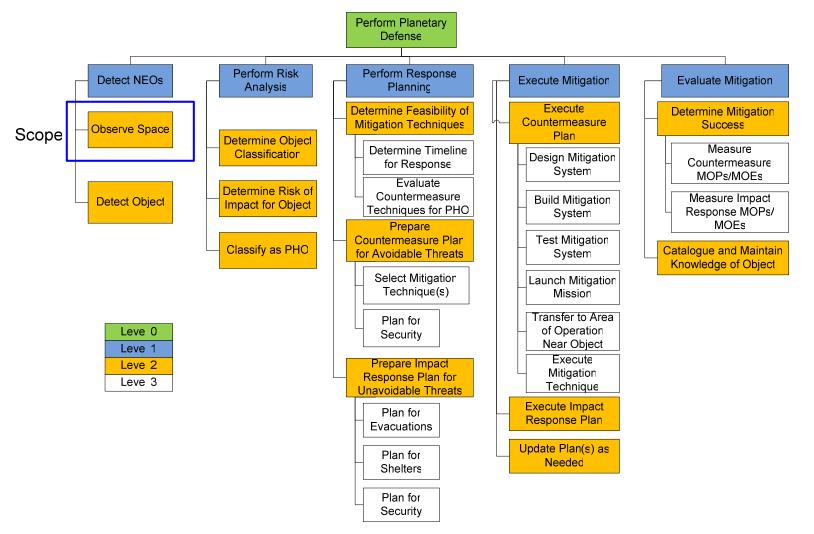
Identify Stakeholder Needs

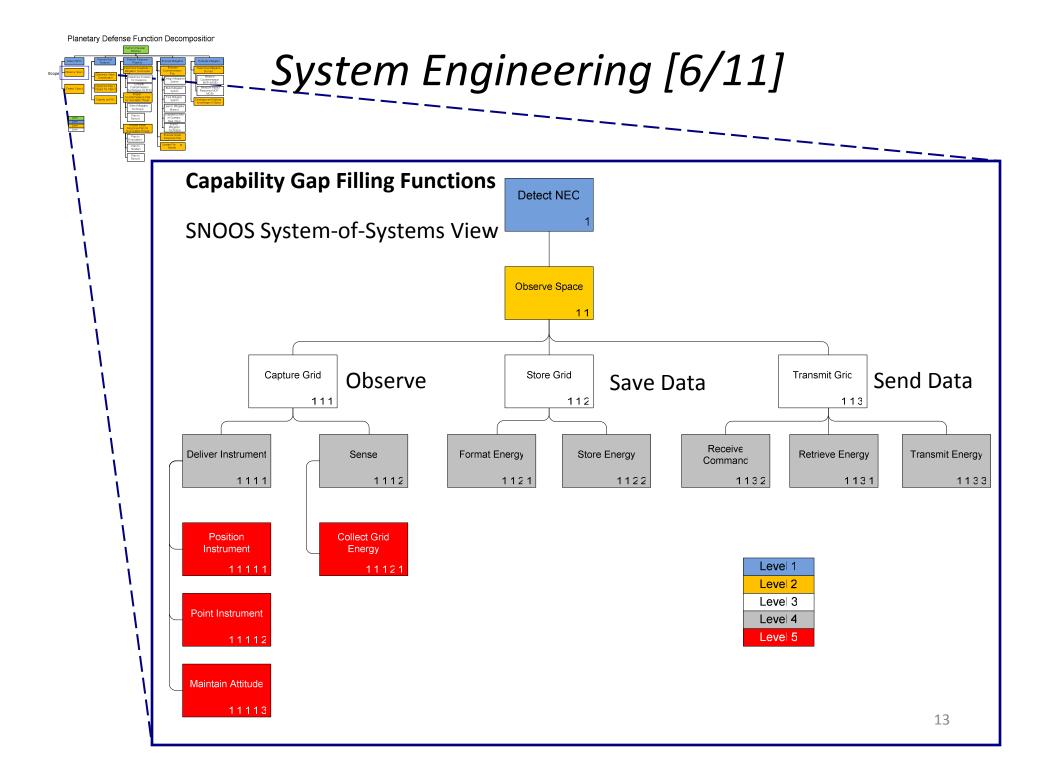
	Stakeholder/Need	24 Hour Coverage		Warning Time	Maximum Space Coverage	Data Management	Cost Effective	Reliablility	Stakeholder Weight
	U.S. NEO Governing Organization	0.150	0.200	0.200	0.150	0.050	0.050	0.100	1.000
L	U.S. Executive/Legislative	0.100	0.200	0.300	0.010	0.010	0.300	0.070	0.800
ov't	U.S. Military	0.150	0.150	0.100	0.150	0.150	0.050	0.100	0.900
G.	U.S. System Operators	0.170	0.170	0.150	0.150	0.050	0.010	0.150	0.800
S.C	U.S. Analysis Community	0.030	0.300	0.030	0.100	0.300	0.010	0.100	0.800
	U.S. Emergency Response Organizations	0.100	0.200	0.500	0.040	0.040	0.040	0.040	0.300
	U.S. Law Enforcement Agencies	0.100	0.200	0.500	0.040	0.040	0.040	0.040	0.200
ty	International Governing Organization	0.150	0.200	0.200	0.150	0.050	0.050	0.100	0.900
ommunity	International Military Coalition	0.150	0.150	0.100	0.150	0.150	0.050	0.100	0.800
ШШ	International System Operators	0.170	0.170	0.150	0.150	0.050	0.010	0.150	0.800
	International Analysis Community	0.030	0.300	0.030	0.100	0.300	0.010	0.100	0.800
L. C	International Emergency Response Organizations	0.100	0.200	0.500	0.040	0.040	0.040	0.040	0.300
Int'l	International Law Enforcement Agencies	0.100	0.200	0.500	0.040	0.040	0.040	0.040	0.200
Z	System Developers	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.900
stry	Analysis/Research Community	0.030	0.300	0.030	0.100	0.300	0.010	0.100	0.600
Indu	SEOR Faculty	0.000	0.200	0.050	0.200	0.200	0.200	0.100	0.900
7	SEOR Project Team	0.200	0.100	0.200	0.200	0.050	0.100	0.050	0.900
er									
Oth	Human Race	0.160	0.160	0.400	0.050	0.010	0.010	0.200	0.100
	Weighted Totals	1.367	2.221	1.974	1.526	1.477	0.882	1.184	

