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1 Introduction

Historical returns of the US equity put options are puzzling. Over the period from 08/1987 to
12/2000, put options on the S&P 500 futures appear to be grossly overpriced. For example,
Table 1 reports that puts with one month to maturity have highly negative and statistically
significant excess returns. The average excess return is -39% per month for at-the-money
(ATM) puts and is -95% per month for deep out-of-the-money (OTM) puts. This implies
that selling unhedged puts would have resulted in extraordinary paper profits over the sample
period. Other striking findings about historical put returns are that:

• The Jensen’s alpha for ATM puts is -23% per month and highly significant. Other
popular measures like the Sharpe ratio, the Treynor’s measure, the M-squared measure
also indicate that put prices have been very high.

• For ATM puts to break even (i.e., to have the average excess return of zero), crashes of
the magnitude experienced in October 1987 would have to occur 1.3 times per year.

• The economic impact of the put mispricing appears to be substantial. We estimate the
cumulative wealth transfer from buyers to sellers of the S&P 500 futures options and find
it to be astounding $18 bln over the studied period.

There is no arguing that selling naked puts could be very risky. For example, a short
position in ATM put has a highly asymmetric payoff profile, with limited upside and essentially
unlimited downside. Such a position makes a small profit most of the time, but takes a big
loss once in a while. Furthermore, the position makes money in good states of the world and
loses money in bad states. Because puts are negatively correlated with the market, it is not
surprising that they are traded at negative risk premiums. Moreover, because of considerable
leverage, the magnitude of those risk-premiums is expected to be large.

While it is clear that option traders will only sell puts when properly rewarded for bearing
substantial risks, it is much less clear what their normal risk compensation should be. Stated
differently, is about 40% per month represents a “fair” return for a short position in ATM puts?
Or, perhaps, it is too high. The answer to this question depends on the assumed equilibrium
model, as different models predict different risk premiums. In this paper, we initially consider
two candidate asset pricing models – CAPM and Rubinstein (1976) – and argue that historical
put prices are far too high to be compatible with those canonical models. This does not
immediately mean that option markets are irrational, for it is possible that there is another,
nonstandard equilibrium model which could rationalize the empirical findings.

We explore three natural explanations for the “overpriced puts” anomaly:

E1: Risk premium. According to this explanation, high prices of puts are expected and reflect
normal risk premiums under some equilibrium model. Even though the standard models
cannot explain the data, maybe there is another model which can. In this “true” model,
investors strongly dislike negative returns of the S&P 500 Index and are willing to pay
hefty premiums for portfolio insurance offered by puts.

E2: The Peso problem. According to this explanation, the sample under investigation is
affected by the Peso problem. The Peso problem refers to a situation when a rare but
influential event could have reasonably happened but did not happen in the sample.
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To illustrate this explanation, suppose that market crashes (similar to that of October
1987) occur on average once in 5 years. Suppose also that investors correctly incorporate
a probability of another crash in option prices. However, since only one market crash
has actually happened over the studied 14-year period, the ex post realized returns of
the Index are different from investors’ ex ante beliefs. In this case, puts only appear
overpriced. The mispricing would have disappeared if data for a much longer period
were available.

E3: Biased beliefs. According to this explanation, investors’ subjective beliefs are mistaken.
Similar to E2, this explanation states that the Index realized returns have not been
anticipated by investors.

Consider an example. Suppose that the true probability of a crash in a given year is 20%,
but investors incorrectly believe that this probability is 40%. Since investors overstate
probabilities of negative returns, puts (especially OTM puts) are too expensive.

To test whether explanations E1-E3 have merit, we implement a new methodology proposed
in Bondarenko (2003a). The methodology can best be explained on a simple example.

Consider a finite-horizon, pure-exchange economy with a single risky asset, traded in a
frictionless market on dates t = 0, 1, . . . , T . The asset’s price is vt, and the risk-free rate is
zero. There exists a representative investor who maximizes the expected value of the utility
function U(vT ). Let Zt denote the value of a general derivative security with a single payoff
ZT at time-T . The security’s price satisfies the standard restriction:

Et[Zsms] = Ztmt, t < s, (1)

where mt = Et[mT ] is the pricing kernel, and Et[·] is the objective expectation. Traditional
tests of the Efficient Market Hypothesis (EMH) are based on the restriction in (1). In those
tests, one must pre-commit to a specific pricing kernel, which is usually obtained from a para-
metric equilibrium model. As a result, tests suffer from a joint hypothesis problem: rejections
may emerge because the market is truly inefficient or because the assumed model is incorrect.

Bondarenko (2003a) shows that, under fairly general conditions, securities prices must
satisfy another martingale restriction. Let ht(vT ) denote the conditional risk-neutral density
(RND) of the asset’s final price. Then securities prices deflated by RND evaluated at the final
price are martingales:

Ev
t

[
Zs

hs(v)

]
=

Zt

ht(v)
, t < s < T, (2)

where Ev
t [·] := Et[· |ṽT = v] denotes the expectation conditional on the final price being v.

Intuitively, the restriction in (2) says the following. Suppose that the empiricist observes many
repetitions of the same environment and selects only price histories for which ṽT = v. Then,
in those histories the ratio Zt/ht(v) must change over time unpredictably.1

Note that the restriction assumes that time-series of ht(vT ) is available to the empiricist.
Despite the fact that RND is not directly observable in financial markets, it is implicit in
securities prices. In particular, RND can be estimated from prices of traded options, such as
standard calls with different strikes.

1In an important paper, Bossaerts (2003) demonstrates that conditioning on future price outcomes can be
useful in testing asset pricing models. Bondarenko (2003a) generalizes his results from risk-neutrality to general
risk preferences. Bondarenko (1997), Bondarenko and Bossaerts (2000), Bossaerts (2003, 1999), Bossaerts and
Hillion (2001) present empirical applications based on the theory in Bossaerts (2003).
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The new restriction in (2) has three unique properties. First and most significantly, the re-
striction makes no reference to the pricing kernel. In other words, it is preference-independent:
the utility function U(vT ) can be arbitrary and the restriction in (2) must still hold. This im-
plies that the restriction in (2) can be used to resolve the joint hypothesis problem present in
EMH tests. It allows one to test whether securities prices are compatible with any equilibrium
model from a broad class of models.

Second, the restriction in (2) can be used in samples which come with various selection
biases. To see this more clearly, suppose that the empiricist has collected a dataset in which
not all price histories are present. For example, suppose that the dataset includes only those
histories for which the asset’s final price is greater than the initial price, vT ≥ v0. Such a
deliberate selection bias will normally cause rejection of (1), even if the true pricing kernel
mt were known. Interestingly, the selection bias does not affect the restriction in (2). This
is because the restriction involves conditioning on the final price. By the same reason, the
restriction is also not affected by the Peso problem discussed in E2.

Third, the restriction in (2) continues to hold even when investors’ beliefs are mistaken.
Specifically, suppose that investors have incorrect expectations about the distribution of vT but
they update their expectations in a rational way.2 Then, under a certain additional condition,
the restriction in (2) must still hold.

To summarize, there are two alternative approaches for testing rationality of asset pricing.
The first one is based on the standard restriction in (1). In this approach, the empiricist
must know the true preferences of investors. The approach works only if investors’ beliefs
are correct and the sample is unbiased. The second approach is based on the new restriction
in (2). In this approach, the empiricist does need to specify investors’ preferences. Investors’
beliefs may be mistaken. In fact, preferences and beliefs may even change from one history
to another. Moreover, the empiricist may use samples affected by the Peso problem and some
other selection biases.

By following the second approach, we are able to verify whether explanations E1-E3 can
account for high prices of the S&P 500 puts. If investors are rational and put returns are low
because of some combination of E1-E3, then the restriction in (2) must hold.

Empirically, however, the new restriction is strongly rejected. This means that no equilib-
rium model from a class of models can possibly explain the put anomaly, even when allowing
for the possibility of incorrect beliefs and a biased sample. The class of rejected models is fairly
broad. In particular, it includes equilibrium models for which the pricing kernel mT = m(vT ) is
a flexible and unspecified function of vT . This is an important benchmark case in the theoreti-
cal literature. More generally, rejected pricing kernels can also depend on other state variables
besides vT , provided that projections of the kernels onto vT are path-independent. Our empiri-
cal findings have important implications for the option pricing literature, in particular, for the
literature on recovering implied risk preferences from option prices.

The remainder of the paper is organized as follows. Section 2 describes the dataset of
S&P 500 futures options and documents the overpriced put puzzle. Section 3 first reviews
and extends the theory developed in Bondarenko (2003a), and then implements the model-
free approach based on the new restriction in (2). Section 4 discusses the implications of the
empirical results and Section 5 concludes.

2The extension of EMH where investors are rational but may have incorrect beliefs is studied in Bossaerts
(2003, 1999). The extension is termed Efficiently Learning Market (ELM).
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2 Historical Option Returns

This section documents the overpriced puts puzzle. We start by establishing the framework.
Then, we discuss the data and report the empirical results.

2.1 Preliminaries

Let vt denote time-t value of the S&P 500 Index. We will study historical returns of options
written on the Index. Therefore, let P (K) = P (K,T ; vt, t) and C(K) = C(K,T ; vt, t) be the
prices of European put and call with strike K and maturity T . To simplify exposition, we
assume throughout the paper that the risk-free rate is zero and that S&P 500 does not pay
dividends.3 The option prices can be computed using the risk-neutral density (RND):

P (K) =
∫ ∞

0
(K − vT )+ h(vT ) dvT , C(K) =

∫ ∞

0
(vT −K)+ h(vT ) dvT ,

where h(vT ) = h(vT , T ; vt, t) is RND. RND satisfies the relationship first discovered in Ross
(1976), Breeden and Litzenberger (1978), Banz and Miller (1978):

h(vT ) =
∂2P (K)
∂K2

∣∣∣∣∣
K=vT .

=
∂2C(K)
∂K2

∣∣∣∣∣
K=vT .

(3)

This relationship allows one to estimate RND from a cross-section of traded options with
different strikes. Several alternative techniques for RND estimation have been recently pro-
posed. See Jackwerth (1999) for a literature survey. In this paper, we utilize a new method
developed in Bondarenko (2000, 2003b).

In empirical tests, we will group options according to their moneyness. Let k := K/vt

denote the strike-to-underlying ratio, or moneyness. Consequently, a put (call) is

• out-of-the-money (OTM) if k < 1 (k > 1);

• at-the-money (ATM) if k = 1;

• in-the-money (ITM) if k > 1 (k < 1).

It will be convenient to scale option prices by the value of the underlying. Let p(k) :=
P (K)/vt and c(k) := C(K)/vt denote the normalized put and call.

In the absence of arbitrage opportunities, there exists a pricing kernel m > 0 such that

E[mri] = 0, (4)

where ri is the net return of a generic security over the holding period [t, T ]. (That is, the
corresponding gross return is Ri = 1 + ri.) In particular, rp(k) and rc(k) are the net returns
on the normalized options, while rm = vT /vt − 1 is the net return on S&P 500 (interpreted in
this paper as the market portfolio). Recall that all returns are already in excess of the risk-free
rate and account for S&P 500 dividends.

3In reality the risk-free rate is nonzero and S&P 500 does pay dividends. However, in the empirical tests, we
convert spot prices of all securities into forward prices (for delivery at time-T ). Forward prices are obtained by
adjusting spot prices for the risk-free rate and dividends (when applicable). For example, the forward put price
P (K) = erf (T−t)P s(K), where P s(K) is the spot price and rf is the risk-free rate over [t, T ]. When discussing
the theory, this convention allows us to abstract from the difference between the S&P 500 value vt and the S&P
500 futures price Ft. A similar approach has been used in Dumas, Fleming, and Whaley (1998).
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2.2 CME Options

Our data consist of daily prices of options on the S&P 500 futures traded on the Chicago
Mercantile Exchange (CME) and the S&P 500 futures themselves. The data are obtained
from the Futures Industry Institute. The S&P 500 futures have four different maturity months
from the March quarterly cycle. The contract size is $250 times S&P 500 futures price (before
November 1997, the contract size was $500 times S&P 500 futures price). On any trading
day, the CME futures options are available for six unique maturity months: four months from
the March quarterly cycle and two additional nearby months (“serial” options). The options
contract size is one S&P 500 futures. The minimum price movement, or the tick size, is 0.05.
The strikes are multiples of 5 for near-term months and multiples of 25 for longer maturities. If
at any time the S&P 500 futures contract trades through the highest or lowest strike available,
additional strikes are usually introduced.

The sample period in this study is from August 1987 through December 2000. Data for
earlier years are not used for two reasons. First, the option market was considerably less liquid
during its earlier years. Second, prior to August 1987, options were available only for quarterly
maturity months (i.e., only 4 maturities per year). Our analysis requires sets of options which
expire each month.

