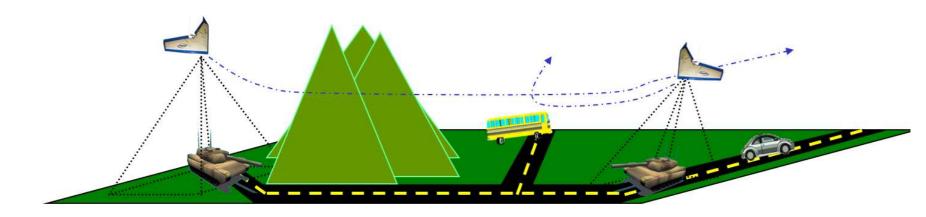


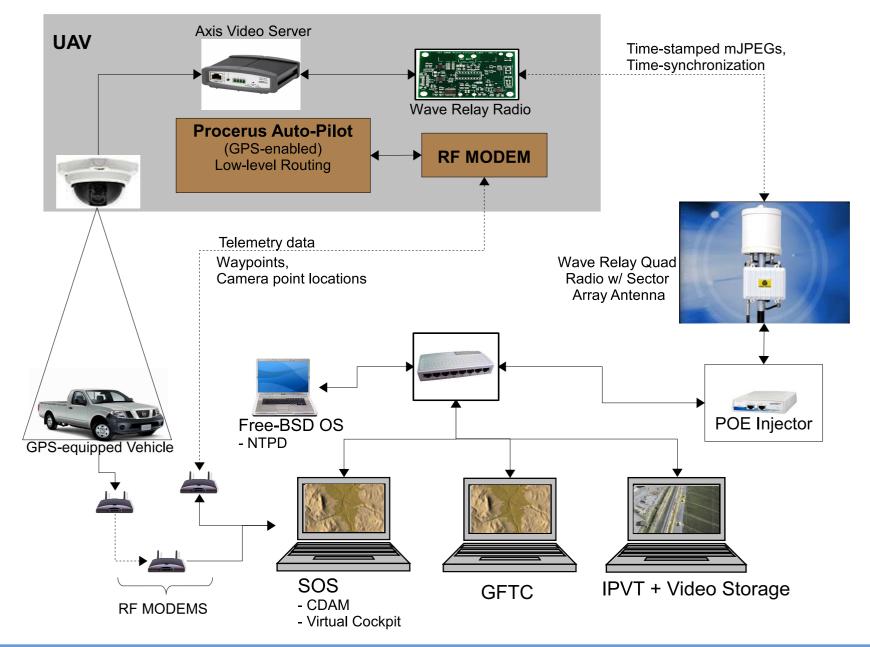
Tracking with UAV Using Tangent-Plus-Lyapunov Vector Field Guidance

Hongda Chen¹, K.C. Chang¹, C.S. Agate²

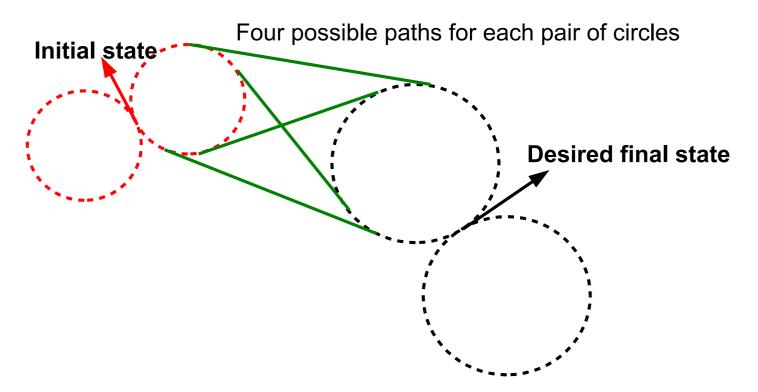
¹George Mason University, ²Toyon Research Corporation