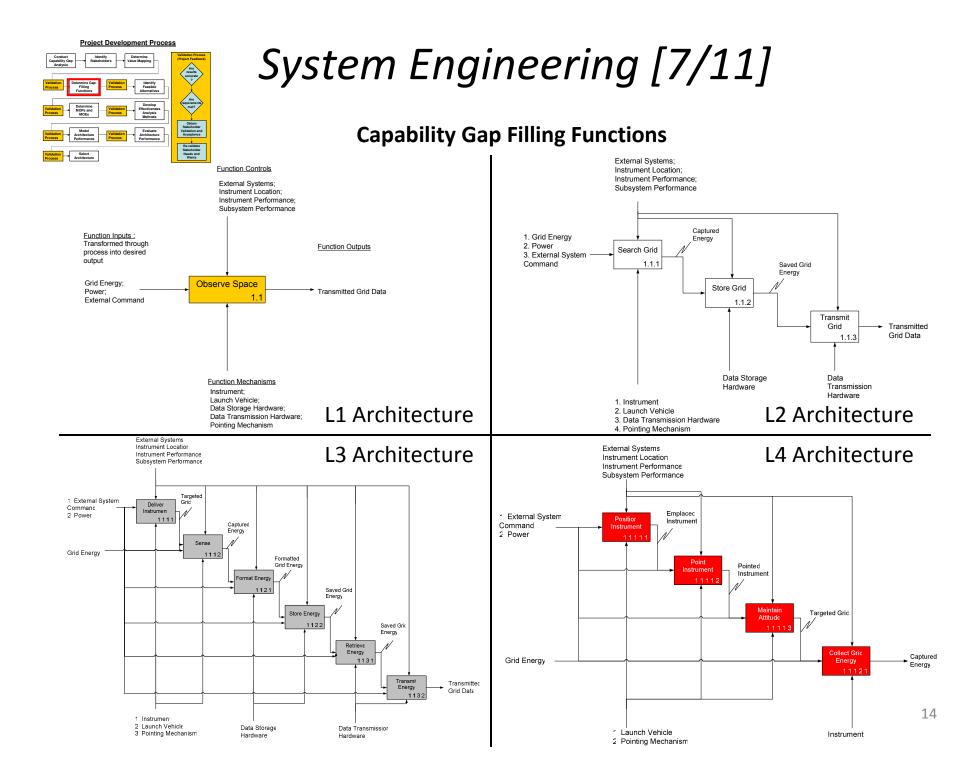

3.

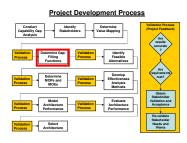
4.

Mission Cost Time to Goal

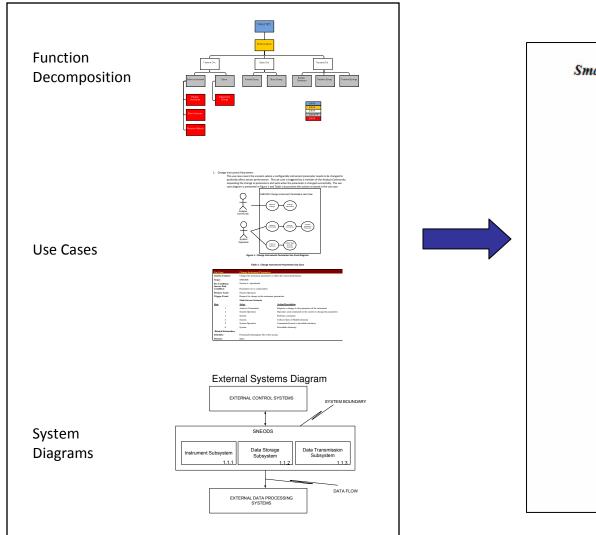

System Engineering [4/11]

