
 

 

 

 

QUICKLOOK FINAL REPORT 
 

Version 1.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By Tactical Science Solutions, Inc.  

in support of the Tactical Satellite-3 design effort 

 

 

 

May 30, 2007 



 

 ii 

Group: Tactical Science Solutions, Inc. 
Authors: David Alexander                      dalexander@cybermetric.com 
 Soroush (Kevin) Sadeghian       kevin.sadeghian@saic.com 
 Thomas Saltysiak                     saltysiak@hotmail.com 
 Siroos Sekhavat                     siroos.sekhavat@ngc.com 
File Name: Quicklook Final Rerport v1.18.doc 
Status: Final 
Number of Pages: 35 
Created Date: April 20, 2007 
Saved Date: Wednesday, May 30, 2007 
 
Version Modification Overview 

Version Date Comments 
1.00 04/20/07 Initial outline 
1.01 04/22/07 Added overview and purpose section 
1.02 04/23/07 Added learning curve evaluation section  
1.05 04/25/07 Consolidated all sections 
1.06 04/26/07 Section updated; grammar corrected 
1.07 05/01/07 Reworked Sections 3 and 4.3 based on Dr. Laskey’s and 

Heather’s recommendations 
1.11 05/02/07 Consolidated all reworked sections  
1.14 05/02/07 Following new sections added: Executive summary; design 

diagrams for SysML; evaluation section; and definition table 
formatted to match acronym table.) 

1.15 05/02/07 Grammar corrected 
1.16 05/02/07 Introduction added; grammar corrected 
1.17 05/03/07 Conclusion added; grammar corrected 
1.17 05/03/07 Small changes; grammar corrected 
1.18 05/03/07 Final document 
1.19 05/30/07 Acknowledgement and references section added 
   
 

 



 

 iii 

EXECUTIVE SUMMARY 

Introduction 

The Tactical Science Solution (TSS) Team at George Mason University has been asked 
by The Aerospace Corporation to evaluate the Systems Modeling Language (SysML) as 
a new and emerging general-purpose modeling language that supports Model-Based 
Systems Engineering.  In order to conduct this evaluation, the TSS Team decided to 
design a small satellite system using SysML as the modeling language. The analysis 
portion of the project will provide the stakeholders with feedback on the usability, 
capabilities, scope and limitations of SysML. 

Project Overview 

In order to evaluate SysML’s effectiveness, the TSS conceived a design project based 
on the Tactical Satellite-3 (TacSat-3) System.  The process for evaluating SysML’s 
effectiveness involved analyzing and modeling the TacSat-3 System in SysML and 
using this detailed design model as an instrument to evaluate SysML’s usefulness.  In 
addition, an executable model was created based on this design model, which allowed 
a behavior analysis and a trade study of design alternatives.  The TSS Team collected 
engineering effort, training, and lessons learned data throughout the project.  This 
information was used to evaluate the ease with which organizations could adopt Model-
Based Systems Engineering using SysML.  The TSS design efforts, as well as the 
modeling process of the TacSat-3 System, have been documented in detail for this 
project. 

Results 

The TSS evaluation of the new Systems Modeling Language (SysML) indicates that 
SysML adequately addresses systems engineers’ needs.  It serves the purpose of 
providing systems engineers the constructs required for an effective systems analysis 
and design based on Model-Based Systems Engineering methods.  SysML is also 
effective in specifying requirements, behavior, requirements allocation and traceability, 
including placing constraints on the system. SysML re-uses some of the notations from 
UML 2.1 and provides additional extensions to satisfy the modeling language 
requirements. Unlike the traditional systems engineering approach, SysML allows 
systems engineers to build realistic models and simultaneously validate systems 
behavior without having to rely on costly prototypes. 

SysML extends model-based engineering by providing systems engineers with the 
necessary constructs to capture requirements within the design model, which can then 
be used to validate the design artifacts.  This capability provides a bi-directional 
traceability between deign artifacts and the requirements. In additional, SysML has a 
reduced set of formal constraints and semantics, which take less time to learn when 
compared to the Unified Modeling Language (UML).  A SysML model can be easily 
translated into an executable model to perform behavioral analyses and trade studies. 
Furthermore, UML introduces software bias into the semantics, and lacks the necessary 
notations to satisfy systems engineers’ needs, which SysML fulfills.   

It should be acknowledged that the TSS Team greatly benefited from IBM Rational 
products and EmbeddedPlus Toolkits in the evaluation of SysML.  Although employing 



 

 iv 

SysML to modeling and design is still under study, this project proves the usability and 
value of SysML in systems engineering analysis and design efforts. In summary, the 
TSS team has found SysML to be a powerful and effective modeling language for 
systems engineers, and can bring systems engineering and software engineering efforts 
closer together than ever before. 

 



 

 v 

TABLE OF CONTENTS 

1 Overview ................................................................................................................. 1 

2 Purpose................................................................................................................... 1 

3 Background ............................................................................................................ 2 

3.1 Systems Modeling Language............................................................................ 2 

3.2 Design Project Selection................................................................................... 3 

3.3 TacSat-3 Satellite Concept of Operation........................................................... 3 

4 Methodology........................................................................................................... 4 

4.1 Project Scope.................................................................................................... 4 

4.2 Evaluation Plan ................................................................................................. 5 

4.3 Design............................................................................................................... 7 

4.4 Executable Model ........................................................................................... 12 

4.5 Trade-study of Design Alternatives ................................................................. 13 

5 Results .................................................................................................................. 13 

5.1 SysML Evaluation Overview ........................................................................... 13 

5.2 Executable Model Evaluation Overview.......................................................... 19 

5.3 SysML Enabling Software............................................................................... 22 

5.4 SysML Learning Curve ................................................................................... 23 

5.5 Lessons Learned ............................................................................................ 25 

6 Conclusions.......................................................................................................... 25 

7 Acknolwdgements ............................................................................................... 26 

8 References............................................................................................................ 27 

Appendix A Systems Modeling Language Term Definitions............................... 28 

Appendix B Acronyms............................................................................................ 30 

 



 

 1 

1 OVERVIEW 

Model-Based Systems Engineering (MBSE) is an emerging and promising approach to 
Systems Engineering.  It is replacing traditional Systems Engineering development 
techniques such as document-based requirements and specifications, which can be 
incomplete, ambiguous, and easily misunderstood.  Model-Based Systems Engineering 
is different from the traditional document-centric Systems Engineering in that MBSE 
delivers insight into the requirements, analysis and systems design phases, while 
providing better impact analysis, change control, and management.  The Systems 
Modeling Language (SysML) is a language that is designed to support Model-Based 
Systems Engineering, and several tool packages in the market, such as IBM’s Rational 
Systems Developer, are emerging to provide SysML support. 

The Aerospace Corporation, a federally funded research and development center, 
would like to determine whether their customers, National Security Space (NSS) 
programs, should begin using the Systems Modeling Language (SysML) and where it is, 
or is not, appropriate to use.  In order to meet this challenge, Aerospace has 
approached the George Mason University’s (GMU) Systems Engineering and 
Operations Research (SEOR) Department for assistance.   

Many of Aerospace’s customers in National Security Space need help with architecture 
and modeling of both current and future systems.  These customers often have a 
difficult time analyzing system-of-systems not only due to inherent complexity but the 
challenge of selecting the correct set of tools and methodologies from many currently 
available in the market.  Aerospace would like to provide guidance to the customers 
who are considering using SysML by understanding the following questions: 

• Are we sure that SysML, both the specification and tool implementation, is 
appropriate for use on NSS programs? 