The CME options on the S&P 500 futures and options on the S&P 500 index itself, traded
on the Chicago Board Option Exchange (CBOE), have been a focus of numerous empirical
studies. For short maturities, prices of the CME and CBOE options are virtually indistin-
guishable. Nevertheless, there are a number of practical advantages in using the CME options:

• As well known, there is a 15-minute difference between the close of the CBOE markets
and the NYSE, AMEX, and NASDAQ markets, where the components of S&P 500 are
traded. This difference leads to the non-synchronicity biases between the closing prices
of the options and S&P 500. In contrast, the CME options and futures close at the same
time (3:15 pm CT).

• It is easier to hedge options using very liquid futures as opposed to trading the 500
individual stocks. On the CME, futures and futures options are traded in pits side by
side. This arrangement facilitates hedging, arbitrage, and speculation. It also makes the
market more efficient. In fact, even traders of the CBOE options usually hedge their
positions with the CME futures.

• Because S&P 500 pays dividends, to estimate RNDs from the CBOE options, one needs
to make some assumptions about the Index dividend stream. No such assumptions are
needed in the case of the CME futures options.

A disadvantage of the CME options is their American-style feature. However, we conduct
our empirical analysis in such a way that the effect of the early exercise is minimal.

Figure 1 provides some descriptive statistics of the data. It plots the average daily trading
volume and open interest for different k, when time to maturity τ = T − t is 1–28 days, 29–56
days, and 57–84 days. The figure illustrates several important features of the data:

(a) The trading activity is relatively light for large τ , but increases considerably as the
maturity date approaches. This holds for both trading volume and open interest.

(b) The trading is the heaviest in options with k close to 1. The trading is generally higher
in OTM options than in ITM options.
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(c) For k < 1, puts are more liquid than calls, while the opposite is true for k > 1. Among
far-from-the-money options, the trading is more active in OTM puts as opposed to OTM
calls. This is consistent with the fact that portfolio managers demand OTM puts to
hedge their portfolios against stock market declines.

To construct our final dataset we follow several steps, which are explained in Appendix A.
In brief, these steps include filtering the option data, forming normalized prices of European
puts and calls, and estimating RNDs.

2.3 Overpriced Puts Puzzle

In this subsection we examine historical returns of puts and calls. To build as large a series
of non-overlapping returns as possible, we focus on short-term options with one month left to
expiration. Table 1 contains a variety of statistics for different strike-to-underlying ratio k.
The table is produced in the following way:

• Let j index different options maturities Tj in the sample. We compute returns of options
that mature on Tj over the holding period [tj , Tj ], where tj = Tj−1. In other words,
we consider a rollover trading strategy for which, as soon as one set of options expires,
new short-term options are purchased and held until they expire the following month.4

Overall, there are N = 161 one-month holding periods in the sample. (Because there
are only 5 option maturities in 1987, N=5+13·12=161.) For each holding period, we
compute the net returns rp(k), rc(k), and rm for puts, calls, and the underlying futures.

• On trading date tj , we classify options according to their strike-to-underlying ratio into
equally-spaced bins with centers at k = 0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06. Typically,
several strikes fall in a given bin. In this case, we select one strike that is the closest to
the center of the bin. Thus, there is a maximum of one strike per bin per trading period.

• In Table 1, we report mean, minimum, median, and maximum of rp(k) and rc(k) for bins
with different k. (In all tables, return statistics are reported as monthly and in decimal
form. They are not annualized.) The pointwise confidence intervals (1%, 5%, 95%, and
99%) are constructed using a bootstrap with 1000 resamples.

To ensure that the results are not driven by a few extreme returns on low-priced, illiquid
options, we do not use option prices lower than 0.5% of the underlying. For example,
if vt=1000, we consider puts and calls no cheaper than $5 ($1,250 per option contract).
Because of this filter, the number of available returns n may be less than N = 161 for
some moneyness, especially for OTM options.

The average put return monotonically increases with k. AR is negative and highly signif-
icant for all k. In particular, AR is -39% per month for very liquid ATM puts and is -95%
per month for less liquid OTM puts with k = 0.94. For calls, AR is generally positive but
not statistically significant. (The confidence intervals are very wide for OTM calls, reflecting
a high variability of their returns.)

Figure 2 provides additional insights by comparing two probability densities: the aggregate
risk-neutral density (ARND) and the unconditional objective density (OD). OD is estimated

4In practice, options maturity dates are such that τj = Tj − tj is always either 28 or 35 days. For simplicity,
we refer to τj as one-month holding period.
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using the kernel method from N returns of the underlying.5 ARND is computed as the point-
wise average of N individual RNDs, as functions of moneyness k. Both densities correspond
to one-month holding period.

The main differences between the two densities are as follows. Relative to OD, ARND has
(i) lower mean, (ii) higher standard deviation, (iii) fatter left tail, and (iv) higher kurtosis. The
most pronounced are differences (i) and (iii). In particular, the mean of ARND is lower than
the mean of OD by 0.71% (annualized 8.57%). Furthermore, the mean of ARND is located
noticeably to the left from its mode. This points to substantial negative skewness of ARND.
Differences (i) and (iii) are the primary reasons for negative put returns.

The bottom panel of Figure 2 plots the normalized put and call prices corresponding to
ARND and OD. Option prices are obtained by integrating the two densities against option
payoffs. The ARND-implied prices may be interpreted as the average option prices over the
studied period, while the OD-implied prices may be interpreted as the fair prices computed
under the assumptions that 1) investors were risk-neutral, and 2) investors correctly anticipated
the distribution of rm. For all k, the ARND-implied puts are more expensive than the OD-
implied ones. In relative terms, the mispricing is the most pronounced for OTM puts, the
finding consistent with Table 1. For calls, the ARND-implied prices are lower than the OD-
implied prices, except for very high k when the two sets of prices are essentially the same.6

To save on space, in what follows we report the empirical results for puts only. For calls,
the results are less anomalous and are available upon request.

In Figure 3, we examine whether the results for puts are robust over different subsamples.
Specifically, we partition the sample period into four subperiods: 08/87–06/90, 07/90–12/93,
01/94–06/97, and 07/97–12/00. For these subperiods, we report AR for k=0.96, 0.98, 1.00,
1.02, 1.04. For comparison, we also show time-series of the level of the S&P 500 Index and the
one-month ATM implied volatility. AR is significantly negative for all subperiods and all k.
Predictably, the worst subperiod for selling puts is the first one, which includes the October
1987 market crash. However, even for that “bad” subperiod, AR ranges from -27% to -12% per
month for different k. For the next three subperiods, the average returns are generally much
lower. As expected, put returns are particularly low in years when the stock market performed
well, such as in the second and third subperiods. Typically, AR monotonically increases with
k (the only exception being k = 0.96 in the first subperiod).

Figure 4 shows the distribution of put returns over time, for three most liquid puts with
k=0.98, 1.00, and 1.02. The figure confirms the intuition that put returns exhibit substantial
positive skewness. Consider, for example, the ATM put. It expires worthless most of the time,
but delivers a high positive return once in a while. The OTM put with k=0.98 has an even more
skewed distribution of returns: it expires out-of-the-money even more frequently, but when it
does mature in-the-money, returns are more extreme. Figure 4 reveals that skewness increases
as puts become more out-of-the-money, which is consistent with the evidence in Table 2.

The fact that puts appear to be overpriced has been noted in a number of recent papers
(see the literature review in Section 2.5). In following Sections 2.3.1-2.3.4, we document several
new observations which suggest that the magnitude of the put mispricing might have been not
fully appreciated.

5The bandwidth for the kernel method is set to 1.06σ̂N−1/5, where σ̂ is the sample standard deviation.
6For ease of interpretation, the plot shows the no-arbitrage bounds p(k) ≥ (k − 1)+ and c(k) ≥ (1 − k)+.

These bounds are only relevant for the ARND-implied prices, because the mean of OD is not equal to 1.
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2.3.1 Risk-adjustment

First, we examine whether put returns can be justified by some standard asset pricing models.
We consider two popular candidates – the Capital Asset Pricing Model (CAPM) and Rubinstein
(1976) model. Under CAPM, the pricing kernel depends on the market return rm as

m(rm) = 1 − E[rm]
V ar(rm)

(rm − E[rm]) .

Table 2 reports the alpha and beta coefficients for puts with different moneyness k. For
any return ri, alpha and beta are computed as

αi = E[ri] − βiE[rm], βi =
Cov(ri, rm)
V ar(rm)

.

CAPM is strongly rejected. For k ≤ 1.0, the Jensen’s alpha is negative and significant at
the 1% level. In particular, α is -23% per month for the ATM put and is even lower for the
OTM puts. CAPM performs better for high k. This is not surprising, because a long position
in a deep ITM put is akin to a short position in the underlying. As expected, put betas are
negative and very large in absolute terms, reflecting both negative correlation with the market
and substantial leverage. Put betas display a U -shaped pattern with respect to k.

High leverage of puts complicates interpretation of their alpha coefficients. Therefore,
Table 2 also reports several risk-adjusted measures that are unaffected by leverage:

• the Sharpe ratio, SR := E[ri]√
V ar(ri)

;

• the Treynor’s measure, TM := αi
βi

;

• M-squared of Modigliani and Modigliani (1997), M2 := E[ri]√
V ar(ri)

√
V ar(rm).

For all k, the Sharpe ratio for selling puts is higher than the Sharpe ratio for the market.
The difference is considerable in the case of ATM and OTM puts. The Treynor’s measure
monotonically increases as k decreases. In economic terms, the Treynor’s measure is very large
for ATM and OTM puts. Similarly, ATM and OTM puts appear substantially overpriced
according to the M2 measure. (Intuitively, M2 shows the return that an investor would have
earned if a particular position had been diluted or leveraged to match the standard deviation
on the market portfolio.)

It is well-known that the Sharpe ratio and related measures can be misleading when returns
exhibit substantial skewness. See, for example, Goetzmann, Ingersoll, Spiegel, and Welch
(2002). Therefore, as alternative risk-adjustment, we now consider the Rubinstein model. In
this model, the pricing kernel depends on the market return rm as

m(rm) = Const · 1
(1 + rm)γ

, (5)

where γ > 0 is the coefficient of relative risk aversion of the representative investor. For
different k, we find the coefficient γ such that

E

[
rp(k)

1
(1 + rm)γ

]
= 0.
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The results are reported in Table 2. The important observation is that no single γ can
simultaneously explain put returns across all levels of moneyness. Generally, γ increases as k
decreases; γ ranges from a reasonable value of 4.3 for deep ITM puts to a very large value of
131 for deep OTM puts. For comparison, γ for the market return is 4.3.

The specification in (5) has also been investigated in Coval and Shumway (2001). They
study zero-beta straddles on the S&P 500 index options (CBOE) with moneyness k close to
1.0. Using weekly returns and the sample period from 01/1990 to 10/1995, Coval and Shumway
report the estimates of γ from 5.68 to -6.68.

2.3.2 Extreme returns

In Table 3 we study how sensitive the overpriced puts puzzle to extreme observations by
examining periods with the highest put returns in the sample. These periods correspond to
option maturities in the following five months:

(a) 10/87 (precedes the October 87 crash),

(b) 11/87 (includes the October 87 crash),

(c) 08/90 (includes the August 90 crash – the invasion of Kuwait by Iraq),

(d) 04/94,

(e) 08/98 (includes the August 98 crash – the Russian debt default).

It is somewhat surprising that period (b), which includes the October 87 crash, was not
the worst month for selling puts – in fact, it was only the forth worst after periods (a), (c),
and (e). Even though the decline in the underlying was the largest (-14%) over period (b),
puts were selling at unusually high prices at the beginning of the period (as evidenced by the
corresponding ATM volatility in Table 3). The market was very volatile and put premiums were
high because the S&P 500 had already fell substantially in the previous month. In periods (a),
(c), and (e), the returns in the underlying were less dramatic (-11%, -10%, -9%). However, they
happened after relatively calm periods, when puts were inexpensive by historical measures.

It is clear from Table 3 that put sellers may occasionally incur huge losses. One could argue,
therefore, that if these extreme losses had happened in the sample more frequently, then the
profitability of selling puts might have disappeared.