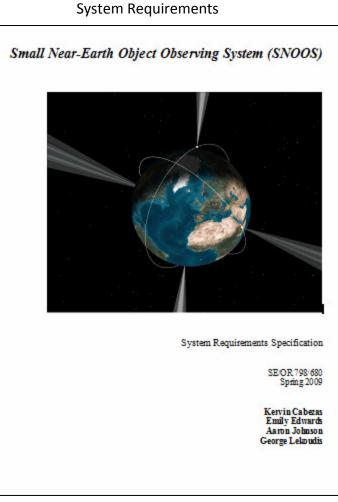

Value Mapping Value Criteria **Technical Measures of** Performance • . (▼), Maximize (▲), or Target (> Stakeholder Value Criteria (a.k.a. "Funct 18 Reliablility nent Perfor 0.88 Cost Goal Cost Effective Data Managemen 0 Θ Θ ο Θ Θ 0 0 Θ 12.9 24 Hour Coverage 1.4 2.2 Θ 0 0 Θ Θ 0 0 Θ Θ Θ 20.9 Detect <140m Objects 1.53 Maximum Space Coverage Θ 0 0 0 18.5 2.0 Object Impact Warning Time 0 Θ 0 Θ 1.97 14.4 1.6 aximum Space Coverage Warning Time Θ 9 13.9 1.5 Data Management Θ Θ Θ 2.22 9 8.3 Θ 0 0 0.9 System Cost Θ 0 0 Θ 0 0 Θ Θ Detect <140m Objects 9 11.1 1.2 System Reliability 0 Θ Θ 0 0 1.37 24 Hour Coverage 1.50 0.00 0.50 1.00 2.00 2.50 Range, SNR liograms Mbps MHZ Bytes Mbps Bytes MTBF Vatts rears Target or Limit Valu \$ \$ **Top Design Considerations for Alternatives: Data Downlink** 1. 01.2 24.8 11.9 0.6 1.6 9.4 0.9 5.6 10.8 4.2 12.8 6.0 **Sensor Performance** 2.

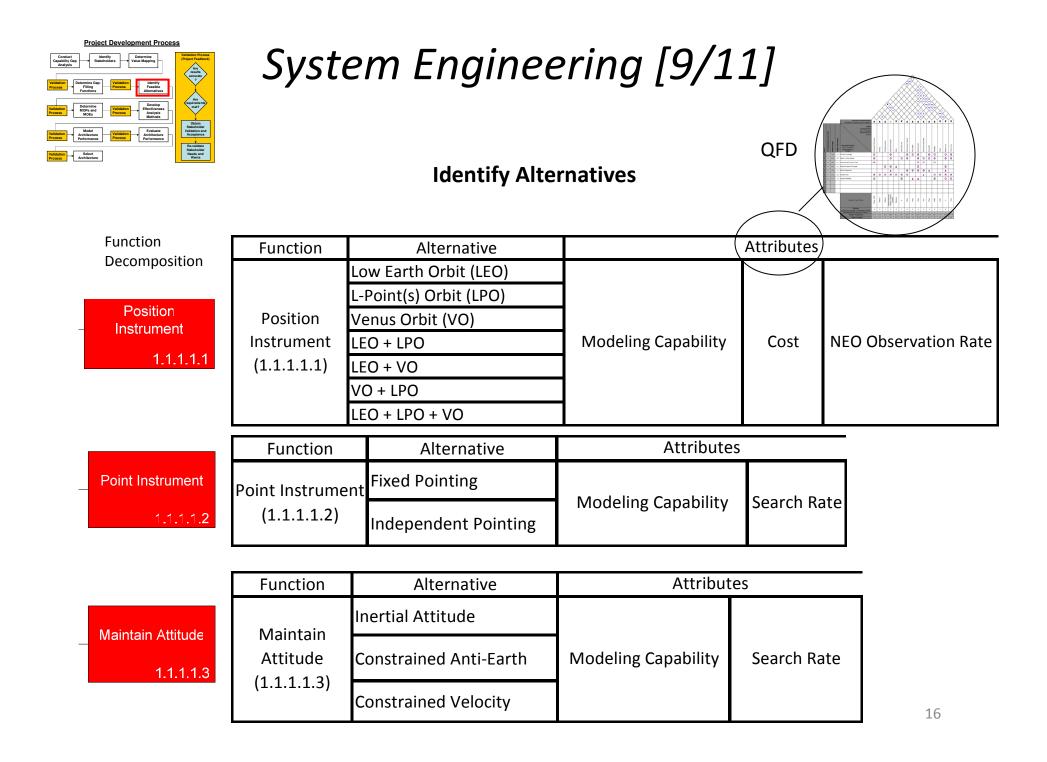


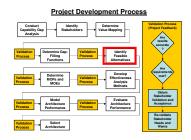

System Engineering [5/11]

Planetary Defense Function Decomposition







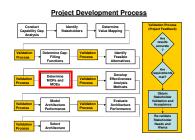

System Engineering [8/11]

Requirements Development

Function

System Engineering [10/11]