• What are the SysML specification limitations and SysML language capabilities? 

• What is the learning curve involved with learning to effectively and efficiently use 
SysML? 

In order to answer the above questions, the Tactical Science Solutions (TSS) team 
designed a system in the space systems domain using SysML, and used the resulting 
system design as a vehicle to evaluate the effectiveness of SysML and the supporting 
design tools. The TSS Team also used this design to conduct behavioral analyses and 
trade studies on different design alternatives.  Finally, this design became the means for 
the TSS Team to learn and evaluate SysML and the IBM Rational Systems Developer 
tool, and to understand the capabilities and limitations of the two. 

2 PURPOSE 

The Aerospace Corporation asked the TSS Team to evaluate SysML, and to identify 
and document the capabilities and limitations associated with using this language.  The 
purpose of this evaluation is to determine whether SysML is mature enough to become 
the standard modeling language in the work force as well as the academic field.  To 
achieve this goal, the TSS Team designed a system in the space systems domain using 
SysML to evaluate the effectiveness of SysML and the design tools that support it. In 



 

 2 

order to satisfy other customer requirements and concerns, the TSS Team also 
conducted behavioral analysis on the designed system using the EmbeddedPlus SysML 
and Simulation toolkits. 

The TSS Team documented the findings, conducted a trade study of the design 
alternatives as part of the preliminary design analysis, assessed the learning curve 
involved with learning SysML, and reported these results to the stakeholders in the form 
of a report, and several formal and informal presentations.     

3 BACKGROUND 

This section provides the background information needed to understand this project, 
which has been named Quicklook.  In order to explore the effectiveness of SysML, a 
design model had to be developed.  Choosing the appropriate system on which to base 
the design model was also essential for the successful and timely completion of the 
project.  The background of the chosen satellite system as well as the background to 
understand the project is presented in this section. 

3.1 Systems Modeling Language 

The Systems Modeling Language (SysML) is a recently standardized modeling 
language agreed upon by the Object Management Group (OMG).  SysML is based on 
the popular Unified Modeling Language (UML), which has been used for many years by 
software engineers as a language for model-based system design.  Being developed in 
the software domain, UML does adequately address all the needs of systems 
engineers.  SysML was conceived as an extension to UML to serve the need for 
systems engineering for both hardware and software systems.  The OMG defines 
SysML in the following way: 

The OMG Systems Modeling Language (OMG SysML™) is a general-purpose 
modeling language for systems engineering applications. SysML supports the 
specification, analysis, design, verification and validation of a broad range of 
systems and system-of-systems. These systems may include hardware, 
software, information, processes, personnel, and facilities.1 

SysML promises huge potential benefits for systems engineering, including: 

• Ease of communication due to a common language 

• Effective model-based systems engineering through SysML supported 
software tools 

• A unified data repository that is consistent through all system views and 
diagrams 

• The use of Object-Oriented design principles to reduce design and 
redesign effort through reuse of common design entities  

                                            
1
 Object Management Group, Inc. (OMG). OMG SysML Specification. Page 23. 

http://www.sysml.org/docs/specs/OMGSysML-FAS-06-05-04.pdf 

 



 

 3 

• Consistency between the SysML model and the resulting executable 
model 

Through use of the Quicklook design project and executable model generation, the TSS 
Team can determine how well SysML actually lives up to these claims.   

3.2 Design Project Selection 

The Aerospace Corporation requested that the SysML evaluation in this project be 
based on a National Security Space (NSS) domain system, however, no specific system 
was provided or designated.  The TSS Team developed a set of criteria for potential 
systems for this design project: 

• The system must be in the National Security Space domain 

• Enough information must be openly available to develop a Concept of Operations 
(CONOPS) and requirements 

• The system must be of manageable complexity 

• The system should have some functions in addition to a communications relay 
(such as imagery capture) 

The TSS Team conducted research and chose the Tactical Satellite-3 (TacSat-3) 
System because it met the selected criteria for this design project.  In addition, the 
TacSat-3 Program is of interest because it is an important part of a paradigm shift in 
NSS toward leaner, more responsive programs. 

3.3 TacSat-3 Satellite Concept of Operation 

The TacSat-3 System provides operational and tactical level warfighters2 with 
responsive intelligence support.  The low cost, weight, and modularity allows the system 
to be deployed from the time of request to operational phase within 7 days or less.  Its 
advanced hyperspectral imagery components provide resolution of targets previously 
unobtainable.  Finally, the TacSat-3’s internal imagery processing and ground 
communications capabilities push relevant information directly to the warfighters who 
request it. 

The ability to deploy and make the TacSat-3 operational in a short time-frame provides 
military commanders with the flexibility to respond to rapid changes in the global 
environment.  The satellite’s modular payload capability will allow for various 
communications and sensory packages.  Once the Joint Forces Command (JFC) 
initiates a mission, the satellite payload can be configured and integrated with the 
launch vehicle within two days.  The system will support launch vehicle processes to 
allow the launch within four days.  Once at orbital altitude, the TacSat-3 is deployed, 
and will rapidly initialize within twenty-four hours and be ready for full operations for at 
least twelve months.   

                                            
2 Warfighter is a Department of Defense term synonymous with the User in a tactical 
military environment 



 

 4 

During the operational phase, the TacSat-3 will provide hyperspectral tactical imagery to 
the warfighter in a timely manner.  The satellite will support single-pass intelligence 
gathering missions.  The TacSat-3 system will receive a collection task, which will 
encompass collecting imagery, processing the data, and transmitting the information to 
the warfighter within ten minutes.  Warfighters will send target data to the satellite using 
standard Common Data Link (CDL) communications protocol.  The TacSat-3 will 
receive,  prioritize and process requests based on the mission parameters.  Selected 
target imagery data will be acquired, locally stored, processed, and then downlinked to 
the user via CDL within ten minutes. 

 

 

Figure 3-1. TacSat-3 Operational Concept Graphic 

*Picture from Air Force Research Laboratory Presentation: TacSat-3: Requirements Development for Responsive Space Missions  

4 METHODOLOGY 

The methods used to accomplish project Quicklook are described in this section.  The 
major areas covered are project scope, evaluation criteria, design, and trade study.  The 
processes used to accomplish the tasks are detailed below.  Once the project methods 
are clearly defined, the results are presented in Section 5 of this document. 

4.1 Project Scope 

The scope for the Quicklook project applies to the requirements analysis and design 
phases of the TacSat-3 system.  Within the design phase, the TSS Team had to ensure 
that the scope of the project would allow for a successful and meaningful trade study, 
while simple enough to allow successful project completion within the time and resource 
constraints.  For this reason, a small satellite system was chosen (TacSat-3) and with 
the guidance from The Aerospace Corporation, the satellite deployment phase was 
scoped out of the design project.  By adequately scoping the Quicklook design efforts, 
the TSS Team ensured that it satisfied all customer requirements and concerns through 
early requirements analysis, and scheduled status reports with design reviews. 

When scoping the training analysis of the Quicklook project, the TSS Team decided that 
the training analysis will be limited to the study of the training and engineering hours.  



 

 5 

This analysis would in turn provide an assessment of the learning curve involved with 
learning SysML. 

4.2 Evaluation Plan 

This section describes the evaluation methodology used to assess the effectiveness of 
SysML as a modeling language.  Additionally, it outlines how the TSS Team used data 
from individual level-of-efforts to study the learning curve involved with this new 
modeling language.  