To explore this possibility, we compute how many extreme observations must be added to
the empirical distribution of put returns to make the average return become zero. Specifically,
for each k we add to the sample l = l(k) identical returns corresponding to the October 87
crash (i.e., period (b) above) so that the new average return is zero. The results are reported
in Table 4. For example, about l=18 additional October 87 returns (=346%) are needed for
ATM puts to break even. This corresponds to about 1.3 crashes a year!7

We repeat the same exercise but now add artificial returns equal to the highest return from
periods (a)-(e), which may be different for different k. For example, the highest ever return

7Jackwerth (2000) conducts a similar analysis. He studies returns for the S&P 500 index option (CBOE)
over the period from 10/1988 to 12/1995 and finds that, in order to make the alpha coefficient for selling the
ATM put and OTM put (k=0.95) equal zero, artificial 20% crashes have to be added one in about every 4
years. The results in Table 4 seem to be even more extreme. To make AR equal zero, crashes of the October
87 magnitude have to happen one in about 9 months.
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of the ATM put was in period (c) (=540%) and 12 such returns must be added to the sample
before the average return becomes zero.8

2.3.3 Bull market?

Buying put options is a bearish strategy. That is, put returns are low when the market performs
well and vice versa. Over the sample period, the level of the S&P 500 Index has risen more
than 4 times, from v0=314.59 to vT ∗=1312.15. Is it possible, therefore, that selling puts was
so profitable simply because of the unprecedented bull market of the late nineties? In other
words, maybe selling puts would not work in downward trending markets?

To explore this possibility, we perform another exercise. We introduce a negative drift for
the S&P 500 Index and compute the value of the drift that would reconcile the historical put
returns. Specifically, we replace the true process for the S&P 500 Index vt with the modified
process v̂t = vte

−ηt for some constant η > 0. This implies that the return on the underlying
futures rm over the period [t, T ] is reduced to 1 + r̂m = (1 + rm)e−η(T−t). Using the modified
returns on the underlying, we then recompute put returns for all holding periods as well as the
average returns. For each k, the average return monotonically and continuously increases as
η increases. This observation allows us to find the critical value of η that makes the average
return equal zero. The results are reported in Table 5, which reveals that a negative drift of
-1.5% per month is necessary for the ATM put to break even. Assuming this drift, the final
value of the S&P 500 Index at the end of the sample period vT ∗ would have been only 111.9
instead of 1312.15! For 2% and 4% OTM puts, the necessary drifts are -2.0% and -2.7% per
month, with the corresponding final values of S&P 500 being only 47.8 and 13.3, respectively.

(Intuitively, Sections 2.3.2 and 2.3.3 look at different characteristics of the empirical dis-
tribution for rm and rp(k). In the former, we modify the empirical distribution of put returns
by increasing the frequency of most influential observations. In the latter, we shift the mean
of the distribution for the market return to the left, without changing the distribution’s higher
moments. This is consistent with the intuition in Merton (1980), who points out that esti-
mating the mean of the empirical distribution is more difficult than estimating the standard
deviation. The latter approach gradually increases all put returns, until the condition AR=0
is satisfied.)

Overall, Table 5 implies that one would need to introduce a highly implausible drift to
justify historical put returns. This also suggests that the exceptional bull market of the nineties
cannot be the main reason for the put puzzle. In fact, the mispricing that can be attributed
to the bull market is likely to be very small. For example, even if we choose the drift η so that
the risk premium of the S&P 500 futures over the 14-year period is zero (i.e., the market earns
on average just the risk-free rate), then monthly AR for puts with k = 0.94, . . . , 1.06 are still
very low: -0.89, -0.49, -0.41, -0.21, -0.09, -0.03, and -0.003, respectively.

2.3.4 Wealth transfer

The economic impact of the put mispricing is likely to be considerable, due to high trading
volume of the S&P 500 options. We can obtain a rough estimate of the economic impact by

8It is important to stress that the exercises in this and the following subsections are not meant to imply
that fair put returns should be zero on average. After all, selling puts is risky and must be rewarded with
risk-premium. Instead, the purpose of the exercises is to assess intuitively whether a particular explanation has
the potential to generate a high mispricing of puts.
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computing the total profit or loss (P&L) from holding long put positions. For t < s, let PLt,s

denote P&L from all put positions over the period [t, s]:

PLt,s = PLt,t+1 + PLt+1,t+2 + . . .+ PLs−1,s,

where PLt,t+1 denotes the daily profit or loss. To compute PLt,t+1, we aggregate P&L of
individual puts with all available strikes and all maturities from 1 to 365 days. (P&L of a
particular put is the price change over [t, t+1] times the time-t open interest, or (Pt+1−Pt)Ot.)

Intuitively, PLt,s shows the amount of wealth transfered between put buyers and put sellers
over the period [s, t], subject to two simplifying assumptions that 1) all traders can be divided
into either buyers (who only hold long puts) or sellers (who only hold short puts),9 and 2) each
day, options are traded at the settlement prices. We report the cumulative wealth transfer
PLt,s for the entire period, as well as the four subperiods:

08/87–06/90 07/90–12/93 01/94–06/97 07/97–12/00 Full sample

PL: -0.1 bln -2.3 bln -6.5 bln -8.9 bln -17.8 bln

Over the whole period, put buyers have lost to put sellers astounding $17.8 bln.10 However,
the economy-wide impact of the put mispricing is likely to be even larger considering that

• in addition to the CME options, there exist a number of other options based on broad
market indexes. CBOE, CME, CBOT, and other exchanges list options on various in-
dexes, their futures, and related Exchange-Traded Funds (ETFs). Trading in many of
these contracts is very active, including options based on S&P 100, S&P 500, S&P Mid-
Cap 400, Russel 2000, DJIA, NASDAQ 100, and others.

• in addition to options on market indexes, there are numerous options on individual stocks.
Puts on individual stocks also appear overpriced, although to a lesser extent.

• besides organized exchanges, considerable amount of equity options is traded over-the-
counter. OTC transactions often involve contracts with longer maturities.

2.4 Robustness of Findings

The findings reported in Section 2.3 are not sensitive to a variety of checks in the empirical
methodology. In particular, the results are not affected when we 1) use option closing prices
instead of settlement prices, and 2) modify the filtering criteria. In an earlier version, we
excluded year 1987 from the sample. Naturally, the exclusion of the October 87 crash has the
effect of making the average put returns even lower, however, not much lower. As follows from
Section 2.3.2, the put anomaly is not driven by a few extreme observations.

It should be also noted that the results cannot be explained by the transaction costs or
bid-ask spreads. This is because we focus on buy-and-hold strategies that involve very little
trading. In fact, options are assumed to be traded only once, at the beginning of each period.
At the end of each period, options either expire worthless (which happens most of the time)

9In reality, some traders hold both long and short positions when, for example, creating put spreads. This
assumption has the effect of exaggerating the estimates of wealth transfer from put buyers to put sellers.

10Note that traders can also create synthetic put positions via put-call parity. For example, an ATM call can
be used to create a position equivalent to an ATM put.
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or are exercised at known prices (with a small commissions for the exercise). Because the
magnitude of the mispricing of puts is so large, introducing reasonable market imperfections
(trading costs, bid-ask spreads, price impact, costs associated with maintaining the margin
requirements, etc.) have a relatively small effect on the average returns. The only exception
might be extremely deep OTM puts. Recall, however, that we do not use very low-priced,
illiquid options.

The findings reported in Section 2.3 are not specific to a particular choice of the holding
period. When we repeat the previous analysis with time to maturity τ=3 months, the general
findings are qualitatively similar to the case of τ=1 month. The average put returns are
negative for all moneyness. For ATM and OTM puts, the results are very significant, both
economically and statistically.

2.5 Related Literature

Several recent papers have documented related findings, including Jackwerth (2000), Coval
and Shumway (2001), Aı̈t-Sahalia, Wang, and Yared (2001), Bakshi and Kapadia (2003), and
Bollen and Whaley (2003). These papers look at different trading strategies and datasets,
but the general conclusion is that puts (especially ATM and OTM) have been historically too
expensive. Noteworthy, some papers use transactions data and find that the transaction costs
and bid-ask spreads have little effect on monthly put returns (see Coval and Shumway (2001),
Bollen and Whaley (2003)).

It is common in the literature to study the profitability of the so-called “crash-neutral”
strategies (Jackwerth (2000), Coval and Shumway (2001)), where a deep OTM put is used to
limit losses in the case of market crashes. For example, consider a position which is short the
ATM put and long the OTM put with k = 0.90, that is, Zt = pt(0.90) − pt(1.00). The OTM
put limits the downside risk, with the lowest terminal value ZT being -10% of the index’s initial
value vt. The position earns the same return whether the market return is -10% or -50%.

We want to point out that this approach implicitly assumes a very specific way to risk-
adjust future payoffs. To see this more clearly, consider strategies that have capped payoff
for market declines below some critical value vc. Specifically, let Zc

t denote the value of a
“crash-neutral” strategy for which payoff Zc

T = 0 when vT ≤ vc. (The normalization of the
payoff to zero in crash states is without loss of generality when the risk-free bond is available.)
The average excess return on all such strategies will be zero if and only if the pricing kernel
has the form:

mT = m(vT ) = Const, all vT ≥ vc.

In other words, investors are effectively assumed to be risk-neutral over the range of values
vT ≥ vc. In particular, if vc is set to 0.9vt, then investors are indifferent between payoffs
received when the market return is -5% or +15%. In Section 3, we will test for these and much
more general pricing kernels.

2.6 Alternative Explanations

In the rest of the paper, we will implement a new methodology to explore three explanations
of the overpriced put puzzle.
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E1: Risk premium

According to this explanation, high prices of puts are expected and reflect normal risk premiums
under some equilibrium model. From Section 2.3.2, we know that the canonical models, such
as CAPM and Rubinstein (1976) model, cannot explain the empirical findings. Still, maybe
there is another, nonstandard model which can. In this true model, investors must strongly
dislike crash-like returns of S&P 500 and are willing to pay considerable premiums to for puts
that provide explicit insurance against market declines.

E2: The Peso problem

According to this explanation, the sample under investigation is affected by the Peso problem.11

That is, in spite of including the October 1987 crash, investors correctly anticipated more
market crashes over the 14-year period but those did not happen. In this case, the ex post
realized returns of S&P 500 are different from investors’ ex ante beliefs. Puts only appear
overpriced, and the mispricing would have disappeared if data for a much longer period were
available. Section 2.3.2 suggests that unrealized crashes are unlikely to explain all mispricing
of puts. Still, it is possible that the Peso problem is responsible for a portion of the anomaly.

It should be mentioned that the Peso problem is often defined narrowly to arise when the
distribution of the data generating process includes a catastrophic state that occurs with a very
low probability. Because this state has low probability, it may not be observed in a given small
sample. Because the state is catastrophic, the possibility of this state occuring substantially
affects equilibrium prices. Here, we understand the Peso problem more broadly as arising
whenever the ex post frequencies of states within the data sample differ considerably from
their ex ante probabilities, and where these deviations distort econometric inference. In other
words, the Peso problem is present when the sample moments calculated from the available
data do not match the population moments that investors use to make their decisions.

E3: Biased beliefs

According to this explanation, investors’ subjective beliefs are mistaken. Similar to E2, this
explanation states that the S&P 500 realized returns have not been anticipated by investors.
The OTM puts were expensive because investors assigned too high probabilities to negative
returns of S&P 500. Perhaps, memories of the 1987 stock market crash were still fresh and,
even though the true probability of another extreme decline was small, investors continued to
overstate this probability.

3 Model-Independent Approach

In this section, we implement the model-free methodology for testing rationality of asset pric-
ing. We start by reviewing the new theory developed in Bondarenko (2003a).

3.1 New Restriction on Securities Prices

Suppose that securities are traded in a frictionless and competitive market. As before, let Zt

denote the value of a generic security with a single payoff ZT at time-T . The payoff ZT may
be path-dependent. The risk-free rate is normalized to zero.

11The Peso problem is analyzed in, for example, Bekaert, Hodrick, and Marshall (1995).
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Let Et[·], ES
t [·], and EN

t [·] denote the time-t conditional expectations under the objective,
subjective, and risk-neutral probability measures. The objective measure reflects the true (or
large-sample) frequencies with which various events occur. The subjective measure represents
investors’ beliefs regarding future events. The risk-neutral measure always exists if the market
is arbitrage-free (Harrison and Kreps (1979)) and is unique if the market is complete (Harrison
and Pliska (1981)). However, we do not insist on market completeness. Securities prices can
be computed under the risk-neutral measure as Zt = EN

t [ZT ]. Alternatively, prices can be
expressed under the subjective measure using the pricing kernel as

mtZt = ES
t [mTZT ], mt = ES

t [mT ].

The Efficient Market Hypothesis (EMH) is characterized by two conditions: (i) rational
learning, which means that, when new information arrives to the market, investors update their
beliefs using the rules of conditional probability, and (ii) correct beliefs, which means that the
objective and subjective measures coincide, or Et[·] = ES

t [·]. Following Bossaerts (2003), we
allow for a more general case of the Efficiently Learning Market (ELM). Bossaerts argues that
of the two conditions underlying EMH, it is the condition of rational learning that reflects the
essence of rationality. In ELM, he maintains (i), but relaxes (ii).