Identify Alternatives


Function												
Decomposition	Function	Alternat	ives			A	ttribu	tes				
Collect Grid Energy 1.1.1.2.1	Collect Energ (1.1.1.2.1)	Radar gy Laser Infrared Visible	Pow Consum		Cost	24/ Capab		Rang	ge FO	v	Cost	Reliabilit
	Function	Alt	ernatives				A	ttribut	es			
Store Energy 1.1 .2.2	Store Energy (1.1.2.2)	/	e Drive (SSD) Drive (HDD) Tape		Power sumption	Cost	Stor Siz	U	Write Speed		Read peed	Reliability
I	Functi	on A	lternatives			Attrik	outes					
Transmit Energy	Transmit Ener	S gy (1.1.3.2) K	-Band -Band u-Band a-Band	Power	Downlink Rate	t Upli Rat			ound Sta lability (
	Alternative				Attribute	S						
EFFECTIVENESS	Matlab	Report	Orbital	Sen	isor P	ointing	Kr	nowled	lge of	A -		

ANALYSIS

STK C++

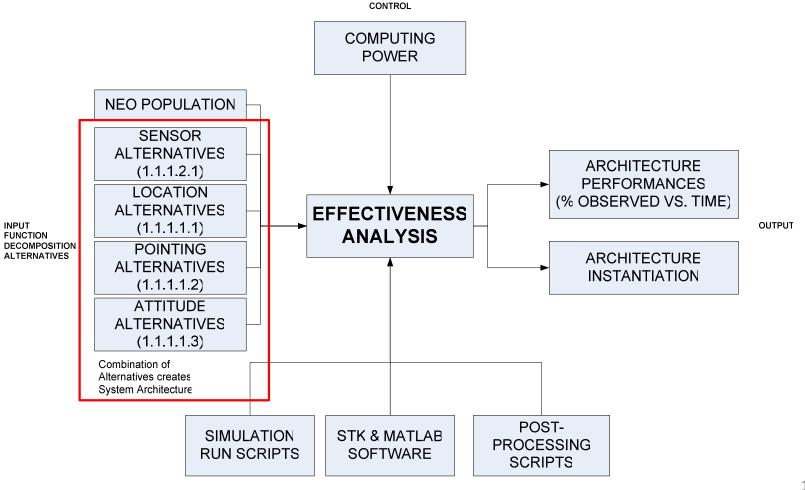
native						
0	Report	Orbital	Sensor	Pointing	Knowledge of	Access
	Generation	Mechanics	Modeling	Modeling	Tool	ALLESS

17

System Engineering [11/11]

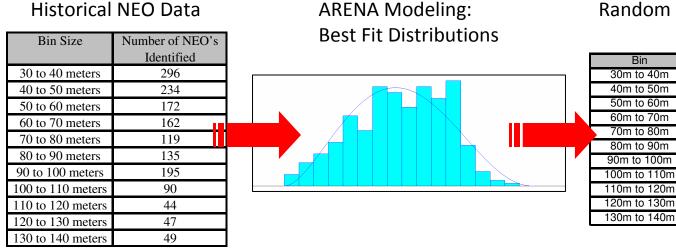
Evaluation Methods

Attribute Score	Definition	
5	Most Desirable	
4		Ι.
3		
2		
1	Least Desirable	


SNOOS Measures of Effectiveness (MOE):

- 1. How many NEOs does the selected architecture observe?
- 2. How long will this take?

MOE = 90% observation capability


Effectiveness Analysis

- Satellite Took Kit (STK) is the tool selected to evaluate architecture performance (measures the MOE)
- STK is a physics-based tool that models dynamic objects in space-based scenarios

NEO Population Modeling

- **Purpose**: Create a representative small NEO population for architecture alternatives to observe
- Process:
 - 1. Collect historical NEO observation data (orbital parameters) from NASA/JPL
 - 2. Best-fit orbital parameters to probability distributions (ARENA)
 - 3. Input random numbers into the distribution equations to generate representative NEO parameters
 - 4. Input small NEO population into STK
 - 66 distributions (6 per NEO size bin); 3252 random parameters generated

Random Number Generation (Orbits)

Distribution

Beta

Beta

Beta

Triangular

0.01 + 0.85 * BETA

Normal

Normal

Triangular

0.01 + 0.87 * BETA

Triangular

Beta

Eccentricity

Parameters

(2.83. 3.28146)

(2.29, 2.44135)

(3.12, 4.194)

(0, 0.531, 0.85)

(3.66, 3.68)

(0.428, 0.175)

(0.432, 0.175)

(0.04. 0.467. 0.78)

(2.33, 2.78)

(0.02, 0.522, 0.88)

(3.81, 3.46814)

Small NEO Population Input

NEO Size	Estimated	% of	
(meters)	Population	Population	Number Generated
30-40	374503	50.5	253
40-50	158025	21.3	107
50-60	79812	10.8	54
60-70	45314	6.1	31
70-80	27940	3.8	19
80-90	18317	2.5	13
90-100	12593	1.8	13
100-110	8991	1.2	13
110-120	6621	0.8	13
120-130	5002	0.7	13
130-140	3862	0.5	13