- UAV routing problem for ground target tracking
- Minimum flight path solution using Tangent Vector Field Guidance (TVFG)
- Lyapunov Vector Field Guidance (LVFG)
- Exploiting roads and maximizing probability of detection
- Simulation Results
- Summary

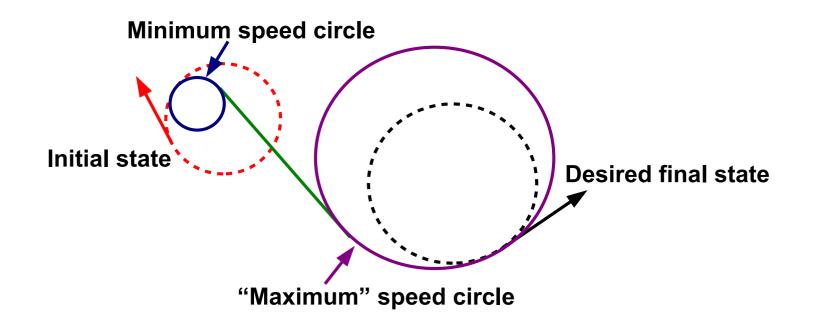
Objective: Track targets-of-interest (TOIs) through surveillance region


- UAV system is cued to follow one or more TOIs
 - $\circ~$ UAVs could be cued to a track derived from a standoff asset
 - Operator may "manually" nominate target in video stream
- UAVs have gimbaled EO/IR sensor onboard
- Exploit video to track targets in Geo-registered coordinate system
- "Closed-loop" tracking problem (i.e., tasking and routing essential)

Hardware Setup of UAV System

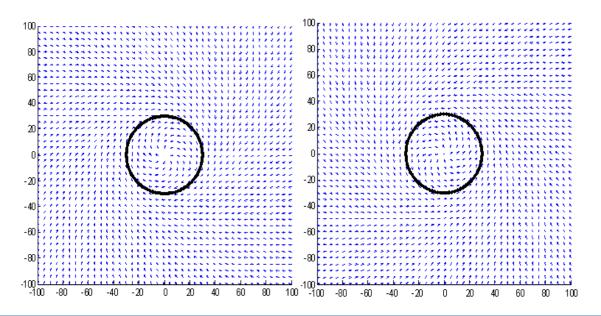

Given a UAV's initial state, $\mathbf{x}(t_{k-1})$, and desired final state, $\mathbf{x}(t_k)$, find the shortest trajectory, $\mathbf{x}(t)$ $t \in [t_{k-1}, t_k]$, between endpoints.

- The control solution is a set of UAV waypoints and speeds passed to a UAV autopilot system (AP) for low-level control.
- Accurate UAV motion model required to insure AP can achieve waypoints.
- Considered limitations on UAV motion include maximum turn rate, $\omega_{\max} = \frac{v}{R}$ and speed constraint, $v_{\min} \le v \le v_{\max}$ Initial state Maximum turn-rate circles for given velocity