Under EMH, the security’s price must satisfy the following standard restriction:

Et[Zsms] = Ztmt, t < s. (6)

To test the restriction in (6), one must pre-commit to a specific pricing kernel. As a result,
empirical tests suffer from a joint hypothesis problem: rejections may emerge because the
market is truly inefficient or because an incorrect pricing kernel has been assumed.

Bondarenko (2003a) shows that, under certain conditions, there is another martingale-type
restriction on securities prices. This restriction is stated in Proposition 1 below. In order
to give our empirical findings the broadest interpretation possible, we prove a more general
version of the result in Bondarenko (2003a). Let xT denote some general state variable. Denote
Ex

t [·] = Et[· |x̃T = x] and ES,x
t [·] = ES

t [· |x̃T = x] as the objective and subjective expectation
conditional on the final state being x. Also, denote ft(xT ), gt(xT ), and ht(xT ) as the objective,
subjective, and risk-neutral densities of xT . Finally, let m∗

t (xT ) := ES,xT
t [mT ] denote the

projection of the pricing kernel onto the final state. (For discussion of projected kernels, see,
for example, Hansen and Richard (1987), Cochrane (2001), and Rosenberg and Engle (2002).)
The projected kernel m∗

t (xT ) has the property that at time-t it correctly prices securities whose
time-T payoffs depend on xT , or ZT = Z(xT ).

In what follows, we fix three dates t < s < T and study securities returns over the period
[t, s]. We say that the projected kernel is path-independent if the following assumption holds.

Assumption 1 For all histories and all xT , m∗
t (xT ) = m∗

s(xT ).

Bondarenko (2003a) focuses on a special case of Assumption 1 where the pricing kernel mT

is an arbitrary function of the state variable xT :

mT = m(xT ). (7)

Under specification (7), Assumption 1 is satisfied trivially, because m∗
t (xT ) = m(xT ) for

all t. However, the assumption is more general than (7). In particular, mT could depend on
other state variables besides xT , or xT might be an imperfect proxy for the true state variable.
We will discuss Assumption 1 in more detail in Section 4.
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Proposition 1 Suppose that ELM and Assumptions 1-3 hold. Then securities prices satisfy

Ex
t

[
Zs

hs(x)

]
=

Zt

ht(x)
. (8)

Two additional Assumptions 2-3 and the proof of Proposition 1 are given in Appendix B.
Proposition 1 extends the main result in Bondarenko (2003a) by replacing condition (7) with
more general Assumption 1. Intuitively, the restriction in (8) says the following. Suppose that
an empiricist observes many repetitions of the same environment and selects only those price
histories for which x̃T = x. Then, in the selected histories the ratio Zt/ht(x) must change over
time unpredictably. The unusual feature of (8) is conditioning on future information. The
expression inside the expectation operator in (8) is not know at time-s and it could only be
computed after the final state at time-T is revealed.

The scope of the new restriction is quite general. Bondarenko (2003a) argues that essentially
every known equilibrium model has the property that its pricing kernel satisfies (7) for some
simple state variable xT , with kernel mT depending on the state xT but not the complete
history (xt : t ≤ T ) for each time-T . For example, this holds for

• CAPM and Rubinstein (1976) model for which xT = vT , where vT is the value of the
market portfolio;

• the canonical consumption-based models for which xT = cT , where cT is aggregate con-
sumption (or, a vector of several consumption goods);

• Epstein and Zin (1989, 1991) and Weil (1989) models with recursive preferences for which
xT = (vT , cT );

• the habit formation models of Abel (1990) and Campbell and Cochrane (1999) for which
xT = (cT , ωT ), where ωT is external habit;

• the multifactor arbitrage models for which xT is a vector of common factors.

Specification in (7) has the important implication that certain trading strategies – termed
statistical arbitrage opportunities (SAOs) and defined with respect to the state variable xT –
cannot exist in equilibrium. The absence of SAOs then implies the restriction in (8). Note that,
for different choices of the state variable xT the restriction in (8) allows one to test different
classes of equilibrium models.

3.2 Discussion

The new restriction in (8) has three important properties. First and most significantly, the
restriction makes no reference to the unobservable pricing kernel. Instead, the restriction
requires the knowledge of RND ht(x), which is implicit in securities prices and can be estimated
if options on xT are traded. This means that the restriction in (8) can be used to resolve the
joint hypothesis problem present in tests of EMH. It allows one to test whether securities prices
are compatible with any equilibrium model, for which the pricing kernel satisfies Assumption 1.

Second, the restriction in (8) can be used in small samples and in the presence of selection
biases with respect to xT . To see this more clearly, suppose that the empiricist has collected
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a dataset of price histories with final states xj, j = 1, . . . , N . As the number of histories N
increases to infinity, the corresponding empirical density f̂t(xT ) will approach the objective
density ft(xT ). For small N , however, the empirical density f̂t(xT ) might differ from ft(xT )
considerably. This will usually cause rejection of the restriction in (6), even if the true pricing
kernel were known. However, because the restriction in (8) applies for every realization xT , the
restriction will hold even in small samples. As another illustration, suppose that the empiricist
has to use a dataset in which certain realizations xT are explicitly excluded. Specifically,
suppose that the dataset only contains those histories for which xT ∈ A, where A is a subset
of possible final states. Again, under such a selection bias, the restriction in (6) will normally
be rejected. Interestingly, the selection bias does not affect the restriction in (8) – because of
conditioning on the final outcome, the restriction holds for any subset A.

Third, the new restriction continues to hold even when investors have incorrect beliefs about
distribution of xT . Specifically, suppose that investors start with expectations gt(xT ) �= ft(xT ),
but they update their expectations using Bayes’ law and correct likelihood functions (see
Assumption 2 in Appendix B). Then, the restriction in (8) must still hold.

The new restriction can be implemented in either parametric or nonparametric contexts.
In the former, one builds RND ht(x) from a parametric equilibrium model. In this approach,
there is no restriction on how broad and general the state variable xT could be. Although
the approach will suffer from the same joint hypothesis problem that affects empirical tests
based on the standard restriction in (6), the approach still could be useful. First, the new
restriction offers an alternative way to test asset pricing (which has been largely overlooked in
the literature). Thus, there might exist situations when the standard restriction is not rejected
while the new one is. Second, the new restriction still possesses the other two important
advantages (i.e., robustness to selection biases and distorted beliefs).

Still, it is the nonparametric context where the new restriction is probably the most useful.
In this case, one makes no strong assumptions about the true equilibrium model/pricing kernel
and estimates RND ht(x) from traded securities. This approach, therefore, is best suited to
situations where the state variable xT corresponds to prices traded assets for which liquid
option markets exist. In Section 3.3, we implement this approach for xT = vT , the value of
the market portfolio. The restriction in (8) now becomes

Ev
t

[
Zs

hs(v)

]
=

Zt

ht(v)
, (9)

The restriction in (9) holds for all equilibrium models for which the projection of the pricing
kernel on vT is path-independent, or

m∗
t (vT ) = m∗

s(vT ), (10)

where m∗
t (vT ) := ES,vT

t [mT ] and m∗
s(vT ) := ES,vT

s [mT ]. A special case of this specification is
when the pricing kernel is an arbitrary function of vT :

mT = m(vT ). (11)

One simple setting for which the restriction in (9) applies is the following. Consider a pure-
exchange economy with a finite horizon. There are one risky asset (the market) and a risk-free
bond. A representative agent maximizes the expected value of utility function Et[U(vT )], with
U ′ > 0 and U ′′ ≤ 0. Since the pricing kernel in this economy is mT = U ′(vT ), condition (11)
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is satisfied. Note that this holds true no matter how complex the process for vt is (which, in
particular, could include stochastic volatility, jumps, and multiple factors).

To gain some intuition for the model-free methodology, Appendix C presents a parametric
example, which illustrates the properties of the new restriction in the presence of 1) risk-
aversion, 2) incorrect beliefs, and 3) selection biases.

3.3 Test of New Restriction

To test the restriction in (9), we first rewrite it in a slightly different form. Suppose that three
dates t < s < T are fixed and let λv := ht(v)/hs(v) denote the inverse of the return of RND
evaluated at the final value v. Applying (9) to the risk-free bond Zt ≡ 1, we obtain that

Ev
t [λv] = 1. (12)

In view of (12), the restriction in (9) can be expressed as

Ev
t [λvri] = 0, (13)

where ri = Zs/Zt − 1 is the net return over [t, s]. In this form, the restriction in (13) resembles
the restriction in (4). Intuitively, the strictly positive random variable λv plays the role of
a relevant “discount factor” for the expectation Ev

t [·] as does the pricing kernel m for the
expectation Et[·]. By taking unconditional (over time) expectations of (13), we obtain

E [Ev
t [λvri]] = 0. (14)

In moment (14), time is integrated out, but conditioning on the future value is still present.
Intuitively, for every possible realization v, the random variable λvri must have zero mean.

To test the condition in (14), we proceed as follows. As in Section 2.3, let j index option ma-
turities Tj. We again compute monthly returns rj over the holding period [tj, sj ] = [Tj−1, Tj ].
That is, we consider non-overlapping monthly returns from one option maturity date to an-
other. For conditioning on the future information, we use the next option maturity date Tj+1.
Therefore, λj = htj (vTj+1)/hsj (vTj+1). For each holding period, we estimate two RNDs from
options that mature at date Tj+1. (These options have 2 months left to maturity at the begin-
ning of the period tj and 1 month left to maturity at the end of the period sj .) We use only
those holding periods [tj , sj ] for which 1) necessary option series are available to estimate both
RNDs, and 2) the final value vTj+1 falls within the lowest and the highest strikes available on
both trading dates tj and sj, which ensures that accurate estimation of both htj (vTj+1) and
hsj (vTj+1) is possible. Overall, there are now 144 usable holding periods [tj, sj ].

Armed with weights λj, we form the average weighted return (AWR)

AWR =
1
n

n∑
j

λjrj,

where n is the number of available weighted returns. AWR is the sample analogue ofE[Ev
t [λvri]].

The condition in (14) says that AWR should be insignificantly different from zero.
Although the expression for AWR might appear rather “conventional,” it is important to

reiterate that its weights are constructed by using future information. Specifically, the weight
λj depends on the value vTj+1 , not yet known at time-Tj . (In probability theoretical terms,
the weight λj is a random variable which is not measurable with respect to information set

17



at time-Tj .) This means that computing AWR requires a particular look-ahead bias. This
look-ahead bias would normally present a serious problem for traditional empirical tests, but
the bias is the very reason why our model-free approach works.

As in Section 2.3, we focus on one-month puts with different moneyness. Specifically, we
compute the return rj

p(k) over the holding period [tj , sj] on put with maturity sj, where k is
moneyness on trading date tj. Table 6 reports mean, minimum, median, and maximum of
weighted return λrp(k), for different k. The pointwise confidence intervals (1%, 5%, 95%, and
99%) are constructed using a bootstrap. The left panel of Figure 5 summarizes the main results
of Table 6 by plotting AWR as a function of k. Also shown are the 5% and 95% confidence
intervals. We find that AWR is negative for all k and that it is statistically significant at the
5% significance level for all k ≤ 1.02 and at the 1% level for all k ≤ 1.00.

Since the condition in (14) must hold for many other securities and trading strategies Zt,
we can test it for two additional cases:

(i) ri is the return on S&P 500 futures, that is, Zt ≡ vt;

(ii) ri is the return on a two-month put as opposed to a one-month put.

In both cases, we compute returns over the same monthly holding periods [tj, sj ] =
[Tj−1, Tj ] as before and use previously computed weights λj to form the weighted return.
In case (i), we find that AWR for S&P 500 is positive (AWR=0.50%). However, it is not
statistically significant (t-statistics is 1.09).

Case (ii) corresponds to the rollover trading strategy that buys puts 2 months before
maturity and sells them 1 month before maturity. Puts are again classified according to their
moneyness on date tj with k=0.92, 0.94, ..., 1.08. The main findings can be summarized as
follows. AR is negative for all k: -44%, -39%, -38%, -33%, -27%, -21%, -16%, -12%, and -11%,
respectively. AR is statistically significant at the 5% significance level for all k ≤ 1.02 and
at the 1% level for all k ≤ 1.00. As expected, average returns for two-month puts are less
extreme than those for one-month puts. (See Table 1.) As for AWR, it is also negative for all
k: -38%, -36%, -33%, -28%, -22%, -16%, -12%, -8%, and -6%, respectively. AWR is statistically
significant at the 5% significance level for all k ≤ 1.02 and at the 1% level for all k ≤ 1.00.
AWR for two-month puts and the confidence intervals are shown in the right panel of Figure 5.