NEO Population: 542 small NEOs

Effectiveness Analysis Run Matrix

One Sensor

Two Sensors

Three Sensors

Four Sensors

Une J	CHSUI
case_0001	sat_1
case_0002	sat_2
case_0003	sat_L_3
case_0004	sat_L_4
case_0005	sat_L_5
case_0006	sat_V1
case_0007	sat_V2
case_0008	sat_V3

case_0009	sat_1	sat_2
case_0010	sat_1	sat_L_3
case_0011	sat_1	sat_L_4
case_0012	sat_1	sat_L_5
case_0013	sat_1	sat_V1
case_0014	sat_1	sat_V2
case_0015	sat_1	sat_V3
case_0016	sat_2	sat_L_3
case_0017	sat_2	sat_L_4
case_0018	sat_2	sat_L_5
case_0019	sat_2	sat_V1
case_0020	sat_2	sat_V2
case_0021	sat_2	sat_V3
case_0022	sat_L_3	sat_L_4
case_0023	sat_L_3	sat_L_5
case_0024	sat_L_3	sat_V1
case_0025	sat_L_3	sat_V2
case_0026	sat_L_3	sat_V3
case_0027	sat_L_4	sat_L_5
case_0028	sat_L_4	sat_V1
case_0029	sat_L_4	sat_V2
case_0030	sat_L_4	sat_V3
case_0031	sat_L_5	sat_V1