4.2.1 Evaluation Objective 

The primary objective of this evaluation is to facilitate answering end-user concerns 
about the effectiveness of SysML.  TSS realizes that when a change is introduced into a 
process within an organization, people within that organization will have to deal with a 
learning curve.  This learning curve is defined here as a drop in productivity as people 
adjust to new systems, organizations and/or processes; in the case of the TSS Team, 
the learning curve involves a new systems engineering modeling language.   

Introducing SysML was predicted by the TSS Team to have a critical learning curve.  
TSS’s goal for conducting this evaluation is to assess the time it takes for systems 
engineers who are familiar with system modeling, UML, or Object-Oriented Design 
(OOD) to model a system using SysML. 

4.2.2 SysML Effectiveness Evaluation 

In order to evaluate the effectiveness of SysML, the TSS Team analyzed and designed 
the Tactical Satellite-3 system, an advanced micro satellite system that is planned to be 
launched in October of 2007.  Due to sensitivity of its operation, a greater part of 
information on Tactical Satellite-3 (TacSat-3) system is still classified and yet to be 
publicized.  Nevertheless, the available literature provided sufficient basis for the 
Quicklook design project evaluation of SysML. 

The TacSat-3 system is dependent on a modular, plug and play capability to carryout its 
operation while satisfying its short turnaround time requirement.  This characteristic of 
the TacSat-3, as well as the fact that it is a fairly small system, made it an ideal 
candidate for an exploratory design project. 

The Quicklook design project focuses on the operational phase of the TacSat-3 system, 
while emphasizing on the satellite’s main operational capability: 1. Hyperspectral 
Imagery Operations and 2. Communication Operations.   

Based on the background of the individuals within the TSS Team and their level of 
experience using UML and other systems engineering design methodologies, such as 
structured analysis, individual team members were encouraged to assume responsibility 
for designing different sections of the system.  An initial hierarchical design approach 
made it easy to delegate tasks.   

The TSS Team followed an iterative evaluation methodology as depicted in Figure 4-1.  
This process involved:  



 

 6 

• Studying and learning the SysML language by means of research and review of 
available literature.  The TSS Team also received professional training, which is 
discussed in the next section. 

• Designing the TacSat-3 system iteratively, using the IBM Rational software and 
EmbeddedPlus Toolkit, while documenting the modeling software capabilities 
and limitations at each design iteration. 

• Documenting SysML capabilities and limitations based on design activities at 
each pass at the design model.   

• Creating an executable model using SysML as a facilitator to conduct a trade 
study of design alternatives for the TacSat-3 and documenting related findings. 

• Augmenting and monitoring individual training hours collected on a weekly basis, 
and evaluating the learning curve involved with using SysML based on overall 
training and engineering hours. 

 

 

Figure 4-1. Evaluation Methodology 

 

4.2.2.1 Instructor Lead Training 

Further development of the TacSat-3 design was made possible when team members 
received an eight-hour training session.  The training session was courtesy of Mr. 
Sanford Friedenthal, Deputy of Corporate Systems Engineering, at the Lockheed Martin 
Corporation.  Mr. Friedenthal is the liaison between INCOSE and the Object 
Management Group (OMG), and chairs the industry standards effort through the OMG 



 

 7 

to develop the UML profile for System Engineering.  The training session entailed 
covering the SysML basics, as well as answering students’ questions.  In addition, the 
TSS Team received a 3 hours follow-on training session with Mr. Friedenthal.  The 
focus of this session was the importance of model organization and the significance of 
package diagrams.  See section 4.3.4.1.1, which describes packaging, for more details. 

4.2.3 SysML Learning Curve 

In order for the TSS Team to conduct a study of the team’s training and learning efforts, 
performance criterion had to be specified.  Several quantitative factors were identified 
and collected for the duration of this project.  The following data provided the basis for 
an objective evaluation of training efforts of team members: 

• Number of hours spent on SysML literature review  

• Number of hours spent on the software tools’ literature review (including help 
files and available documents)  

• Instructor-lead training hours  

• Total number of hours spent on designing the TacSat-3 system. 

Each team member was required to submit his training hours on a weekly basis.  Non-
training hours were documented as engineering efforts.  Training related timesheets 
were augmented with the previously recorded data.  Training data was collected from 
January 22, 2007 to April 19, 2007. 

The TSS Team closely monitored the level of efforts and progress of individual team 
members throughout the length of this project.  It is important to note that the team 
members have different educational backgrounds and work experiences.  The study 
has cleverly leveraged team members’ experiences to address the objective of this 
study. Refer to section 5.4 (SysML Learning Curve) for more details. 

4.3 Design 

The design of the TacSat-3 Satellite System was the main vehicle used to evaluate the 
effectiveness of SysML and the design tools that support it.  This section details the 
approach used by the TSS Team for system design. It is important to note that views of 
the TacSat-3 design are not included in this document for brevity purposes.  The entire 
design model is attached in a separate document labeled: “Project Quicklook: TacSat-3 
System Design Model for the Analysis Phase” (located in the Quicklook Project 
Notebook tab labeled “Section 2 System Design”).  More details on each portion of the 
system design process is given below. 

4.3.1 Design Tools 

Successful model-driven design requires both an effective modeling language and tools 
that implement the language well.  Therefore, to evaluate SysML in terms of model-
based engineering, it was necessary to use software tools.  As mentioned in earlier 
sections, the software tools used were IBM Rational Systems Developer and the 
EmbeddedPlus SysML and Simulation toolkits. The specific software tools used in this 
project were proposed by the project sponsor and are detailed below. 



 

 8 

4.3.1.1 IBM Rational Systems Developer 

The project sponsor requested IBM’s Rational System Tools be used for this project.  
The TSS Team chose Rational Systems Developer V7.0 because it was less complex 
than other products in the Rational Tool Suite and was compatible with the 
EmbeddedPlus SysML Plug-in.  Rational Systems Developer is primarily a UML 
software design tool.  The SysML Plug-in extends the tool capabilities to cover SysML 
as discussed in the following section.    

4.3.1.2 Embedded Plus SysML and Simulation Toolkit Plug-ins 

The EmbeddedPlus SysML and Simulation Toolkit are add-in products that provide 
productivity tools, simulation tools, and language support for SysML to IBM’s Rational 
modeling platform.  The SysML Toolkit takes the UML capabilities of Rational System 
Developer and extends them to cover SysML.  The Simulation Toolkit allows automatic 
executable model generation from the SysML model into Java or C++ code.  

4.3.2 System Definition 

Available information from the Air Force Research Laboratory on the TacSat-3 system 
was used to develop a concept of operations and originating requirements for the 
system design.  Over several iterations, the scope of the design was narrowed to 
include only the space vehicle with a focus on the imagery capture and dissemination 
portion of the orbital operational phase of the system.  The level of abstraction of the 
design was chosen based on the goal of conducting a trade study of design 
alternatives.   The context from the system included the space environment, the space 
domain, the United States Strategic Command, and International Laws.  The external 
systems in the space domain are the warfighters requesting the imagery, the target, and 
the controlling ground station. 

4.3.3 High-level Design 

Before the TSS Team started the design process using SysML, the team members 
began brainstorming the initial functional and logical design using SysML.  Individual 
ideas for the initial design were unified during a whiteboard session.  Following this 
approach, all team members agreed on the high-level design before beginning the 
implementation with software tools.  Also during this meeting, the team agreed upon an 
initial organization scheme for the design model in the software tool. 