Overall, the results in this section imply that no equilibrium model with a pricing kernel
satisfying (10) can possibly explain the put anomaly, even when allowing for the possibility of
the Peso problem and incorrect beliefs.12

4 Interpretation of Results

This section discusses in more detail what possibilities are ruled out by the empirical results
of Section 3.3.

4.1 Rejected Models

The results in Section 3.3 rule out the whole class of equilibrium models. In those models,
pricing kernels are restricted to the form (11). At the same time, rejected models can have
very general price dynamics for vt, including those with jumps and/or stochastic volatility. In

12All results in this section are robust to the variations in the empirical design discussed in Section 2.4.
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other words, the empirical results make a statement about the pricing kernel, not the data
generating process.

To clarify this point, let D denote the class of price processes which are supported by a
pricing kernel satisfying (11), for a given horizon T . Consider a continuous-time pure-exchange
economy as in Appendix C. There are a risky asset (the market) vt and a risk-free bond. The
risk-free rate is to zero. Also traded are various derivative securities in zero net supply. The
representative investor maximizes the expected value of U(vT ). For simplicity, we assume the
CRRA preferences in (17), so that mT = v−γ

T .
Suppose that investors receive information about the terminal value vT represented by an

exogenous process ψt, with ψT = vT . For any process ψt, the price dynamics vt is endogenously
derived by solving the representative investor’s portfolio problem. Different choices for the
process ψt imply different processes vt. For example, suppose that ψt follows a Geometric
Brownian motion:

dψt

ψt
= µdt+ σdBt,

where µ and σ are constant. Then, vt also follows a Geometric Brownian motion:

dvt

vt
= γσ2dt+ σdBt,

with vt = ψt exp((µ− γσ2)(T − t)). This is, of course, the case of the Black-Scholes model.
Suppose next that ψt follows a jump-diffusion:

dψt

ψt−
= (µ− λµJ)dt + σdBt + dNt,

where Nt is a Poisson jump process with arrival intensity λ and stochastic jump size eyi .
Processes Bt and Nt are independent. For each jump i, yi is normally distributed with mean
(µy − 0.5σ2

y) and variance σ2
y. The expected jump size is µJ = eµy − 1. It follows from Naik

and Lee (1990) that the equilibrium price process vt now is also a jump-diffusion:

dvt

vt−
= (γσ2 − λc)dt + σdBt + dNt,

and vt = ψt exp
(
(µ− λµJ − γσ2 + λc)(T − t)

)
.13

The information arrival process ψt can be made even more general. There could be mul-
tiple fundamental factors (including multi-factors stochastic volatility and general jumps in
price and volatility). There could be arbitrary correlations between fundamental factors, and
parameters could be time-varying. Obviously, such a general specification will not admit an
analytical solution for the endogenously determined price process vt. However, the solution
(whenever exists) can still be found via numerical methods. The price process will inherit gen-
eral properties of the process for ψt. Similar to ψt, the price vt will follow a multi-factor process
with jumps and stochastic volatility. In this setting, the objective price process, a derivative’s
price Zt, the risk-neutral density ht(vT ) will all depend not only on vt but other factors. Nev-
ertheless, because the pricing kernel is mT = v−γ

T , even these very flexible specifications are in
the class of rejected models D.14

13The constant c is given by c = exp
(
(1 − γ)µy − 0.5γ(1 − γ)σ2

y

)
− exp

(
−γµy + 0.5γ(1 + γ)σ2

y

)
.

14Admittedly, the described general specifications are quite complex and intractable. However, there is no
reason to believe that the true model is simple and tractable.
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Although we have focused on one utility specification, the standard CRRA preferences, the
whole point is that U(vT ) could be an arbitrary function, corresponding to various preferences.
Moreover, additional price dynamics in D obtain by considering alternative general equilibrium
constructions (not just pure-exchange economies with terminal consumption).15

Our approach also rules out equilibrium models for which the pricing kernel mT depends
on other relevant state variables besides vT , provided that the projected kernel m∗

t (vT ) is
path-independent as stated in (10). This has two important consequences. First, since our
empirical application focuses on very short horizons, many state variables identified in the
theoretical literature are not likely to be important. In particular, the aggregate consumption
ct and habit ωt discussed in Section 3.1 have very smooth time series at the monthly frequency,
especially when compared to vt. As a result, these state variables are not able to introduce
meaningful path-dependence of the projected kernel m∗

t (vT ). Second, many theoretical models
use the market portfolio as the relevant state variable. In this paper, we approximate the
market portfolio with the S&P 500 index. Although standard in the empirical literature, this
approach is open to the Roll’s critique. However, because Proposition 1 allows us to focus on
the projected kernel m∗

t (vT ) instead the original kernel, we do not have to worry that the S&P
500 value vT might be an imperfect proxy of the true market portfolio.

To be able to explain the put puzzle, a candidate equilibrium model must produce a pro-
jected kernel m∗

t (vT ) which is strongly path-dependent, considering how little can be explained
when path-independence is assumed. However, such models have not received much attention
in the literature. In particular, currently there is no accepted general equilibrium model where
the representative investor’s utility function U(·) explicitly depends on stochastic volatility.

4.2 Peso Problem and Mistaken Beliefs

In addition to rejecting the broad and important class of price dynamics, the results in Sec-
tion 3.3 also rule out the explanations E2 and E3. No previous paper has studied the combined
effect of risk-aversion, selection bias, and mistaken beliefs. To see why this is significant, con-
sider the parametric example in Appendix C. The example assumes the CRRA preferences
with γ = 4 and a single-factor diffusion for vt. It demonstrates that, for an arguably plausible
combination of risk-aversion, mistaken beliefs, and the selection bias, it could be possible to
produce a realistic mispricing of puts, where the mispricing is about of the same magnitude and
shape as that observed empirically (see Figure 6). At this point, one might even incorrectly
conclude that the put puzzle is solved, for a simple and parsimonious model can achieve almost
a perfect fit to the data. However, the candidate “solution” does not survive a test of the new
restriction. When the new restriction is applied, the mispricing in the parametric example
“disappears”, while the mispricing in the data does not. This means that the mispricing in
the data is of different origin and is not due to risk-aversion, beliefs, and the selection bias.

In this respect, our paper offers two important insights. First, the biggest problem with
put options is not the magnitude of the mispricing – a very substantial mispricing could be
generated in plausible settings with reasonable parameters. Instead, the real puzzle is in-
tertemporal inconsistency of put prices, as evidenced by the rejection of the new restriction.
The latter is equivalent to saying that there exist statistical arbitrage opportunities. Second, to
falsify spurious “solutions” of the put puzzle, one might need to test the new restriction. Even

15It is beyond the scope of this paper to formally characterize price processes in D. For the special case of
pure-exchange economies and when vt follows a single-factor Markov diffusion, the relevant results are available
in Bick (1990) and He and Leland (1993).
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though a lot of flexibility can be achieved by varying preferences, beliefs, and selection bias,
still, securities prices cannot be completely arbitrary and have to respect the new restriction.

4.3 Not Rejected Partial-Equilibrium Models

Although the class of rejected price dynamics is quite rich, we want to make it clear that there
are also many models that are not in this class. Important examples are models of Heston
(1993), Hull and White (1987), Bates (2000), and related models. It is important to point out
that all these models are partial equilibrium (PE) models. As a primitive assumption, they
assume a parametric price dynamics for vt as well as market prices of various risk factors. These
models do not address the issue whether the assumed price dynamics could be supported by
some economically sensible preferences of the representative investor. Because price dynamics
could be essentially arbitrary, pricing kernels in PE specifications do not usually satisfy (11).

As reduced-form approximations, PE models can be very useful in some applications. In
particular, they can be used for hedging and for valuing exotic options consistently with stan-
dard ones. However, as explanations for asset pricing anomalies (such as the equity premium
puzzle or the put puzzle), PE models are unsatisfactory. Suppose that one finds a PE model
with multiple parameters/factors which can be calibrated reasonably well to data. Still, this
does not answer many important questions: Why are certain state variables of special hedging
concern to investors? Why are certain risks priced in the fist place? What are economically
reasonable values for market prices of various risks?16

The ultimate challenge is to be able to explain historical put prices in a general equilibrium
(GE) setting, which has been the main objective of our paper. Intuitively, our approach focuses
on the important class of price dynamics/pricing kernels which could be rationalized by some
sensible preferences in a GE context. Still, because of popularity of PE models in applied
research, it might be useful to be able to test these models as well. Can our methodology help
to rule out pricing kernels of PE models? We believe so.

Observe that the new restriction is rejected by the option data at a high confidence level.
Intuitively, this means that a pricing kernel mT whose projection onto vT is only “slightly”
path-dependent cannot justify the data. To formalize this intuition, we can introduce a measure
d = d(mT ), which for a given kernel mT quantifies its degree of path-dependence with respect
to vT . When d = 0, the new restriction in (13) holds exactly. When d is nonzero, the maximum
possible violation of the restriction in (13) is bounded by d. (This is somewhat in spirit of
Hansen and Jagannathan (1991), who derive bounds on the pricing kernel’s Sharpe ratio.) We
are currently pursuing this direction of research. Preliminary results, in particular, indicate
that the projected pricing kernel in the Heston model is not sufficiently path-dependent to
rationalize historical put returns.

4.4 Implications for Option Pricing Literature

The results in Section 3.3 have important implications for the option pricing literature. In
particular, the results strongly reject the specification in (11), the assumption that plays a

16For example, suppose that one fits the Heston model to option data. One important parameter in this model
is the volatility risk premium. However, the model provides no guidance at all regarding what economically
reasonable values for the volatility risk premium should be. Another common difficulty with PE models is that
they often imply problematic risk preferences. For example, Chernov and Ghysels (2000, p. 414) argue that
the Heston model has the counterintuitive property that, when volatility decreases to zero, the asset price risk
premium increases to infinity.
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central role in many theoretical and empirical papers.
Consider, for example, a recent theoretical paper by Câmara (2003). He extends the general

equilibrium models in Rubinstein (1976) and Brennan (1979) to more flexible distributional
assumptions. Specifically, Câmara characterizes a whole class of infinitely many general equi-
librium models for certain families of utility functions and the joint dynamics for the aggregate
consumption and the market portfolio. However, all pricing kernels in his approach come out
in the form mT = exp(g(vT )), for a general function g(·). This means that none of these
general equilibrium models could be consistent with the results in Section 3.3.

Our results also present a challenge to the fast-growing strand of the empirical literature
which uses option prices to extract the implied risk-preferences. Several recent papers, includ-
ing Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002), develop
such methodologies. These papers also present important applications. In particular, Aı̈t-
Sahalia and Lo propose to use estimated preferences in risk management by introducing the
new concept of economic value-at-risk, or E-VaR.

While there are some variations, all methodologies essentially consist of three main steps:
1) estimate the risk-neutral density ht(vT ) from option prices, 2) estimate the objective density
ft(vT ) from the underlying process, and 3) interpret the ratio ht(vT )/ft(vT ) as the marginal
utility of the representative investor. Specifically, Aı̈t-Sahalia and Lo (2000), Jackwerth (2000),
and Bliss and Panigirtzoglou (2003) assume that the representative investor maximizes the
expected value of the utility function U(vT ). Under this assumption, the pricing kernel mT

satisfies (11) and mT = m(vT ) = ht(vT )/ft(vT ) is equal to the marginal utility U ′(vT ) (times
a constant). Thus, the relative risk aversion function can be computed as

γ(vT ) = −vT
U ′′(vT )
U ′(vT )

= −vT
mt

′(vT )
mt(vT )

= vT

(
f ′t(vT )
ft(vT )

− h′t(vT )
ht(vT )

)
.

Some anomalous findings have been reported. In particular, Jackwerth documents that,
for a sizable range of wealth levels, investors seem to exhibit risk-seeking behavior, i.e., the
pricing kernel m(vT ) is increasing instead of decreasing and γ(vT ) < 0. Some authors refer
to this finding as the “pricing kernel puzzle.” The results in Section 3.3, however, suggest
that the pricing kernel puzzle might be spurious, in the sense that it could be an artifact of
the incorrect assumption. Stated differently, the pricing kernel puzzle is a puzzle only if the
assumed specification in (11) is satisfied, which we now know is not true.

Rosenberg and Engle (2002) follow a similar empirical methodology but offer a broader
interpretation. They do not rely on the specification in (11) and allow the pricing kernel
mT = m(vT , yT ) to depend on other state variables yT . In this case, the ratio ht(vT )/ft(vT ) is
no longer the pricing kernel, but instead is the projected kernel m∗

t (vT ). Using the projected
kernel, Rosenberg and Engle define the projected relative risk aversion function as17

γ∗(vT ) := −vT
m∗

t
′(vT )

m∗
t (vT )

= vT

(
f ′t(vT )
ft(vT )

− h′t(vT )
ht(vT )

)
.