sat L 5

sat_L_5

sat_V1

sat V1

sat V2

sat V2

sat_V3

sat_V2

sat V3

sat V3

case 0032

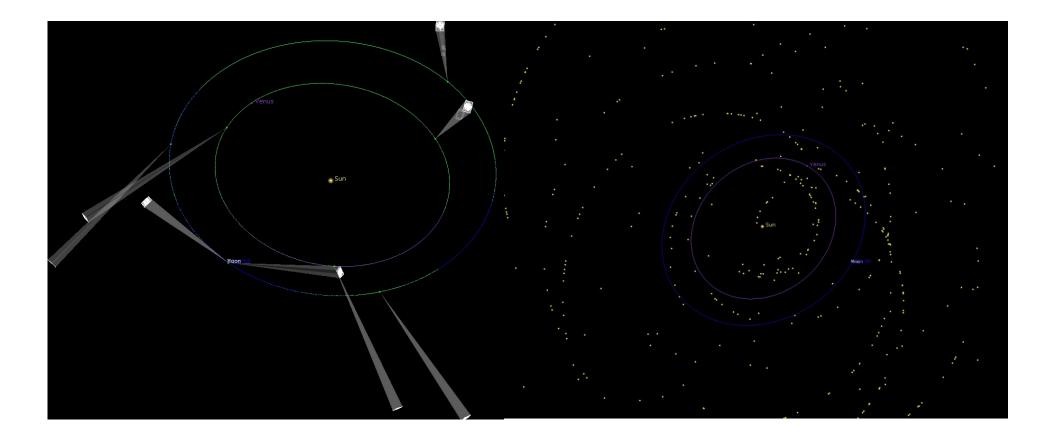
case 0033

case 0034

ase 0035

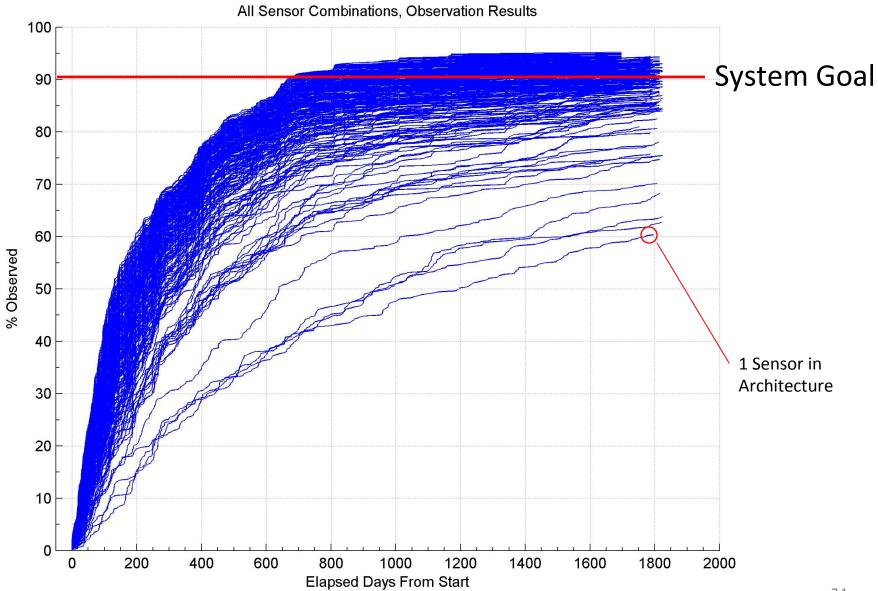
ase 0036

case_0037	sat 1	sat 2	sat L 3
case_0038	sat_1	sat_2	sat L 4
case 0039	sat 1	sat 2	sat L 5
case 0040	sat 1	sat_2	sat V1
case_0040	sat 1	sat_2	sat_V1
-	-	-	_
	541_1	5dt_2	
-	***		50t_1_
case_0044 case_0045	sat_1	sat_L_3 sat_L_3	
	***		sat_V1
case_0046	sat_1	sat_L_3	sat_V2
case_0047	sat_1	544_2_5	5412-15
case_0048	541_1	500 <u>_</u>	
case_0049	sat_1	sat_L_4	sat_V1
case_0050	sat_1	sat_L_4	sat_V2
case_0051	sat_1	sat_L_4	sat_V3
case_0052	sat_1	sat_L_5	sat_V1
case_0053	sat_1	sat_L_5	sat_V2
case_0054	sat_1	sat_L_5	sat_V3
case_0055	sat_1	sat_V1	sat_V2
case_0056	sat_1	sat_V1	sat_V3
case_0057	sat_1	sat_V2	sat_V3
case_0058	sat_2	sat_L_3	sat_L_4
case_0059	sat_2	sat_L_3	sat_L_5
case_0060	sat_2	sat_L_3	sat_V1
case_0061	sat_2	sat_L_3	sat_V2
case_0062	sat_2	sat_L_3	sat_V3
case_0063	sat_2	sat_L_4	sat_L_5
case_0064	sat_2	sat_L_4	sat_V1
case_0065	sat_2	sat_L_4	sat_V2
case_0066	sat_2	sat_L_4	sat_V3
case_0067	sat_2	sat_L_5	sat_V1
case_0068	sat_2	sat_L_5	sat_V2
case_0069	sat_2	sat_L_5	sat_V3
case_0070	sat_2	sat_V1	sat_V2
case_0071	sat_2	sat_V1	sat_V3
case_0072	sat_2	sat_V2	sat_V3
case_0073	sat_L_3	sat_L_4	sat_L_5
case_0074	sat_L_3	sat_L_4	sat_V1
case_0075	sat_L_3	sat_L_4	sat_V2
case_0076	sat_L_3	sat_L_4	sat_V3
case_0077	sat_L_3	sat_L_5	sat_V1
case_0078	sat_L_3	sat_L_5	sat_V2
case_0079	sat_L_3	sat_L_5	sat_V3
case_0080	sat_L_3	sat_V1	sat_V2
case_0081	sat_L_3	sat_V1	sat_V3
case_0082	sat_L_3	sat_V2	sat_V3
case_0083	sat_L_4	sat_L_5	sat_V1
case_0084	sat_L_4	sat_L_5	sat_V2
case_0085	sat_L_4	sat_L_5	sat_V3
case_0086	sat_L_4	sat_V1	sat_V2
case_0087	sat_L_4	sat_V1	sat_V3
case 0088	sat L 4	sat V2	sat V3
case_0089	sat_L_5	sat_V1	sat_V2
case 0090	sat L 5	sat V1	sat V3
case 0091	sat L 5	sat V2	sat V3
		sat_V2	sat V3


Case Number		Case Sei	nsor Mix	
case_0093	sat_1	sat_2	sat_L_3	sat_L_4
case_0094	sat_1	sat_2	sat_L_3	sat_L_5
case_0095	sat_1	sat_2	sat_L_3	sat_V1
case_0096	sat_1	sat_2	sat_L_3	sat_V2
case_0097	sat_1	sat_2	sat_L_3	sat_V3

- •255 Scenarios or cases (subset shown)
 - •Non-repeating combinations of sensors
 - •From 1 sensor to 8 per
 - Architecture Alternative
- Each scenario = Architecture

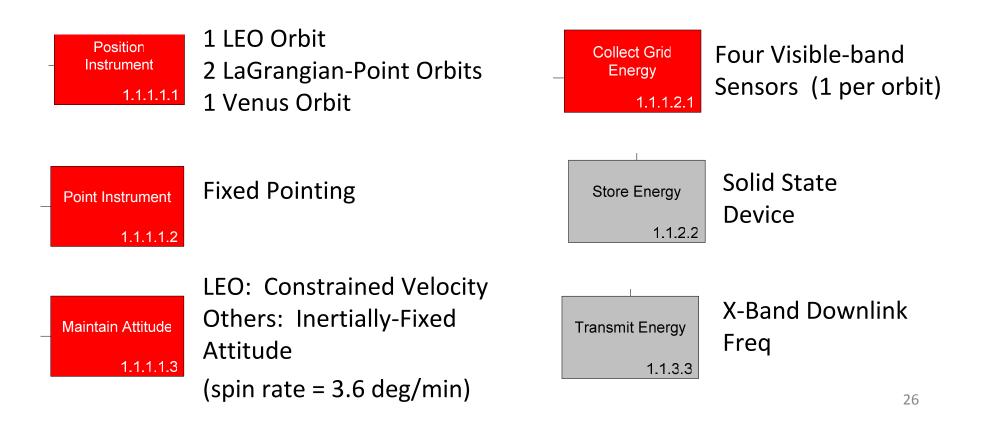
Alternative


- •Each Architecture Alternative combines:
 - •No. of Sensors
 - Sensor Location
 - •Sensor Pointing
 - Sensor attitude