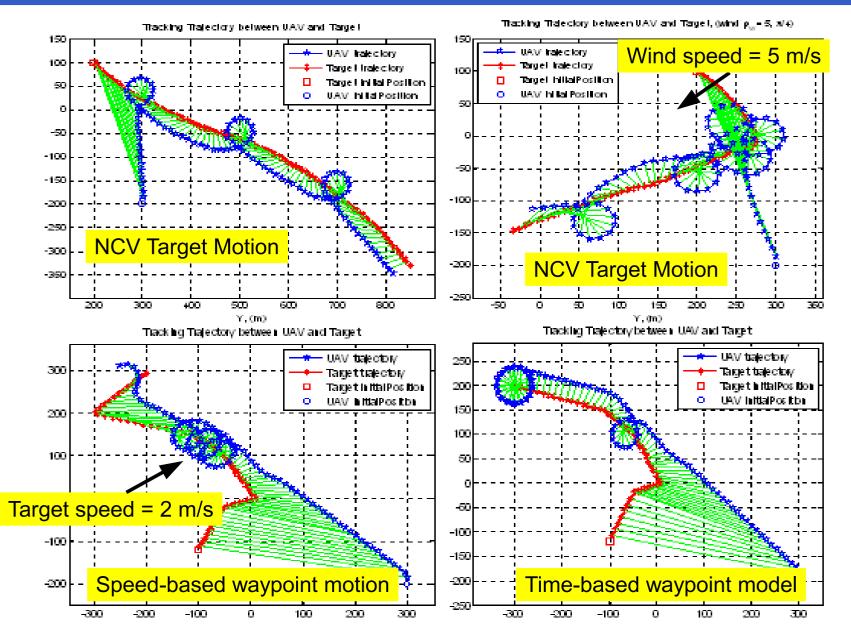

- Shortest path involves flying a constant turn rate path (i.e., along a circle) to a tangent line to another constant turn rate path.
- Each state has two (left and right) circular paths
- Each pair of circles has four tangent lines to connect them
- Algebraic solution to find best circles and tangent line

- The previous figure assumed (almost) constant UAV speed
- If we consider varying the UAV speed, a shorter distance solution is available
- UAV initially slows to achieve maximum turn rate, then accelerates along tangent line. Finally, UAV decelerates on final circle to achieve desired velocity.

- Given the current UAV state and current target state estimate, we determine approximate location of target at intercept time.
- Desired UAV state (at horizon planning time) chosen based following:
 - Position located on circle of radius R_c about target
 - UAV speed chosen based on target speed (matched, if possible)
 - UAV heading same as target
- Estimated intercept location less accurate when UAV is farther away
- However, the replan interval is shorter than planning horizon (so accuracy of prediction improves as UAV approaches target)
- Does not consider target location uncertainty or probability of detecting target at desired location



- If the UAV is already within standoff circle, TVFG is not applicable
- When UAV starts in circle, use a Lyapunov Vector Field Guidance Law (Frew et. al. (2008)) based on the following Lyapunov function:


$$\Gamma(x_r, y_r) = (r^2 - R_t^2)^2$$
 where $r = \sqrt{(x_r^2 + y_r^2)}$

 Derive a vector field on velocity vector that leads to circle of desired radius around target for UAV path

12th International Conference on Information Fusion – p.10/15

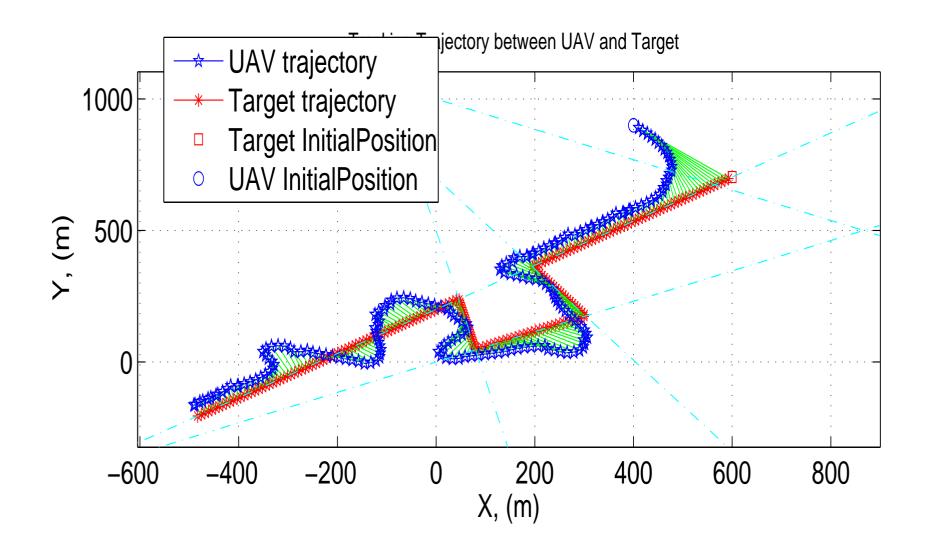
- Our goal is to keep the target within the sensor's FOV
- Let $P_D(\mathbf{x}_T(t_k), \mathbf{x}(t_k))$ be the probability of detecting target given UAV position and target position at horizon time
 - $P_D(\cdot)$ can consider sensor resolution and target size, obscuration, etc.
- Choose UAV desired position to maximize target detection