4.3.4 Design Methodology 

The extensive literature and institutional knowledge covering design methodology of 
established systems engineer design methods, such as Structured Analysis, does not 
exist for the relatively new SysML.  During the SysML learning and system design 
process, the TSS Team developed a design methodology to support the needs of the 
project.   It quickly became apparent that proper organization of the model was vitally 
important when working on a complex design model in a team environment.   SysML 
lends itself easily to a hierarchical organization, therefore the team’s approach to design 
also followed a hierarchical approach.  



 

 9 

4.3.4.1 Design Model Organization 

The Quicklook design model contains hundreds of entities in more than forty-five SysML 
diagrams.  The model quickly could become overwhelming without proper organization.  
The model is organized into layers of abstraction ranging from the highest space 
domain level down to the component level.  Each level of abstraction is self-contained 
with all the information necessary to define the TacSat-3 system at that level. 

4.3.4.1.1 Packaging 

One of the key ideas in organizing SysML models is that of the package.  The package 
is a diagram in SysML but it is also a larger concept of organizing all model information.  
The organization scheme is not standardized by the SysML specification.  Packages are 
organized in whatever fashion best suits the design and the designers.  The TacSat-3 
design is packaged along functional lines at each level of abstraction.  Packages 
common to every level include structure and behavior.  Other packages such as 
requirements and use cases are only used where necessary to fully define that level of 
the design. 

4.3.4.1.2 Entity Reuse Libraries 

During the design effort, the TSS Team sought to use Object-Oriented principles to 
reduce design efforts.  Entities in the design model, which are used multiple times or 
which are generalization or specialization of other model entities are kept in reuse 
packages for repeated use without redefinition.  The two areas where this technique 
was used in the TacSat-3 design were the reused reusable component and the 
input/output libraries.  The reused reusable component library was used to define 
generalizations of similar components such as the imagery processor and control 
processor.  The details of a generic processor were defined once in the reused 
component library and then the specialized processors were much easier to define.  
The same concept was used in the input/output library where items that flow between 
blocks were defined.  Control data, for example, was a generalization of various types of 
control data which share many common attributes. 

4.3.4.2 Hierarchical Design Method 

In the absence of an established SysML design method, the TSS Team developed a 
process during the project.  The agreed upon organization for the design model drove 
the process to be hierarchical in nature.  The design was fully defined at each level 
before proceeding to more detailed levels of abstraction.  Using this hierarchical 
process, it was easy to scale the complexity of the design model to fit the purpose of the 
design.  



 

 10 

11

3. Conduct Logical 

Decomposition of Current 

Level Block Definition 

Diagram(BDD) and Internal 

Block Diagrams(IBD)

5. Allocate Operations and 

Interfaces

1.Take Component from

Higher Abstraction Level 

4. Conduct Activity 

Decomposition of Current 

Level Based on BDD/IBD
7. Confirm 

Decomposition

Current Level

8.Review Requirements 

Decomposition/Derived 

Requirements

2. Conduct Requirement, 

Input/Output, and 

Higher Level Activity 

Analysis

6. Develop State 

Machine Diagrams 

and Refine Attributes

9.* Develop 

Parametric Diagrams 

and Executable Models

 

Figure 4-2. The Hierarchical Design Method 

During the design phase, the TSS Team began to develop and refine the 
hierarchical design methodology.  In the figure above this method is depicted as a 
circle because it can be implemented repeatedly for each level of abstraction.  Each 
iteration takes as its input the complete design of the next higher level and produces 
a complete design for the next level.  The steps are not discrete and iteration 
continuously occurs.  The steps are sequential because some information must be 
defined in the previous step to complete later steps.  The steps are explained below 
(See Appendix A, for definition of SysML terms): 

1. Take the component from the higher level Block Definition Diagram (BDD) you 
wish to define further.  

2. Analysis of the requirements, external input/outputs, and higher-level activity 
diagrams provides information needed to make a decision on logical 
decomposition of the new level.  

3. Using the information from the higher level behavior diagrams (which gives you 
the activities of the block) and the Internal Block Diagram (IBD) (which gives you 
your external inputs/outputs), develop a logical decomposition of the current level 
into its components on a new BDD and IBD.  

4. In accordance with the higher-level behavior diagrams, develop the current level 
behavior diagrams using the logical components you defined in the previous step 
as your swimlanes/lifelines/actors. 

5. Activities of the swimlanes/lifelines become operations for the associated blocks.  
Information/control exchanges between lower level blocks become the interfaces 
and flows in the IBD. 



 

 11 

6. Using higher-level state machine and/or activity diagrams develop state machine 
diagrams.  

7. During this process of mapping activity diagrams onto the current level of 
decomposition, you will change the logical decomposition or confirm that your 
initial logical decomposition will meet your requirements.  Once this is 
successfully completed, your logical design becomes your physical design. 

8. Once you have defined this level of decomposition then confirm you have 
satisfied all requirements and document new derived requirements. 

9.  Parametric diagram and executable models are not developed within any 
specific level of abstraction.  After the model is complete parametric diagrams 
are defined to constraint attribute the will be used to define the analytical 
foundation for executable models. 

 

Figure 4-3. Design Process Overview 



 

 12 

Figure 4-3 shows the same process from a different point of view.  This view shows the 
entire design process with SysML diagram outputs at each stage shown on the left and 
right sides.  The iterative process that takes place at each abstraction level as described 
previously is shown with the decision loop at the center of this diagram.  Once each 
level is completed, it is determined whether this level of design detail answers the goal 
of the program, and if any further levels of detail will be designed (as indicated by the 
“NO” decision branch).  

4.4 Executable Model 

The Object-Oriented nature of SysML facilitates the creation of an executable model 
based on the system design.  As a result, SysML tools can easily convert a SysML 
design to an executable model.  The EmbeddedPlus Simulation toolkit for the Rational 
Systems Developer tool allowed the TSS Team to create an executable model within 
the Quicklook SysML framework.  This was accomplished by adding pieces of custom 
Java code to the Block Operations, State Operations, and State Transitions of the 
Quicklook SysML design.  The Simulation toolkit then automatically generated the code 
required to run the executable model based on the SysML objects and the custom Java 
code.  The diagram in Figure 4-4 illustrates how the executable model is created within 
the SysML framework. 

 

Figure 4-4. Creating the Executable Model 

The following output methods were used to capture the executable model results: 

• Text in the console – The easiest way to output the executable model results is 
by outputting text in the Rational System Developer’s console.  This feature can 
be implemented directly within the SysML design so the user only needs to run 
the model to see the output. 

• Sequence diagrams – The sequence diagrams generated from the executable 
model can be compared to the sequence diagrams created during the design to 
ensure the system is behaving as expected.   



 

 13 

4.5 Trade-study of Design Alternatives 

In order to perform a trade study of design alternatives, the following methodology was 
derived. 

• The design was scoped to focus on the imagery capture and processing, as well 
as the communication components. 

• The trade study was used to explore variations of morphological components to 
find the design alternatives that best met the system requirements. 

• The morphological box components were chosen to represent realistic design 
choices; components that are more expensive have a higher performance level. 

• An executable model was created to allow the trade study to be conducted based 
on information in the design model without having to create a separate analytical 
model. 

In order to evaluate the effectiveness of performing trade studies of design alternatives 
using SysML, the TSS Team proposed to create an executable model of the TacSat-3 
SysML design.  The executable model of TacSat-3 system was developed using the 
EmbeddedPlus Simulation Toolkit plug-in for the Rational Systems Developer tool.  The 
resulting executable model was used to analyze the communications and image 
processing components of the TacSat-3 system. 