Sensor/Location/Pointing/Attitude Modeling

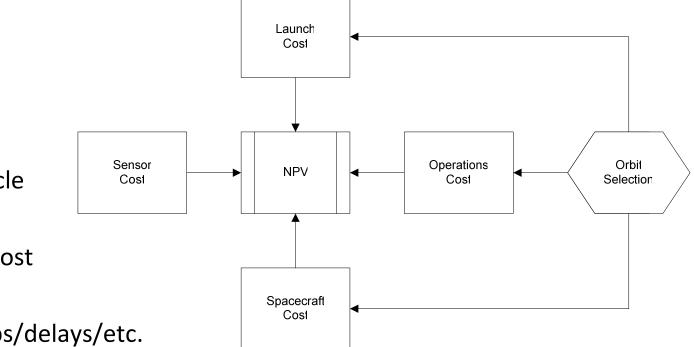
Combination of function alternatives creates system architecture alternatives (the solution space)

Architecture Performance [1/2]


Architecture Performance [2/2]

- 82 Architectures observe ≥ 90% of small NEO population
- Cost Effectiveness computed for all 82 architectures
 - Lowest ratio selected as instantiated architecture
- Cost disparity a result of # of sensors and location (including launch vehicle costs) in each architecture

	Architecture (Case_No.)	NEOs Observed	% Observed (MOE)	Cost (\$ Billion US FY09)	\$ / % Observed
MIN	140	488	90	\$1.162	\$12.9M
ΜΑΧ	255	516	95	\$2.232	\$23.5M
SELECTED	131	497	92	\$1.163	\$12.6M


Instantiated Architecture

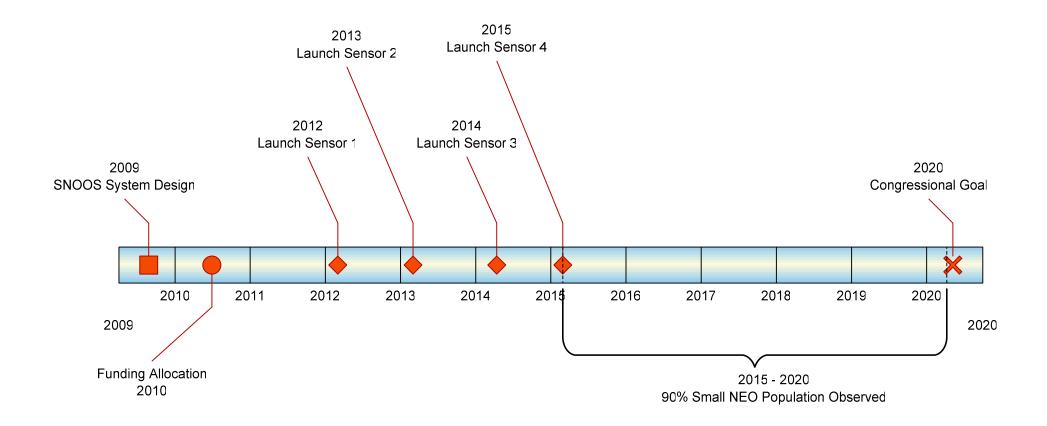
- Scenario 131
- MOE: 497 of 542 NEOs observed (91.7%) in 5 years
- \$1.163 Billion US FY09

Architecture Cost Analysis [1/2]

- Cost variables:
 - Sensor
 - Launch Vehicle
 - Satellite cost
 - Operations cost
- Uncertainties:
 - Schedule slips/delays/etc.
 - Technology failures
 - Performance
 - Weight Characteristics
 - New Technology
 - Manufacturing Initiatives

Architecture Cost Analysis [2/2]

Analysis conducted with a Monte Carlo Simulation model


- •Random sample of the probability distribution of each cost variable
- •Sum of all randomly sampled cost variables is one random sample of the total cost

Output:

- Probability distribution of the total cost
- •Mean cost is estimated at \$1.163 Billion
- •The standard deviation is \$23.3 Million
- •The range of all possible outcomes is from \$1.092 to \$1.231 Billion
- •68% confidence that the true cost will fall between \$1.138 to \$1.185 Billion

System Deployment Example

Effectiveness Analysis Methodology

- 1. Determine system goal (observation %, time to goal, or alternate MOE)
- 2. Obtain sensor performance characteristics
- 3. Generate representative NEO population (probabilistic)
- 4. Generate alternative system architectures (alternative function combinations = the solution space)
- 5. Input the population and the system architecture into the selected modeling tool
- 6. Simulate the orbital mechanics of each system architecture alternative
- 7. Collect simulation output data and perform post-processing (# NEOs observed in a finite time period)
- 8. Analyze the data (cost/benefit analysis)
- 9. Choose the most effective alternative architecture

Follow-on Work Recommendations

1. Generate ENTIRE NEO population:

Small + Large NEOs ~ 6 million random number generations

2. Sensitivity analysis

- Higher fidelity input data
- More sensor alternatives
- More location alternatives
- Requires time + incredible computing power