They estimate two parametric specifications for the projected kernel, one of which produces
the projected kernel which has similar characteristics as those reported in Jackwerth (2000).
That is, there is a sizable region where the projected kernel is increasing and thus γ∗(vT ) is
negative. Does it, however, mean that investors are sometimes risk-seeking? Not necessarily.

17Note that, empirically, the projected and unprojected risk aversion functions are computed in exactly the
same way. The only difference is their underlying theoretical interpretations.
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If the projected kernel m∗
t (vT ) is strongly path-dependent, which we have established in

Section 3.3, then the projected risk aversion γ∗(vT ) could be very different from the true risk
aversion γ(vT , yT ). In particular, it is possible to construct an example where a) the rep-
resentative investor has classical von Neumann-Morgenstern preferences with utility function
U(vT , yT ), where Uv > 0 and Uvv < 0 for all vT and yT ; b) for all vT and yT , the relative risk
aversion function γ(vT , yT ) takes reasonable values, say, between 2 and 5; and c) the projected
relative risk aversion function γ∗(vT ) is negative for some values of vT .18

To summarize, one important implication of our paper is that the proposed methodologies,
despite their considerable popularity, might be inappropriate for estimating risk-preferences
and might produce misleading results. The issue here is not so much the fact of the rejection of
the specification in (10) per se. After all, every theoretical assumption is only an approximation.
Instead, the main issue is the extent of the rejection. Our results suggest that the specification
in (10) is grossly violated, in which case the ratio ht(vT )/ft(vT ) cannot be interpreted as the
marginal utility for the representative investor, even approximately. This important topic
warrants further investigation.

5 Conclusion

In this paper, we implement a novel methodology to test rationality of asset pricing. The
main advantage of the methodology is that it requires no parametric assumptions about the
unobservable pricing kernel or investors’ preferences. Furthermore, it can be applied even
when the sample is affected by the Peso problem and when investors’ beliefs are incorrect. The
methodology is based on the new rationality restriction, which states that securities prices
deflated by RND evaluated at the eventual outcome must follow a martingale.

We implement the new methodology in the context of the overpriced puts puzzle. The
puzzle is that historical prices of puts on the S&P 500 Index have been extremely high and
incompatible with the canonical asset-pricing models. The economic impact of the put mis-
pricing appears to be very large. Simple trading strategies that sell unhedged puts would have
earned extraordinary paper profits.

To investigates whether put returns could be rationalized in a possibly nonstandard equi-
librium model, we test the new rationality restriction. The required information about RND
is estimated nonparametrically from prices of traded options. We find that the new restriction
is strongly rejected, meaning that no model from a broad class of models can possibly explain
the put anomaly, even when allowing for the possibility of the Peso problem and incorrect
beliefs. In the light of our results, one might have to 1) develop a new kind of general equi-
librium models, for which the pricing kernels is strongly path-dependent with respect to the
market portfolio (such models are currently not available); 2) entertain the possibility that
investors are not fully rational and that they commit systematic cognitive errors; and 3) ques-
tion other standard theoretical assumptions (such as the absence of market frictions). Only
future research will provide a better understanding of the put puzzle.

18Intuitively, when the pricing kernel mT depends on the additional state variable yT , the projected kernel
m∗

t (vT ) will be path-dependent, reflecting time variation in the additional state variable. In this case, the
projected kernel, in which yT is integrated out, might differ from the unprojected kernel quite considerably.
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Appendix

A Construction of Dataset

To construct our dataset we follow the following steps:
1. For both options and futures we use settlement prices. Settlement prices (as opposed to closing

prices) do not suffer from nonsynchronous/stale trading of options and the bid-ask spreads. CME
calculates settlement prices simultaneously for all options, based on their last bid and ask prices. Since
these prices are used to determine daily margin requirements, they are carefully scrutinized by the
exchange and closely watched by traders. As a result, settlement prices are less likely to suffer from
recording errors and they rarely violate basic no-arbitrage restrictions. In contrast, closing prices are
generally less reliable and less complete.

2. In the dataset, we match all puts and calls by trading date t, maturity T , and strike. For
each pair (t, T ), we drop very low (high) strikes for which put (call) price is less than 0.1. Then we
form normalized option prices as explained in Section 2.1. To convert spot prices to forward prices, we
approximate the risk-free rate rf over [t, T ] by the rate of Tbills.

3. Since the CME options are the American type, their prices pA
t (k) and cAt (k) are slightly higher

than prices of the corresponding European options pt(k) and ct(k). The difference, however, is very
small for short maturities that we focus on. This is particularly true for OTM an ATM options.19

To infer prices of European options pt(k) and ct(k), we proceed as follows. First, we discard all
ITM options. That is, we use put prices for k ≤ 1.00 and call prices for k ≥ 1.00. Prices of OTM
and ATM options are both more reliable and less affected by the early exercise feature. Second, we
correct American option prices pA

t (k) and cAt (k) for the value of the early exercise feature by using
Barone-Adesi and Whaley (1987) approximation.20 Third, we compute prices of ITM options through
the put-call parity relationship

p(k) + 1 = c(k) + k.

4. We check option prices for violations of the no-arbitrage restrictions. To preclude arbitrage
opportunities, call and put prices must be monotonic and convex functions of the strike. In particular,
the call pricing function ct(k) must satisfy

(a) ct(k) ≥ (1 − k)+, (b) − 1 ≤ c′t(k) ≤ 0, (c) c′′t (k) ≥ 0.

The corresponding conditions for the put pricing function pt(k) follow from put-call parity. When
restrictions (a)-(c) are violated, we enforce them by running the so-called Constrained Convex Regression
(CCR). This procedure has been proposed in Bondarenko (1997) and also implemented in Bondarenko
(2000). Intuitively, CCR searches for the smallest (in the sense of least squares) perturbation of option
prices that restores the no-arbitrage restrictions. For most trading days, option settlement prices
already satisfy the restrictions (a)-(c). Still, CCR is a useful procedure because it allows one to identify
possible recording errors or typos. We eliminate an option cross-section if CCR detects substantial
arbitrage violations, that is, if square root of mean squared deviation of option prices from the closest
arbitrage-free prices is more than 0.1. (This filter eliminates less than 0.5% of trading days.)

5. For each pair (t, T ), we estimate RND using the Positive Convolution Approximation (PCA)
procedure of Bondarenko (2000, 2003b). PCA is a flexible, fully nonparametric method, which produces
arbitrage-free estimators, controls for overfitting in small samples, and is shown to be very accurate.
For the purpose of RND estimation, we require that on date-t there are at least 8 strikes for which
option prices satisfy the above filters.

19As shown in Whaley (1986), the early exercise premium increases with the level of the risk-free rate,
volatility, time to maturity, and degree to which an option is in-the-money.

20It is important to point out that this correction is always substantially smaller than typical bid-ask spreads.
In particular, the correction generally does not exceed 0.2% of an option price.
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B Theoretical Assumptions and Proof of Proposition 1

There are two additional assumptions needed for the restriction in (8). Assumption 2, which is due to
Bossaerts (2003), restricts the set of possible beliefs of investors. Specifically, suppose that beliefs are
partitioned into initial beliefs (priors) and beliefs conditional on the final state xT (likelihood functions).
Then, initial beliefs can be arbitrary but that conditional beliefs must be correct.

Assumption 2 Investors’ beliefs conditional on the final state are correct. That is,

ExT
t [·] = ES,xT

t [·], for all xT .

Assumption 2 has the following interpretation. Over time, investors gradually learn the final state xT

by observing some economic “signals”. Even though investors might not know the correct distribution
of final states, they nevertheless understand how the signals are generated for each xT . Assumption 1
is satisfied trivially for the standard EMH. However, EMH requires priors to be correct as well.

Assumption 3 is a technical one. It ensures that the ratio inside the conditional expectation operator
in (8) is always well-defined.

Assumption 3 For all histories and all xT , the risk-neutral density hs(xT ) > 0.

Proof of Proposition 1

The proof relies on the following two observations. First, the risk-neutral and subjective densities for
the final state xT are related to each other via the projected pricing kernel as follows:

ht(xT ) =
m∗

t (xT )gt(xT )
mt

, hs(xT ) =
m∗

s(xT )gs(xT )
ms

, (15)

Second, for any random variable Ys (measurable with respect to information at time-s):

ES,x
t [Ys] =

ES
t [Ysgs(x)]
ES

t [gs(x)]
=
ES

t [Ysgs(x)]
gt(x)

. (16)

Therefore, for any security

Ex
t

[
Zs

hs(x)

]
= ES,x

t

[
Zs

hs(x)

]
=
ES

t

[
Zs

hs(x)gs(x)
]

gt(x)
=
ES

t

[
Zsms

m∗
s(x)

]
gt(x)

=
Ztmt

m∗
t (x)gt(x)

=
Zt

ht(x)
,

where we have used Assumptions 1-3, facts (15)-(16), and condition Et[Zsms] = Ztmt. �

C Parametric Example

This appendix illustrates our model-independent approach with the help of parametric example. In a
tractable model, the example allows one to study the properties of the new restriction in the presence
of 1) risk-aversion, 2) incorrect beliefs, and 3) selection biases. As a special case, the example produces
the Black-Scholes model. (All technical details are collected in Appendix D.)

C.1 Economy

Consider a continuous-time finite-horizon economy. There is one risky asset, whose price is vt. The risk-
free rate is zero. A representative investor maximizes the expected value of the utility function U(vT ).
Also traded are various derivative securities in zero net supply. As a state variable, it is convenient to
use log of the asset’s price xt = log vt. We assume that xT is normally distributed. Specifically, the
time-0 objective density is f0(xT ) = f(xT , T ;x0, 0) = n(xT ;u0, η

2
0), where for all µ and σ

n(xT ;µ, σ2) :=
1√
2πσ

exp
[
− (xT − µ)2

2σ2

]
.
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Initial beliefs are represented by a normal density g0(xT ) = g(xT , T ;x0, 0) = n(xT ;w0, σ
2
0), where

w0 and σ2
0 are the subjective mean and variance. In general, (w0, σ0) �= (u0, η0). The representative

investor exhibits Constant Relative Risk Aversion (CRRA) with

U(vT ) =
{

1
1−γ v

1−γ
T , if γ �= 1

log vT , if γ = 1.
(17)

This implies that the risk-neutral density is also normal, h0(xT ) = h(xT , T ;x0, 0) = n(xT ; ν0, σ2
0).

The risk-neutral and subjective densities have the same variances but different means, with ν0 =
w0 − γσ2

0 . For the CRRA preferences, the pricing kernel is mT = v−γ
T = e−γxT .

Over time, investors learn about the final value xT = x by observing a continuous flow of signals

dΨt = xdt+ φtdBt, Ψ0 = 0, (18)

whereBt is the standard Brownian motion. Intuitively, an incremental signal dΨt is normally distributed
with mean xdt and variance φ2

tdt, where φt is a given function of t. (A specific choice for φt will ensure
that vt follows the geometric Brownian motion as in the Black-Scholes model.)

Information arrival in (18) implies that, at any time t < T , the three probability densities are
normal, ft(xT ) = n(xT ;ut, η

2
t ), gt(xT ) = n(xT ;wt, σ

2
t ) and ht(xT ) = n(xT ; νt, σ

2
t ), where

ut − x =
η2

t

η2
0

(u0 − x) + η2
t

∫ t

0

dBs

φs
,

1
η2

t

=
1
η2
0

+
∫ t

0

ds

φ2
s

.

wt − x =
σ2

t

σ2
0

(w0 − x) + σ2
t

∫ t

0

dBs

φs
,

1
σ2

t

=
1
σ2

0

+
∫ t

0

ds

φ2
s

,

and νt = wt − γσ2
t . The stochastic processes for ut and νt are21

dut =
η2

t

φ2
t

(x− ut)dt+
η2

t

φt
dBt, dνt =

σ2
t

φ2
t

(x− νt)dt+
σ2

t

φt
dBt.

Because of normality, ut, wt, and νt can be interpreted as the time-t objective, subjective, and
risk-neutral expectations of the final outcome x. Since xt = (νt + 0.5σ2

t ) and vt = ext , it follows that
the instantaneous return on the asset’s price is dvt/vt = dνt.

C.2 Special Case

Consider first a special case where σ0 = σ
√
T and φt = σ(T − t) for some constant σ, implying that

σ2
t = σ2(T − t). Conditionally on xT = x, the process for xt is a (generalized) Brownian Bridge:

dxt =
x− xt

T − t
dt+ σdBt.