5 RESULTS 

This section provides the results of the TSS evaluation of SysML’s modeling 
capabilities, and the learning curve associated with using SysML and related software 
tools to design a system comparable in size with the TacSat-3 design efforts. 

5.1 SysML Evaluation Overview 

SysML was specifically designed to address systems engineers’ needs for a domain 
specific modeling language that reduces the document centric approach to design and 
modeling of complex systems and system of systems.  SysML addresses the needs of 
systems engineers in a similar manner as UML satisfies the modeling needs of software 
engineers and software intensive projects. 

SysML is a profile, or a subset of UML with some additional semantics to tackle the age-
old requirements-to-design traceability.  It also constrains design artifacts through the 
use of the parametric diagrams for behavioral analysis.   

As a profile of UML, SysML is much smaller in size and requires less time for the user to 
become familiar with its semantics.  Because of its small size and explicit semantics, 
and the similarities to UML, systems and software engineers alike can become skilled in 
using this modeling language in a short period of time.  The TSS Team spent 
approximately 300 hours learning the language and the related IBM Rational and 
EmbeddedPlus Toolkit products.  This translates to approximately five hours per week, 
per group member.  This is not to say that SysML is simplistic, but rather easy to learn if 
the user has had exposure to Model-Based Systems Engineering and modeling using 
UML.   



 

 14 

In addition to it being easy to learn, SysML is very easy to tailor to specific design and 
modeling needs.  Due to its “block” components’ unique method of abstraction, this 
language can be used to model various systems, even those specific to their particular 
domain (See 5.1.2 SysML Versatility). 

5.1.1 Object-Oriented Modeling with SysML 

SysML, like UML, allows engineers to use Object-Oriented concepts to model their 
systems.  Modeling with SysML using OO concepts can reduce modeling efforts 
through reusability of blocks and eliminating redundancy in the design model.  Using 
OO also makes the design model independent of the development language (e.g. C++, 
JAVA).  

2

Component Library

Current Design

 

Figure 5-1. Use of Object-Oriented Reuse Libraries 

A specific example of an Object-Oriented modeling technique, used in the TacSat-3 
design model, is shown in Figure 5-1.  During the logical decomposition of the imagery 
payload block, it was determined that a Processor block would be needed to process 
imagery and command data.   The design team also realized that a processor would 
also be necessary in the vehicle block.  A generalized Processor block was defined in 
the component library.  To further define the processor, the Processor block was 
decomposed into specialized processor blocks.  Using the generalization notation, both 
Imagery and Control processors inherited the attributes and operations of the general 



 

 15 

processor block.  Now each processor can be used for their particular application (i.e. 
Imagery and Vehicle).  In this way, less design effort was required for the specification 
of the processors. 

5.1.2 SysML Versatility 

Each artifact or diagram in SysML has a clear purpose.  Structure, Behavior and 
Requirement diagrams can completely define a system.  Since none of these diagrams 
are domain specific, SysML, unlike UML, can be used to design a variety of systems, at 
various levels of detail.  Even domain specific systems, such as satellite systems, 
communications system or mechanical systems, can be modeled using SysML.  

Not only SysML can support various systems, it also allows engineers to design their 
systems to the right level of abstraction.  For example, a futuristic satellite system might 
only need a top-level design definition, however, a mechanical system may need every 
part accounted for before handing off the model to the manufacturers.   

5.1.3 Verification and Validation 

Conventional methods of systems engineering involve vigorous requirements 
engineering and proper documentation of systems requirements.  However, 
requirement intensive engineering is bound to introduce ambiguity into the system 
design through incomplete, unclear, and misworded requirements.   

SysML introduces two additional diagrams to address issues with traceability and 
systems verification and validation process: Requirements diagrams help capture the 
requirements and Parametric diagrams help constrain the design model.  In addition, 
SysML semantics allow for bi-directional traceability between requirements and the 
model.  SysML enables the system engineer to both textually and graphically capture 
the requirements, while enabling the linkage of these requirements to other model 
elements.  This further elaborates the design through tracing requirements to test 
scenarios or implementation procedures.   

5.1.3.1 Requirements Diagrams 

Using Requirements diagrams to represent systems requirements, designers can see 
the upstream and downstream impact of requirements on any level of abstraction in the 
design process.  A system’s requirements are graphically represented in a flexible, 
adaptable format that works with the user’s individual process.  Changes to 
requirements or system model changes are less difficult to deal with because the 
requirements are traced to the system model.  SysML provides the notation necessary 
to trace requirements and establish the relationship of each requirement to the design 
model. (i.e. trace, satisfy, and verify).  Requirements traceability to the design model 
allows for the automation of verification through testable models bound by mathematical 
equations through the use of parametric diagrams.   



 

 16 

 

Figure 5-2. Allocation of a Requirement to a Block 

An example of how a requirement was defined to be satisfied by a specific block in the 
TacSat-3 design model is shown in Figure 5-2.  Once all requirements were related to 
the components of the design model, it became easy to perform an analysis of how well 
the design satisfied the requirements.  Queries could be used to determine the 
requirement(s) satisfied by a block and conversely, all the blocks traced to any 
requirement.  From this analysis, it was easy to determine which requirements were not 
met and how design or requirement changes would affect each other.  The ability to 
conduct this analysis within the design model without having to constantly reference a 
requirements document is a significant advantage of model-based systems engineering, 
which SysML has enhanced by providing the necessary notation for Requirements 
Diagramming. 

5.1.3.2 Parametric Diagrams 

Parametric diagrams provide a method of introducing mathematical equations and 
constraints to bind the design model.  Combination of traceable requirements and 
executable parametric models replaces the need for document intensive requirements 
engineering.  SysML delivers a method of using executable specifications to verify 
system design through proper use of its requirements and parametric notation.  This 
allows systems engineers to build testable system models, which allow for validating 
system behavior against the requirements.  In addition, early introduction of executable 
models into the design leaves less room for errors to be encountered down the road, 
which translates to saving time and cost on new system design, development and 
testing.  



 

 17 

Executable Model
David Alexander’s Most Excellent Model

The State Machine Is The Basis The State Machine Is The Basis 

For The Discrete Event For The Discrete Event 

Dynamical Executable ModelDynamical Executable Model

Parametric Equations Provide Parametric Equations Provide 

The Analytical Foundation The Analytical Foundation 

For The ModelFor The Model

 

Figure 5-3. State Machine and Parametric Diagrams Relations to the Executable Model 

The relationships between the state machine diagram, parametric diagram, and the 
executable model of the TacSat-3 design are shown in Figure 5-3.  An important aspect 
of model-based engineering is the linkage between the definitions of system behavior in 
the design model and the resulting behavior realized in the executable model. 

The software tools used in this project allowed traceability between the design model 
and the executable model.  This linkage gives model-based engineering the huge 
advantage of having design changes reflect in the executable model.  The affects of 
design changes can then quickly be determined without extensive executable model 
rework or having to rely on costly prototypes.  This will reduce design cost because of a 
reduction in errors, modeling delays, and redesign efforts. 

5.1.4 Comments and Findings 

Model-based systems engineering, and modeling using SysML can benefit from  
advancements in enabling technologies, such as well developed software packages that 
fully support SysML, while integrating essential software like Requirements 
Management and Configuration Management.  The TSS Team used Rational Systems 
Developer (RSD) v7 for the Quicklook project.  The tool allowed the team to create a 
Unified Data Dictionary (UDD), which served as the design model for the TacSat-3 
system.   