$$\mathbf{x}^{\star}(k) = \arg \max_{\mathbf{x}(k)} E\{P_D(\mathbf{x}_T(k), \mathbf{x}(k))\}$$

• Target state at t_k is random, so we must maximize *expected* probability of detection with respect to $p(\mathbf{x}_T(k)|Z^{1:k-1})$

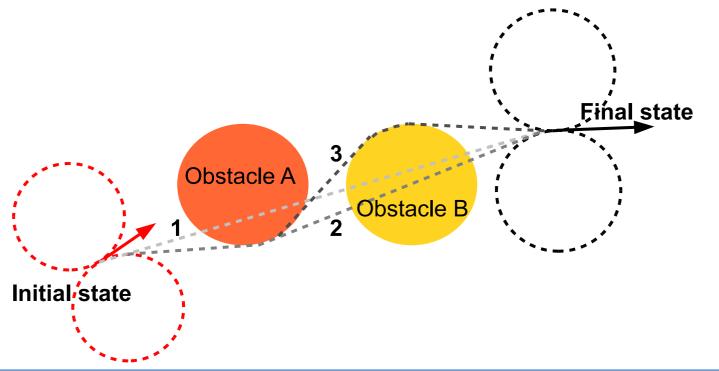
$$\mathbf{x}^{\star}(k) = \arg \max_{\mathbf{x}(k)} \int_{\mathbb{R}^n} P_D(\mathbf{x}_T(k), \mathbf{x}(k)) p(\mathbf{x}_T(k) | Z^{1:k-1}) d\mathbf{x}_T(k)$$

- Target motion prediction greatly improved by exploiting road network information, so we use stochastic sampling of current target state
 PDF and simulation of target dynamics
- Point mass approximation of predicted target density leads to simple objective function calculation


$$\mathbf{x}^{\star}(k) = \arg \max_{\mathbf{x}(k)} \sum_{i} \alpha^{(i)} P_D(\mathbf{x}_T^{(i)}(k), \mathbf{x}(k))$$

- Create grid over reachable UAV states to solve optimization. Let S_k be the set of reachable UAV states at time t_k , and $\{\mathbf{x}^{(j)}(k)\}_j$ be a set of samples from S_k .
- The desired UAV state, $\mathbf{x}^{\star}(k)$, is given by

$$\mathbf{x}^{\star}(k) = \arg \max_{\{\mathbf{x}^{(j)}(k)\}} \sum_{i} \alpha^{(i)} P_D(\mathbf{x}_T^{(i)}(k), \mathbf{x}^{(j)}(k))$$



- Often, there are obstacles restricting UAV flight path
 - Static obstacles such as buildings or no-fly zone 0

niversity

- Dynamic obstacles due to other aircraft in area Ο
- We model any obstacle as a circular region and use same circle/tangent line approach
- We first consider path to desired position without obstacles. Then determine which obstacles are in the path (start closest to the UAV).

- We have developed a UAV routing algorithm that combines our TVFG path planning with a LVFG approach (T+LVFG)
 - Can compensate for (constant) wind
 - Approach chooses future UAV position to maximize probability of detecting target
 - Target motion prediction accomplished through stochastic simulation ("particle approach") to exploit road network information
- Obstacles such as No-Fly zones are handled naturally within TVLG approach
- Presented results of algorithm working in Matlab simulation (next step C++ simulation and hardware-in-the-loop system)