With no conditioning on the final outcome, the process for the asset’s price vt can be derived as

dvt

vt
=

1
T − t

(ut − νt)dt+ σdBt.

In general, the drift in the above formula depends on initial beliefs. Suppose that (u0, η0) =
(ν0 + (∆ + γ)σ2

0 , σ0) for some ∆. Under this specification of beliefs, the standard deviation is unbiased,
while the bias in the mean is ∆σ2

0 . The process for vt then reduces to

dvt

vt
= (∆ + γ)σ2dt+ σdBt.

21By assuming that φt satisfies limt→T

∫ t

0
ds
φ2

s
= ∞, we ensure that the three densities all converge to the delta

function δ(x) at time T , in the sense that

lim
t→T

ηt = lim
t→T

σt = 0, and lim
t→T

ut = lim
t→T

wt = lim
t→T

νt = x.
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(Clearly, the classical Black-Scholes model corresponds to the case of correct beliefs with ∆ = 0.)
Remark 1. The above equation has an interesting implication. Consider an empiricist who only

observes the objective process. The empiricist is unable to disentangle the effects of risk aversion and
biased beliefs, because the empiricist can only observe the sum (∆ + γ), but not γ and ∆ separately.
This means that the same securities prices can result from either risk-aversion or biased beliefs, or some
combination of the two. In particular, the same risk premium (γ + ∆)σ can arise in any economy for
which risk-aversion γ′ and the bias in beliefs ∆′ are such that γ′ + ∆′ = γ + ∆. (Bondarenko (2003a)
discusses general conditions under which preferences and beliefs are observationally equivalent.)

C.3 Comparison of Rationality Restrictions

We now contrast the two rationality restrictions, the standard one in (6) and the new one in (9).
Although these restrictions apply to all securities, we only illustrate them for standard puts.

Suppose that the period [0, s] is fixed, where 0 < s < T . Consider the put option on the asset with
moneyness k = K/v0 and maturity s. The normalized put price is p0(k), and the put net return over
[0, s] is rp(K). Let λx = h0(x)/hs(x) be the inverse of the return of RND evaluated at the final outcome
x, and let m = ms/mt. Consider the following three moments (derived in Appendix D):

I1 := E0[rp(k)] =
pBS(k; ν∗0s, σ

∗2
0s )

pBS(k; ν0s, σ2
0s)

− 1,

I2 := E0[mrp(k)] =
(
pBS(k; ν∗0s − γσ∗2

0s , σ
∗2
0s)

pBS(k; ν0s, σ2
0s)

− 1
)
· eD,

Ix
3 := Ex

0 [λxrp(k)] = 0,

where

ν0s := −0.5(σ2
0 − σ2

s), ν∗0s := −0.5(σ2
0 − σ2

s) +
(

1 − σ2
s

σ2
0

)
(u0 − ν0),

σ2
0s := σ2

0 − σ2
s , σ∗2

0s := (σ2
0 − σ2

s) +
(

1 − σ2
s

σ2
0

)2

(η2
0 − σ2

0),

D := γ(ν0s − ν∗0s) + 0.5γ2(σ2
0s + σ∗2

0s ).

The moments I1 and I2 are expressed in terms of the Black-Scholes price pBS(k;µ, σ2), where

pBS(k;µ, σ2) :=
∫ ∞

−∞
(k − ey)+ n(y;µ, σ2) dy = kN

(
ln k − µ

σ

)
− eµ+0.5σ2

N

(
ln k − µ− σ2

σ

)
,

and N(·) is the standard normal cdf.
In general, the moments I1 and I2 are different from zero. The only situation when I2 = 0 is when

σ∗2
0s = σ2

0s and ν∗0s − γσ∗2
0s = ν0s. This occurs when beliefs are correct, or (u0, η0) = (w0, σ0). The only

situation when I1 = 0 is when σ∗2
0s = σ2

0s and ν∗0s = ν0s. This occurs when (u0, η0) = (ν0, σ0), that is,
when the subjective standard deviation σ0 is unbiased while the upward bias in the subjective mean w0

is exactly offset by risk-aversion, so that w0 − γσ2
0 = ν0 = u0. In contrast, the condition Ix

3 = 0 holds
for arbitrary beliefs and risk-aversion.

Figure 6 plots the three moments I1, I2, and Ix
3 across strikes K for several special cases. In all

cases, we assume σ0 = σ
√
T and φt = σ(T −t) for constant σ. We set s = 1, T = 2, σ = 0.04, and γ = 4,

where all parameters correspond to the monthly frequency. To allow for biased beliefs, we represent the
objective mean as u0 = ν0 + (∆ + γ)σ2

0 . The first four cases in Figure 6 are

I. Correct beliefs, ∆ = 0, η0 = σ0 (this is the classical Black-Scholes model);

II. Incorrect beliefs with a biased mean, ∆ = 2, η0 = σ0;

III. Incorrect beliefs with a biased standard deviation, ∆ = 0, η0 = 0.85σ0;
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IV. Incorrect beliefs with biased mean and standard deviation, ∆ = 2, η0 = 0.85σ0.

From Figure 6, the moment Ix
3 is equal to zero for all moneyness k and for all cases. The moment I2

is zero only when beliefs are correct (case I). Recall that, to test the restriction I2 = 0, one must specify
the pricing kernel, which is unobservable in practice. Even when the true pricing kernel is available,
the moment I2 will still be nonzero if beliefs are incorrect. In particular, I2 is negative for all k when
investors underestimate the objective mean u0 (case II), overestimate the objective standard deviation
(case III), or both (case IV). The moment I1 corresponds to the sample average return and is affected
by both risk-aversion and biases in beliefs. For cases I-IV, I1 is negative for all strikes.

Remark 2. In our analysis, we rely on the CRRA-lognormal setup only because of analytical
tractability. However, the condition Ix

3 = 0 will continue to hold for general utility functions U(vT ),
initial beliefs, and information flow in (18).

C.4 Selection Bias

We now illustrate the new restriction in (9) in the presence of a selection bias. Let A denote a subset
of final states and suppose that the empiricist has a sample of histories with xT ∈ A. For example, if
A = {xT |xT ≥ xc}, then the sample only includes returns above the critical value xc. Such a selection
bias may contribute to the apparent put overpricing. Very low asset’s returns happen infrequently and
may not be observed in a small sample. Nevertheless, since low asset’s returns correspond to very high
returns of OTM puts, it is possible that the omission of these observations might significantly distort
the small-sample moments.

In the presence of the selection bias, the empiricist considers the following moments:

Ī1 = Ī1(A) := E0[rp(k) |xT ∈ A],
Ī2 = Ī2(A) := E0[mrp(k) |xT ∈ A],
Ī3 = Ī3(A) := E0[IxT

3 |xT ∈ A].

These moments can be computed as explained in Appendix D. To introduce a selection bias, we
choose the cutoff value xc such that 2% of the asset’s lowest returns are discarded. We plot Ī1, Ī2, and
Ī3 in the bottom panels of Figure 6, for two cases:

V. Selection bias, correct beliefs;

VI. Selection bias, incorrect beliefs with biased mean and standard deviation, ∆ = 2, η0 = 0.85σ0.

Figure 6 shows that omitting a small number of extreme returns can generate a sizable (but spurious)
mispricing of puts, especially for deep OTM puts. The figure also demonstrates that selection bias does
not affect the condition Ī3 = 0.

Remark 3. The condition Ī3 = 0 will continue to hold for many other subsets A, for example,
A = {xT |xl ≤ xT ≤ xh} for xl < xh. More importantly, ex post frequencies of final states xT can
deviate from ex ante probabilities f0(xT ) in an arbitrary way and, still, the restriction in (9) must hold.

D Technical Details for Parametric Example

This appendix provides technical details for the parametric example in Appendix C. In derivations, the
following basic properties of normal densities are used repeatedly.

P1:
∫ ∞

−∞
n(x;µ, σ2) eαx dx = e0.5α2σ2+αµ.

P2: n(x; y, η2)n(y;µ, σ2) = n(x;µ, σ2 + η2)n

(
y;

µ
σ2 + x

η2

1
σ2 + 1

η2

,
1

1
σ2 + 1

η2

)
.

P3:
∫ ∞

−∞
n(x;α+ βy, η2)n(y;µ, σ2) dy = n(x;α + βµ, β2σ2 + η2).
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For example, the pricing kernel mt can be derived from property P1 as

mt = ES
t [mT ] =

∫ ∞

−∞
e−γxT gt(xT ) dxT =

∫ ∞

−∞
e−γxT n(xT ;wt, σ

2
t ) dxT = e−γνt−0.5γ2σ2

t .

D.1 Derivation of Moments I1, I2, and Ix
3

We first derive the objective density f(xs, s;x0, 0). Let f(xs, s;x0, 0, xT , T ) denote the objective density
of xs conditional on both x0 and xT . From

xs = σ2
s

(
x0

σ2
0

+
∫ s

0

dΨτ

φ2
τ

)
= σ2

s

(
x0

σ2
0

+ xT

(
1
σ2

s

− 1
σ2

0

)
+
∫ s

0

dBτ

φτ

)
,

we obtain that

f(xs, s;x0, 0, xT , T ) = n

(
xs;x0

σ2
s

σ2
0

+ xT

(
1 − σ2

s

σ2
0

)
, σ2

s

(
1 − σ2

s

σ2
0

))
,

f(xs, s;x0, 0) =
∫ ∞

−∞
f(xs, s;x0, 0, xT , T ) f0(xT ) dxT

=
∫ ∞

−∞
n

(
xs;x0

σ2
s

σ2
0

+ xT

(
1 − σ2

s

σ2
0

)
, σ2

s

(
1 − σ2

s

σ2
0

))
n(xT ;u0, η

2
0) dxT

= n

(
xs;x0

σ2
s

σ2
0

+ u0

(
1 − σ2

s

σ2
0

)
, σ2

s

(
1 − σ2

s

σ2
0

)
+ η2

0

(
1 − σ2

s

σ2
0

)2
)

= n(xs; ν∗0s + x0, σ
∗2
0s ).

Therefore,

E0[ps(k)] =
∫ ∞

−∞

(
k − exs−x0

)+
f(xs, s;x0, 0) dxs

=
∫ ∞

−∞

(
k − exs−x0

)+
n(xs; ν∗0s + x0, σ

∗2
0s) dxs = pBS(k; ν∗0s, σ

∗2
0s).

Similarly, the risk-neutral density h(xs, s;x0, 0) = n(xs; ν0s + x0, σ
2
0s), and the normalized price

p0(k) =
∫ ∞

−∞
(k − exs−x0)+ h(xs, s;x0, 0) dxs = pBS(k; ν0s, σ

2
0s).

Recall now that m = ms/m0 = e−γ(νs−ν0)−0.5γ2(σ2
s−σ2

0) and xs = νs + 0.5σ2
s . Therefore,

E0[m] =
∫ ∞

−∞
e−γ(νs−ν0)−0.5γ2(σ2

s−σ2
0) f(xs, s;x0, 0) dxs

= eD

∫ ∞

−∞
e−γ(xs−ν∗

0s−x0)−0.5γ2σ∗2
0s n(xs; ν∗0s + x0, σ

∗2
0s) dxs

= eD

∫ ∞

−∞
n(xs; ν∗0s + x0 − γσ∗2

0s , σ
∗2
0s) dxs = eD,

E0[mps(k)] =
∫ ∞

−∞
ps(k) e−γ(νs−ν0)−0.5γ2(σ2

s−σ2
0) f(xs, s;x0, 0) dxs

= eD

∫ ∞

−∞

(
k − exs−x0

)+
n(xs; ν∗0s + x0 − γσ∗2

0s , σ
∗2
0s ) dxs

= eD pBS(k; ν∗0s − γσ∗2
0s , σ

∗2
0s ).

Finally, the condition Ix
3 = 0 follows from the general result in Bondarenko (2003a). Alternatively,

it can be verified directly as follows. By property P2,

hs(x)h(xs, s;x0, 0) = n(x; νs, σ
2
s)n(xs; ν0 + 0.5σ2

s , σ
2
0 − σ2

s) = n(x; νs, σ
2
s)n(νs; ν0, σ2

0 − σ2
s)
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= n(x; ν0, σ2
0)n

(
νs; ν0

σ2
s

σ2
0

+ x

(
1 − σ2

s

σ2
0

)
, σ2

s

(
1 − σ2

s

σ2
0

))
= h0(x) f(xs, s;x0, 0, x, T ).

Therefore,

Ex
0 [λx ps(k)] =

∫ ∞

−∞
ps(k)

h0(x)
hs(x)

f(xs, s;x0, 0, x, T ) dxs =
∫ ∞

−∞
ps(k)h(xs, s;x0, 0) dxs = p0(k).