 

 18 

5.1.4.1 Unified Data Dictionary 

The Unified Data Dictionary is important in that it has to be unambiguous so that 
everyone can understand how the design pieces are categorized, and how the model is 
organized.  A UDD combined with an advanced software tool, could potentially ease the 
translation of the design model into executable models.  Creation of the UDD was 
orchestrated with Mr. Friedenthal’s direction, using SysML’s Package diagrams.   

1. Structure 2. Behavior

3. Requirements 4. Parametrics

allocate

satisfy value
binding

 
*The concept of this graphic is based on slide 65 of the OMG Systems Modeling Language (OMG SysML) Tutorial, 11 July 2006 

Figure 5-4*.  Design Concordance Facilitated by Model-based Engineering 

Figure 5-4 shows the concordance between entities in the TacSat-3 design model that 
was facilitated by model-based systems engineering in SysML.  The unified data 
dictionary will ensure this concordance if the semantics of SysML are followed during 
the system design.  This is huge improvement over previous design methods where 
concordance between design model views could only to be ensured by tedious manual 
crosschecking. 

5.1.4.2 Package Diagrams 

Package diagrams provide a method for systems engineers to organize the design 
model.  This becomes exponentially important when dealing with a design model that is 
used by a large number of users.  By fragmenting the design model into a logical 
organization, users can select to work only on their piece.  This translates to cost 
savings and a well-established CM plan will help the integrity of the model.  



 

 19 

 

Figure 5-5.  Package Diagram for the TacSat-3 Model 

How package diagrams were used to create logical organizations in the design model of 
TacSat-3 is demonstrated in Figure 5-5.  The TacSat-3 design model contains over six 
hundred and thirty entities and over forty-five diagrams.  Effective organization was 
essential for team members to divide work and to communicate aspects of the design to 
each other.   The more complexity that was introduced into the design the more 
organization became essential for managing the design model. 

5.2 Executable Model Evaluation Overview 

The power behind integrating an executable model within the SysML design is the direct 
traceability back to SysML elements.  Since the code is automatically created from the 
SysML model, design and logical flaws can be traced directly back to the SysML 
elements that were used to generate the code.  The TSS Team found that the resulting 
executable model is a powerful tool for system performing behavior analyses, state 
trace analyses, and trade studies of design alternatives, as will be illustrated in the 
following sections.   

5.2.1 Behavior Analysis Results 

The executable model allowed TSS to analyze the system behavior and determine any 
logical errors contained within the SysML model.  By specifying various input 
parameters, the model could be run and the output analyzed to determine if the system 
is behaving as expected.  If any logical errors are found, the SysML elements can be 
identified and corrected.  Figure 5-6 shows the results of a behavior analysis from the 
executable model in the form of a sequence diagram. 



 

 20 

 

Figure 5-6. Sequence Diagram 

This sequence diagram shows the interaction between system components as the 
model executed.  This automatically generated sequence diagram can then be 
compared with the equivalent Quicklook sequence diagram and associated 
requirements to ensure the system is behaving as expected. 

5.2.2 State Trace Results 

By running the executable model using various input parameters, TSS was able to run a 
state trace analysis of the system.  A state trace analysis helps verify that the system 
functions as expected.  It also helps determine if there are any potential deadlocks in 
the system.  If deadlocks are found within the model, the offending SysML elements can 
be identified and additional rules added to prevent the deadlock from occurring.  Figure 
5-7 shows the results of a state trace analysis from the executable model. 

 

Figure 5-7. State Trace Analysis 



 

 21 

This output console shows the block states and state guards that are triggered as the 
model executes, as well as the state values of the associated states.  This generated 
data can then be compared with the equivalent Quicklook state machine diagrams and 
associated requirements to ensure the system is functioning and performing as 
expected. 

5.2.3 Trade Study of Design Alternatives Results 

One of the major benefits of the executable model was the ability for the TSS Team to 
do a trade study of design alternatives.  The ability to easily change the input 
parameters for cost and performance allowed TSS to determine the overall cost 
required to meet the performance requirements of system components.  Using the 
resulting data from the state trace analysis, a table illustrating design alternatives and 
their resulting cost and performance results can be easily constructed.  Figure 5-8 
shows the results of a trade study of design alternatives from the executable model. 

Image Results:  Raw Image Size = 10,000 Mb   Compressed Image Size = 2,000 Mb

 = Exceeds Requirements

Im
a

g
e

 C
a

p
tu

re
 a

n
d
 

P
ro

c
e

s
s
in

g
 T

im
e
 

(m
in

)

R
a
w

 I
m

a
g
e

 H
ig

h
 

D
a
ta

 R
a

te
 T

ra
n
s
fe

r 
T

im
e

 (
m

in
)

C
o
m

p
re

s
s
e

d
 I

m
a

g
e
 

H
ig

h
 D

a
ta

 R
a
te

 
T

ra
n

s
fe

r 
T

im
e

 (
m

in
)

C
o
m

p
re

s
s
e

d
 I

m
a

g
e
 

L
o

w
 D

a
ta

 R
a
te

 
T

ra
n

s
fe

r 
T

im
e

 (
m

in
)

T
o
ta

l 
H

ig
h
 D

a
ta

 R
a
te

 
T

ra
n

s
fe

r 
T

im
e

 (
m

in
)

T
o
ta

l 
L
o

w
 D

a
ta

 R
a
te

 
T

ra
n

s
fe

r 
T

im
e

 (
m

in
)

T
o
ta

l 
M

a
s
s
 (

k
g

)

T
o
ta

l 
C

o
s
t 

(m
ill

io
n
s
 $

)

IPS = 10
LDRB = 1.5
HDRB = 45

16.7 3.7 0.7 22.2 21.1 38.9 30.0 1.5

IPS = 50
LDRB = 3
HDRB = 137

3.3 1.2 0.2 11.1 4.8 14.4 40.0 3.0

IPS = 100
LDRB = 10
HDRB = 234

1.7 0.7 0.1 3.3 2.5 5.0 50.0 4.5

IPS = Image Processing Speed 

LDRB = Low Data Rate Bandwidth 

HDRB = High Data Rate Bandwidth

Cost and
Performance 
Results

Design
Alternative
s

 

Figure 5-8. Trade Study of Design Alternatives 

This table effective demonstrates the results of the trade study of design alternatives 
using data generated by the executable model.  Since the executable model is 
integrated within the system design, various trade studies can be easily performed 
throughout the design process of the system.   

5.2.4 Executable Model Recommendations 

While SysML is a standard modeling language, there is currently no standard for 
creating executable models based on a SysML design.  Each SysML tool may handle 
the executable model development differently, so it is important to understand the 
limitations of the tool used to create the executable model.  It is also important to have 



 

 22 

plans for the executable model before the SysML design begins.  For example, proper 
naming must be followed for the executable model to compile.  Since the executable 
model is rule driven, some programming experience will be required.  Therefore, it is 
important to have someone with programming experience during the design phase. 

5.3 SysML Enabling Software 

While it is important to evaluate the capabilities of SysML as a modeling language, it is 
also important to evaluate the tools used to create the SysML design. The section 
reviews the results of the design software used for the Quicklook project. 

5.3.1 General Findings 

The IBM Rational Systems Developer (RSD) with the EmbeddedPlus SysML Toolkit 
allowed team members to have a unified repository for the design artifacts, and 
considerably accelerated the ongoing design efforts.  The integration process for 
incorporating individual design pieces into a unified model took a considerable amount 
of time.  This is partially due to unfamiliarity with the software packages’ capabilities, 
failure to establish a naming convention, and a lack of appreciation for upfront creation 
of a reusable library.  Overall, this tool provided the TSS Team with an effective means 
for managing the Quicklook design. 