3. Time-to-deploy analysis

- "Turn on" sensor(s) at year X to simulate sensor interval launches
- Evaluate architecture performance curves
- 4. Alternate MOE: average architecture warning time
- 5. SEOR Project on alternate Planetary Defense Mission Function
 - Detect NEO
 - Determine NEO governing organization, funding source & policies

QUESTIONS

SNOOS Project Website: http://mason.gmu.edu/~eedward8/planetary_defense.htm

BACK UP

References

- 1. Near-Earth Object Science Definition Team, "Study to Determine the Feasibility of Extending the Search for Near-Earth Objects to Smaller Limiting Diameters." 22 August 2003.
- 2. Friedman, George. "Risk Management Applied to Planetary Defense," *IEEE Trans*, Vol. AES-33, No. 2, 1997
- 3. Adams, Robert B. "Continuing Efforts at NASA MSFC Analyzing Options for Deflection of Near Earth Objects." Presentation to Asteroid Deflection Research Workshop. 23 Oct 2008.
- 4. Anderson T.P. and Cherwonik, J.S., 1997. "Cost Estimating risk and Cost Estimating Uncertainty Guidelines."
- 5. Garretson, Lt Col Peter and Maj Douglas Kaupa. "Planetary Defense: Potential Mitigation Roles of the Department of Defense. The Merge."
- 6. Garvey P.R., 1999. "Probability methods for cost uncertainty analysis: a systems engineering perspective."
- Johnson, Lindley. "Near Earth Object Program: Presentation to Asteroid Deflection Research Symposium." 23 Oct 2008.
- 8. JPL, NASA Website. http://neo.jpl.nasa.gov/apophis/ accessed 28 Jan. 2009.
- 9. Orbital Sciences Corp. Planetary Defense System (PDS): Awakening Call and Making the Business Case to Defend Planet Earth. 15 Sept. 2008.
- 10. Sadanandan, Ashish. "CSVIMPORT.M" http://www.mathworks.com/matlabcentral/fileexchange/23573
- 11. Stoll, Stefan. "pick.m" http://www.mathworks.com/matlabcentral/fileexchange/12724
- 12. Wie ,Bong. "Dynamics and Control of Gravity Tractor Spacecraft for Asteroid Deflection." Journal of Guidance, Control, and Dynamics. Vol. 31, No. 5, September-October 2008.
- 13. Wie ,Bong. "Kinetic Impactors and Gravity Tractors for Asteroid Deflection." ADRS 2008. 23 Oct. 2008.
- 14. Worden, S. Pete. "Planetary Defense: Near Earth Objects (NEOS)." Presentation 23 Oct. 2008.

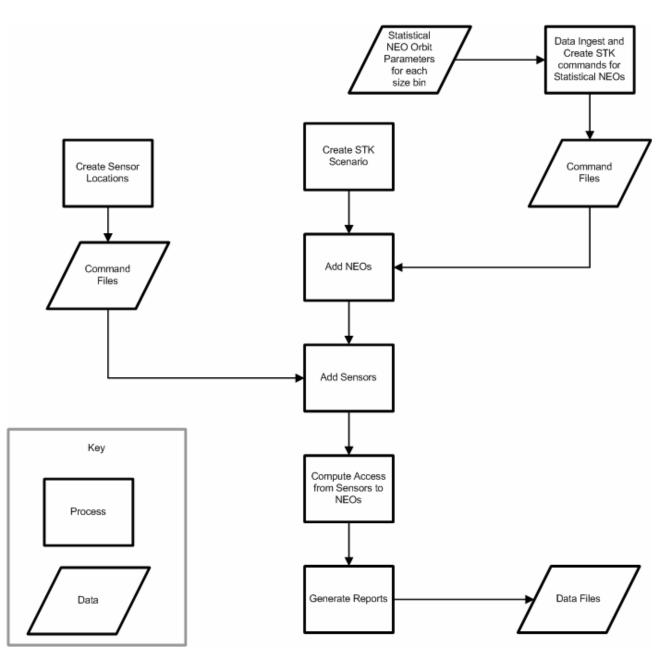
Modeling Concerns

- Semi-Automatic: Use of Matlab to script commands required to set up scenario of objects and sensors
 - Otherwise we would have to enter each object by hand
- Size of model
 - 542 NEOs + sensor satellites
 - Each "architecture" scenario run = 4+ hours
- Run time a major concern (we need to actually deliver results)
 - Time step size of orbital dynamics is critical too high a step size causes a NEO to "skip" through the sensor's FOV
 - Number of sensors modeled (went from 3 to 1)
- Data Analysis
 - Simulation output extremely dependent on input data
 - Computing power is major limiting factor in our simulation

Effectiveness Analysis Methodology

•Original Engineering Process

•Loop over each set of NEOs for each time block (50 objects for 6 months was found to work best)


•Loop over time for total simulation time

•Loop over the different sensor configurations

•Modified Engineering Process

•However, only NEO orbit is stochastic -- run STK simulation with all sensors

•Greatly reduces overall run time