D.2 Derivation of Moments Ī1, Ī2, and Ī3

The moments Ī1 and Ī2 can be computed by numerical integration. The following approach allows us to
reduce a two-dimensional integration to a one-dimensional one. We assume that A = {xT |xl ≤ xT ≤
xh} for some xl < xh and define

G(νs) :=

∫ xh

xl
f0(xT )f(xs, s;x0, 0, xT , T ) dxT∫ xh

xl
f0(xT ) dxT

=

∫ xh

xl
n(xT ;u0, η

2
0)n

(
xs;x0

σ2
s

σ2
0

+ xT

(
1 − σ2

s

σ2
0

)
, σ2

s

(
1 − σ2

s

σ2
0

))
dxT∫ xh

xl
n(xT ;u0, η2

0) dxT

= n

(
xs;

σ2
s

σ2
0

ν0 +
(

1 − σ2
s

σ2
0

)
u0 + 0.5σ2

s , σ
∗2
0s

) ∫ xh

xl
n(xT ; Λ,Σ2) dxT∫ xh

xl
n(xT ;u0, η2

0) dxT

= n

(
νs;

σ2
s

σ2
0

ν0 +
(

1 − σ2
s

σ2
0

)
u0, σ

∗2
0s

)
N
(

xh−Λ
Σ

)−N
(

xl−Λ
Σ

)
N
(

xh−u0
η0

)
−N

(
xl−u0

η0

) ,
where

Λ =
(
u0

η2
0

+
νs

σ2
s

− ν0
σ2

0

)
Σ2,

1
Σ2

=
1
η2
0

+
1
σ2

s

− 1
σ2

0

.

Using the expression for G(νs), we can now integrate numerically the following expectations:

E0[ps(k) |xT ∈ A] =
∫ ∞

−∞

(
k − eνs+0.5σ2

s−x0

)+

G(νs) dνs,

E0[m |xT ∈ A] =
∫ ∞

−∞
e−γ(νs−ν0)−0.5γ2(σ2

s−σ2
0)G(νs) dνs,

E0[mps(k) |xT ∈ A] =
∫ ∞

−∞
e−γ(νs−ν0)−0.5γ2(σ2

s−σ2
0)
(
k − eνs+0.5σ2

s−x0

)+

G(νs) dνs.

Finally, since IxT
3 = 0 for all xT , we immediately obtain that Ī3 = E0[IxT

3 |xT ∈ A] = 0.
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Table 1: Monthly Option Returns

I. Put return rp(k) for different k

0.94 0.96 0.98 1.00 1.02 1.04 1.06
n 67 109 159 161 161 161 150

Mean -0.95 -0.58 -0.54 -0.39 -0.26 -0.17 -0.11
1% -1.00 -0.87 -0.77 -0.59 -0.42 -0.30 -0.22
5% -0.99 -0.80 -0.72 -0.54 -0.37 -0.28 -0.19

95% -0.89 -0.35 -0.36 -0.24 -0.14 -0.07 -0.03
99% -0.87 -0.22 -0.26 -0.18 -0.08 -0.03 0.00
Min. -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Med. -1.00 -1.00 -1.00 -1.00 -0.58 -0.32 -0.15
Max. 0.42 9.53 7.25 5.40 3.94 2.35 1.90

II. Call return rc(k) for different k

0.94 0.96 0.98 1.00 1.02 1.04 1.06
n 160 161 161 161 143 69 21

Mean 0.06 0.06 0.05 0.04 -0.04 -0.06 0.21
1% -0.03 -0.05 -0.11 -0.18 -0.36 -0.62 -0.83
5% -0.01 -0.02 -0.07 -0.12 -0.27 -0.44 -0.65

95% 0.13 0.15 0.17 0.20 0.18 0.44 1.26
99% 0.15 0.19 0.20 0.28 0.27 0.63 1.82
Min. -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Med. 0.03 -0.01 -0.12 -0.57 -1.00 -1.00 -1.00
Max. 1.63 2.07 2.49 4.73 7.35 8.36 10.96

Notes: Sample Period is 08/87–12/00. Statistics are reported for different strike-to-underlying ratio k =
K/vt; n is the number of observations. The confidence intervals (1%, 5%, 95%, and 99%) are constructed
using a bootstrap with 1000 resamples.
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Table 2: Risk Characteristics of Monthly Returns, Puts and S&P 500 Futures

Put, k S&P
0.94 0.96 0.98 1.00 1.02 1.04 1.06 500

n 67 109 159 161 161 161 150 161
Mean -0.95 -0.58 -0.54 -0.39 -0.26 -0.17 -0.12 0.007

Std. dev. 0.24 1.51 1.36 1.13 0.93 0.73 0.60 0.040
Skewness 4.90 4.56 3.85 2.52 1.64 1.03 0.78 -0.34

β -2.04 -20.42 -23.07 -22.78 -20.75 -17.36 -14.34 1.00
α -0.94∗ -0.43∗ -0.38∗ -0.23∗ -0.11 -0.05 -0.01 0.00

SR -3.93 -0.38 -0.40 -0.35 -0.28 -0.24 -0.18 0.18
TM 0.46 0.021 0.016 0.010 0.005 0.003 0.001 0.00
M2 -0.16 -0.015 -0.016 -0.014 -0.011 -0.009 -0.007 0.007

Implied γ 130.9 9.0 9.7 8.3 6.7 5.7 4.3 4.3

Notes: Sample Period is 08/87–12/00. Statistics are reported for monthly returns of puts with different k
and the underlying S&P 500 futures. Net returns are in excess of the risk-free rate and computed over 1
month period prior to the maturity date; n is the number of observations. SR is the Sharpe ratio, TM is
the Treynor’s measure, M2 is M-squared. For Jensen’s α, asterisk (∗) denotes significance at the 1% level.
“Implied γ” is the coefficient of relative risk aversion in Rubinstein (1976) model that is required to justify
realized returns.

Table 3: Highest Monthly Put Returns

Put, k S&P ATM
Holding period 0.94 0.96 0.98 1.00 1.02 1.04 1.06 500 Vol.

1987: 09/18-10/16 n/a 9.53 7.02 3.88 2.99 2.35 1.90 -0.11 0.19
1987: 10/16-11/20 n/a 5.21 4.27 3.46 2.44 2.00 1.69 -0.14 0.28
1990: 07/20-08/17 n/a n/a 7.25 5.40 3.94 2.22 1.75 -0.10 0.14
1994: 03/18-04/15 n/a n/a 3.94 3.17 1.98 1.20 0.98 -0.05 0.11
1998: 07/17-08/21 n/a 6.39 5.46 4.03 2.78 2.06 1.56 -0.09 0.14

Notes: Table reports on five holding periods that correspond to the highest put returns in the sample.
Sample Period is 08/87–12/00. Also reported is return on the underlying S&P 500 futures. Returns are in
excess of the risk-free rate. The last column is (annualized) one-month ATM implied volatility, computed at
the beginning of each holding period.
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Table 4: The number of crashes needed for AR=0

k
0.94 0.96 0.98 1.00 1.02 1.04 1.06

Oct 87 return n/a 12 20 18 17 14 10
per year n/a 1.30 1.43 1.29 1.21 1.02 0.81

Highest return n/a 7 12 12 10 12 9
per year n/a 0.79 0.91 0.89 0.80 0.90 0.74

Notes: Sample Period is 08/87–12/00. For each k, the table reports how many artificial extreme returns
(October 1987 or the largest ever) are required to reconcile the put anomaly. Also shown is the corresponding
number of crashes per year. See Section 2.3.2 for details.

Table 5: Drift of the S&P 500 Index needed for AR=0

k
0.94 0.96 0.98 1.00 1.02 1.04 1.06

Negative drift 0.047 0.027 0.020 0.015 0.011 0.009 0.007
S&P final value 0.5 13.3 47.8 111.9 221.0 285.3 401.0

Notes: Sample Period is 08/87–12/00. For each k, the table reports the value of hypothetical negative drift
η that is required to reconcile the put anomaly. Also shown what the corresponding value of the S&P 500
Index would have been at the end of 2000. The drift is reported in monthly decimal terms. See Section 2.3.3
for details.

Table 6: Put Weighted Return λrp(k) for Different k

0.94 0.96 0.98 1.00 1.02 1.04 1.06
n 55 93 142 144 144 144 132

Mean -0.79 -0.59 -0.51 -0.35 -0.21 -0.13 -0.08
1% -1.06 -0.89 -0.75 -0.59 -0.42 -0.30 -0.24
5% -0.99 -0.82 -0.70 -0.53 -0.36 -0.27 -0.20

95% -0.63 -0.31 -0.27 -0.12 -0.02 0.02 0.05
99% -0.57 -0.20 -0.14 -0.02 0.06 0.08 0.14
Min. -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35
Med. -0.67 -0.68 -0.67 -0.59 -0.39 -0.21 -0.12
Max. 1.72 11.46 15.07 14.44 11.94 9.59 7.23

Notes: Sample Period is 08/87–12/00. Statistics for monthly weighted return λrp(k) are reported for one-
month puts with different strike-to-underlying ratio k = K/vt; n is the number of observations. Return
rp(k) is in excess of the risk-free rate and is computed over one-month holding periods [t, s] prior to the
option maturity date s. The weight λ = ht(vT )/hs(vT ) is the inverse of the return on RND evaluated at the
realized future value of the underlying vT , where T -s is one month. The confidence intervals (1%, 5%, 95%,
and 99%) are constructed using a bootstrap with 1000 resamples.
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Figure 1: Average daily trading volume and open interest for puts (dark bars) and calls (white bars).
The sample period is 08/87–12/00. The average statistics are computed for different strike-to-underlying
ratio k = K/vt, when the number of days to maturity τ is 1 to 28 (total of 3,103 trading days), 29 to
56 (total of 3,137 trading days), and 57 to 84 (total of 3,109 trading days), respectively. In November
1997, the contract multiplier for the CME options was reduced from 500 to 250. Therefore, to calculate
average trading volume and open interest, the number of contracts before November 1997 is multiplied
by 2.
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Figure 2: The top panel plots the aggregate risk-neutral density (ARND) and the objective density
(OD) versus the strike-to-underlying ratio k, when time to maturity is 1 month. ARND (the solid line)
is the pointwise average of 161 individual RNDs. OD (the dashed line) is estimated using the kernel
method. The dotted lines indicate the locations of the densities’ means. The mean of OD is higher than
the mean of ARND by 0.71% (annualized 8.57%). The bottom panel plots option prices corresponding
to ARND (the solid lines) and OD (the dashed lines), as functions of k. The upward-sloping curves are
puts pt(k), the downward-sloping curves are calls ct(k). The dotted lines are the no-arbitrage bounds.
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Figure 3: The top two panels plot the level of the S&P 500 Index and one-month ATM implied
volatility from 08/87 to 12/00. The ATM volatility is annualized. The bottom panel shows put average
returns over four subperiods: 08/87–06/90, 07/90–12/93, 01/94–06/97, and 07/97–12/00. The monthly
average returns are shown for k = 0.96 (black bars), 0.98, 1.00, 1.02, and 1.04 (white bars).
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Figure 4: Put returns over time. Shown are OTM, ATM, and ITM options with k = 0.98, 1.00, and
1.02.
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Figure 5: Monthly average weighted return AWR for one-month put (the left panel) and two-month
puts (the right panel) with different moneyness k. Options are purchased 2 months and sold 1 month to
prior the maturity date. The dashed lines are 5% and 95% pointwise confidence intervals, constructed
using the bootstrap with 1000 resamples.
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Figure 6: This figure illustrates the parametric example in Appendix C. The illustration assumes
that σ0 = σ

√
T , φt = σ(T − t), σ = 0.04, γ = 4, s = 1, T = 2, and u0 = ν0 + (∆ + γ)σ2

0 . The
first four panels show the moments I1 = Et[rp(k)] (the thin dashed line), I2 = Et[mrp(k)] (the solid
line), and Ix

3 = Ex
t [λxrp(k)] (the thick dashed line) as functions of moneyness k for four special cases:

Correct beliefs, ∆ = 0, η0 = σ0; Incorrect beliefs with a biased mean ∆ = 2, η0 = σ0; Incorrect beliefs
with a biased standard deviation ∆ = 0, η0 = 0.85σ0; Incorrect beliefs with biased mean and standard
deviation ∆ = 2, η0 = 0.85σ0. The last two panels show the moments Ī1, (the thin dashed line), Ī2,
(the solid line), and Ī3 (the thick dashed line) as functions of moneyness k when 2% of the asset’s lowest
returns are discarded, for correct and incorrect beliefs.
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