5.3.2 EmbeddedPlus SysML Toolkit 

The TSS Team used the EmbeddedPlus SysML Toolkit to create the Quicklook SysML 
design.  This toolkit effectively addresses engineers’ needs for modeling a system in 
SysML effectively.  There were no limitations found based on TSS modeling efforts; the 
TSS Team was able to design all relevant SysML diagrams using this toolkit. 

5.3.3 EmbeddedPlus Simulation Toolkit 

The TSS Team used the EmbeddedPlus Simulation Toolkit to create an executable 
model from the Quicklook SysML model.  While this toolkit effectively addresses 
engineers’ needs for creating an executable model using an existing SysML model, the 
TSS Team did note some limitations: 

• While UML2 ports are supported, SysML flowports are not (this limitation was 
documented).   Since the Quicklook design uses flowports, a work around was 
devised by creating associations between blocks and using the Java SendEvent 
command to trigger state transitions. 

• Parametric Constraint Blocks cause Java compile errors (this limitation was not 
documented).  Since the Quicklook design uses parametric diagrams with constraint 
blocks, a work around was devised by placing the parametric diagrams in a separate 
model under the Quicklook project space. 

During the process of creating the executable model, the TSS Team documented some 
possible enhancements that would make the Simulation toolkit even more powerful.  
The following enhancements were communicated to the EmbeddedPlus engineering 
team: 



 

 23 

• Use parametric diagrams to automatically generate code for the executable model.  
Since parametric diagrams are a powerful tool for adding engineering analysis to the 
system design, incorporating parametric equations into the executable model will 
greatly enhance system traceability and would eliminate the need to write custom 
code to constrain the necessary block attributes. 

• Add a feature that allows the executable model to be traced and debugged from the 
SysML model itself.  Having the ability to trace and debug from the SysML model 
instead of the Java code would be a great benefit for analyzing and debugging the 
system. 

5.4 SysML Learning Curve 

The TSS Team, for the purpose of this evaluation, have been divided into two groups.  
Group A, are the members with more extensive UML background and group B 
members have had limited exposure to UML modeling.  This is a realistic scenario, 
since not all systems engineers, or those who will be doing systems engineering as 
professionals, have been through a formal systems engineering program and therefore 
not exposed to basic UML knowledge.  In addition, those with an extensive software 
engineering background are much more familiar with UML.  Diversity of group members’ 
experiences was used to answer stakeholders’ concerns about differences in learning 
curve for systems engineers who are familiar with Object-Oriented design and UML 
modeling and those who are used to modeling functional breakdowns.  For more details 
about the group members’ individual background and work experience, please refer to 
Quicklook’s Evaluation Plan. 

5.4.1 Training Results 

The TSS Team spent approximately 250 hours on training and learning the processes 
required to reach a level of competency in which they were able to produce acceptable 
results.  This is the total number of hours spent on learning SysML and the Rational 
Systems Developer software.  Various training and learning methods have been 
involved, which have been outlined in the Quicklook Evaluation Plan.  

The total number of hours spent training for this project, provides a baseline for future 
teams, which plan to take on a similar size design project with or without UML 
background.  As the results of our evaluation indicates, Group A, which are those group 
members with previous UML experience, took about 34% less time than Group B 
members, who had little or no UML knowledge. 

5.4.1.1 Professional Training 

TSS understands that not every group will have the opportunity to receive professional 
training, so the number of hours spent on professional training has been excluded from 
the total training hours.  It is highly recommended however, for groups of any size to 
receive some kind of instructional training. 

5.4.1.2 Assessment of Learning Curve 

The learning curve for modeling in SysML has been evaluated based on the level-of-
effort of individual team members, and based on their level of experience with UML. 



 

 24 

Figure 5-9 depicts the cumulative weekly training hours for the entire team.  As can be 
seen, the slope associate with the number of hours spent is rather small in the first four 
weeks of the project.  The steepest slope, peaked during the period of time from 2/22/07 
– 03/14/07 (area between the dotted lines).  This period coincides with the team 
receiving professional training session, becoming familiar with the RSD software and 
picking the pace with design efforts. 

0

50

100

150

200

250

300

1/18/2007 1/28/2007 2/7/2007 2/17/2007 2/27/2007 3/9/2007 3/19/2007 3/29/2007 4/8/2007 4/18/2007

 

Figure 5-9. Level of Competency 

The TSS Team found the comparison between the training hours spent by each group 
to be of interest since it could provide feedback as far as showing the difference in 
learning curves given previous UML knowledge and involvement.  Figure 5-10 shows a 
comparison of the training hours spent by each team given the span of the project.  As 
seen, group B spent more hours during the design phases of the project since lack of 
previous UML knowledge meant having to conduct more research and ultimately a 
steeper learning curve. 

0

5

10

15

20

25

30

35

40

1/18/2007 2/7/2007 2/27/2007 3/19/2007 4/8/2007 4/28/2007

Group A

Group B

 

Figure 5-10. Team A and B’s Training Level-of-effort 



 

 25 

Group A spent approximately 150 hours on SysML and RDS with EmbeddedPlus 
Toolkit, while Group B spent approximately 100 hours.   

Training hours related to executable modeling have been separated from the rest of 
training hours, since it requires some software programming knowledge, which not all 
team members possessed.  In addition, training hours related to executable modeling, 
using EmbeddedPlus Simulation Toolkit has been kept apart from this study since it 
requires some software programming knowledge.  The executable modeling efforts in 
Simulation Toolkit took 30 hours for a single TSS Team member to complete.  Prior to 
the executable model, the individual spent 10 hours reviewing available literature on 
Simulation Toolkit. To learn more about this, please refer to the Quicklook Evaluation 
Plan. 

5.5 Lessons Learned 

With traditional systems engineering development, the requirements and specifications 
are often document-based, which can be incomplete, ambiguous, and easily 
misunderstood.    Model-Based Systems Engineering allows system architects to build 
executable models using the finalized system design, along with a defined set of 
mathematical models and formulas, much easier than producing the traditional and 
ambiguous text documents.  This in turn allows for the reduction or even elimination of 
actual prototypes prior to choosing a design alternative.  The mathematical formulas 
within the executable model can be modified to refine the model as necessary in order 
to validate system behavior against the requirements.  This verification and simulation 
process could help in determining and identifying errors earlier and in turn, reduce the 
amount of time spent making these corrections at a later stage. 

After completing the design of the TacSat-3 system within the IBM Rational Systems 
Developer tool using the SysML language, the TSS Team was able to realize a valuable 
set of Lessons Learned.  These lessons learned are crucial and essential to the 
stakeholders of the project in that they can provide valuable insight into the capabilities 
and limitations of SysML.  The findings of the TSS Team were that SysML adequately 
addresses systems engineering needs through a model-based design that is more 
clearly laid out.  It was determined through working with SysML that it enables improved 
communications across development teams, while greatly enhancing the ability to 
manage complex systems.  Upon the completion of the system design, SysML allowed 
the systems engineer/architect to move directly into creating executable model with little 
knowledge of programming.  While conducting behavior analyses on the designed 
TacSat-3 system, the advantages of using SysML became evident.  It was observed 
that SysML allowed for validating system behavior against requirements.  By modifying 
the mathematical formulas used within the executable model, the team was able to 
manipulate the outcome of the model and validate system behavior against the defined 
requirements.   Thereafter, modifications realized after performing design trade study 
could be automatically updated throughout the model.   

6 CONCLUSIONS 

Project Quicklook has shown the effectiveness of SysML and supporting tools.  This 
effort has demonstrated that Model-Based Systems Engineering (MBSE), with all its 



 

 26 

purported benefits, is becoming a reality.  Most of the advertised strengths of MBSE and 
SysML were clearly demonstrated in the TacSat-3 design and executable model.  
SysML’s inclusion of requirements in the design model is a powerful tool for analysis of 
requirement traceability, satisfaction, and flexibility.  The TSS design process proved 
that if designers follow SysML semantics when using software tools, concordance 
between design model diagrams is ensured.  The ability to organize or package a 
SysML model in any fashion an organization desires provides powerful flexibility for 
work groups.   

Software tool support for SysML is currently sufficient and will improve as more 
organizations adopt the language.  TSS was able to use software tools to create an 
executable model that was derived directly from the SysML design model.  
Modifications to the design could also be reflected in the executable mode.  The 
executable model was effective in conducting a trade study of design options.   

The TSS Team’s training and engineering results show that a design team can learn 
and use SysML in a reasonable amount of time (five standard workweeks) without 
significant training or experience.  In this way, Project Quicklook has dispelled the 
notion that organizations cannot use model-based systems engineer with SysML 
because the start-up resource cost is too high. 

7 ACKNOLWDGEMENTS 

The TSS team would like to thank the following people and companies for their 
assistance with the Quicklook project. 

 

Faculty Advisor 

Kathryn B. Laskey, PhD 

Systems Engineering and Operations Research Department 

George Mason University 

 

Project Sponsor 

Shana Lloyd 

Heather Howard 

The Aerospace Corporation 

 

Technical Advisor 

Sanford Friedenthal 

Chair of the OMG Systems Engineering Domain Special Interest Group (SE DSIG) 

 



 

 27 

IBM Rational Software 

The TSS team would like to thank IBM for providing the GMU SEOR department with 
licenses for their IBM Rational Software. 

 

EmbeddedPlus 

The TSS team would like to thank EmbeddedPlus for providing the GMU SEOR 
department with licenses for their SysML Toolkit and Simulation Toolkit. 

 

8 REFERENCES 

 

Sanford Freidenthal, Alan Moore, and Rick Steiner, OMG Systems Modeling Language 

(OMG SysML) Tutorial, INCOSE, 11 July 2006 

 

Sanford Friedenthal, and Kobryn, Extending UML to Support a Systems Modeling 

Language, INCOSE Symposium, Toulouse, France June 2004 

 

Ian Bailey, Fatma Dandashi, Huei-Wan Ang, and Dwayne Hardy, Using Systems 
Engineering Standards In an Architecture Framework 

 

Thomas M. Davis and Captain Stanley D. Straight, Development of the Tactical Satellite 

3 for Responsive Space Missions, USAF, 27 April 2006 

 

Thomas M. Davis, Dr. Tom Cooley, and Captain Stanley D. Straight, ARTEMIS: Tactical 

Satellite 3 for Responsive Space Missions, USAF, 31 May 2006 

 

Thomas M. Davis and Captain Stanley D. Straight, Tactical Satellite 3: Requirements 

Development for Responsive Space Missions, USAF, 27 April 2006 

 



 

 28 

Appendix A Systems Modeling Language Term Definitions 

The following definitions are from OMG SysML Glossary April 2006.  

Term Definition 

Activity diagram  Diagram that depicts behavior associated with activities using 
input/output and control flow. 

Actor  An actor specifies a role played by a user or any other system 
that interacts with the subject. (The term “role” is used 
informally here and does not necessarily imply the technical 
definition of that term found elsewhere in this specification.) 

Block [SysML]  A modular unit that describes the structure of a system or 
element. 

Block definition 
diagram [SysML]  

A diagram that represents the relationship between blocks and 
the structural and behavioral features of blocks. 

Internal block 
diagram [SysML]  

A diagram that depicts the internal structure of a block, 
including the interaction points to other parts of the system. It 
shows the configuration of parts that jointly perform the 
behavior of the containing block. The diagram specifies a set of 
instances playing parts (roles) in the context of the enclosing 
block (context). 

Lifeline  A lifeline represents an individual participant in the Interaction. 

Package diagram  A diagram that depicts how model elements are organized into 
packages and the dependencies among them, including 
package imports and package extensions. 

Parametric diagram 
[SysML]  

A diagram that represents a network of constraints on 
properties to support engineering analysis such as 
performance, reliability and mass properties analysis. 

Requirement 
[SysML]  

A capability or condition that must (or should) be satisfied. 

Requirements 
diagram [SysML]  

A diagram that represents requirements and their relationships. 
See requirement 

Sequence diagram  A diagram that depicts an interaction by focusing on the 
sequence of messages that are exchanged, along with their 
corresponding event occurrences on the lifelines. 

Unlike a communication diagram, a sequence diagram includes 
time sequences but does not include object relationships. A 
sequence diagram can exist in a generic form (describes all 
possible scenarios) and in an instance form (describes one 
actual scenario). Sequence diagrams and communication 
diagrams express similar information, but show it in different 



 

 29 

Term Definition 

ways. See: communication diagram 

State machine 
diagram 

A diagram that depicts discrete behavior modeled through finite 
state-transition systems. In particular, it specifies the sequences 
of states that an object or an interaction goes through during its 
life in response to events, together with its responses and 
actions. See: state machine. 

State machine  State machines can be used to express the behavior of part of 
a system. Behavior is modeled as a traversal of a graph of state 
nodes interconnected by one or more joined transition arcs that 
are triggered by the dispatching of series of (event) 
occurrences. During this traversal, the state machine executes 
a series of activities associated with various elements of the 
state machine. 

Swimlane  A partition of an activity diagram – partition A grouping of any 
set of model elements based on a set of criteria.1. activity 
diagram: A grouping of activity nodes and edges. Partitions 
divide the nodes and edges to constrain and show a view of the 
contained nodes. Partitions can share contents. They often 
correspond to organizational units in a business model. They 
may be used to allocate characteristics or resources among the 
nodes of an activity.2. architecture: A set of related classifiers or 
packages at the same level of abstraction or across layers in a 
layered architecture. A partition represents a vertical slice 
through an architecture, whereas a layer represents a 
horizontal. 

Use case  A use case is the specification of a set of actions performed by 
a system, which yields an observable result that is, typically, of 
value for one or more actors or other stakeholders of the 
system. See: use case instances. 

Use case diagram A diagram that shows the relationships among actors and the 
subject (system), and use cases. 

 
 
 
 



 

 30 

Appendix B Acronyms 

BDD Block Definition Diagram 

CDL Common Data Link 

CONOPS Concept of Operations 

DODAF Department of Defense Architecture Framework 

GUI Graphical User Interface 

IBD Internal Block Diagram 

IBM SDP IBM Software Development Platform 

JFC Joint Forces Command 

MBSE Model-based Systems Engineering 

NSPD-40 National Security Presidential Directive 

NSS National Security Space 

OMG Object Management Group Inc. 

OO Object Oriented 

RSD Rational Systems Developer 

SEOR Systems Engineering and Operations Research 

SysML Systems Modeling Language 

TacSat-3 Tactical Satellite 3 

TSS Tactical Science Solutions Inc. 

UDD Unified Data Dictionary 

UML Unified Modeling Language 

V&V Verification and Validation 

 


