Aircraft Arrival Sequencing

Group members: Vivek Kumar David Teale Jianfeng Wang Seth Wenchel (Team Lead) Sponsor and mentor: Dr. Lance Sherry, Associate Professor Dr. John Shortle, Associate Professor SEOR Dept. George Mason University

May 11, 2007
CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH

Outline

Motivation

Problem Statement and Approach

- Strategies (FCFS, WCG, Optimization Strategies)
- Constraints and assumptions
- Performance metrics
- Methods
 - FCFS
 - Optimization Strategies
 - Optimization using MPL
 - Sequential optimization using C++ to call MPL
 - WCG

Results

LaGuardia Case Study
 Conclusions and Future Work
 Questions

Situation

Stakeholders:

Concerns:

→ Vehicle Delay

Airline Fairness

Passengers (PAX) ------ PAX Delay

Motivation

- Air Traffic Control uses first come, first served (FCFS) queueing discipline to sequence arrival aircraft.
- This is not always the best for every stakeholder.
- What strategies might be better?

Problem Statement

Strategies for Resequencing

Heuristic Resequencing

- 1. First come, first served {FCFS}
- 2. Weight Class Grouping {WCG}
- **Optimization Strategies for Resequencing**
 - 1. Vehicle throughput maximization {V_thrpt}
 - 2. Vehicle delay minimization {V_delay}
 - 3. Passenger delay minimization {P_delay}
 - 4. Airline fairness maximization {A_fair}

Constraints And Assumptions

- Treating data as deterministic
- All aircraft show up on time before final approach
- No early arrivals allowed
- Aircraft cannot be delayed more than 30 minutes
- All flights seats are full
- Arrival slot size differs by aircraft type because of wake-vortex categories

Wake-Vortex Categories

Larger aircraft generate stronger turbulence than smaller aircraft.

Larger aircraft can also withstand more turbulence than smaller ones.

Hence, a smaller plane following a larger plane will always require more separation than a larger plane following a smaller plane.

Time Separation (sec)		Trailing aircraft					
		Heavy	B757	Large	Small		
	Heavy	96	137	157	280		
Leading aircraft	B757	96	103	121	271		
	Large	72	77	83	182		
	Small	72	77	83	120		

Separation standard

If all planes are Large, then 43 arrivals per hour (in theory)

System Metrics

- Throughput = Entities / Unit Time
- Capacity = Upper limit of throughput
- Utilization = Throughput / Capacity

System Metrics

Flight delay: delay_i = arrival_time_i - sched_time_i Ave Veh Delay = $\frac{\sum_{i} delay_{i}}{N}$ Ave PAX Delay = $\frac{\left\{\sum_{i} PAX_{i} * delay_{i}\right\}}{\sum_{i} PAX_{i}}$ i is the flight index

i = 0 to N

N is the number of flights to be sequenced

PAX_i = Total number of Passengers on flight i

Ave PAX Delay per airline (k) =

(for flights in contention with others)

 $\frac{\sum PAX_i * delay_i}{\substack{i \in S_k \\ i \in S_k}}$

 $\mathbf{S}_{\mathbf{k}}$ is the set of flights of airline k in contention

Optimization Strategies: Objective Functions

MIN

- Vehicle throughput MIN time_{lastplane} V_thrpt
- Vehicle delay MIN $\sum_{i} delay_{i}$ V_delay
- PAX delay MIN P_delay
- Airline fairness A_fair 12 (spread the penalty)

 $\sum delay_i$ $\sum PAX_i * delay_i$ $\begin{bmatrix} Max \\ i \in S_k \\ i \in S_k \\ i \in S_k \end{bmatrix}$

MIP (Mixed Integer Program)

Decision variables in Blue:

 $t_i \text{ is assigned landing time}$ $y_{ij} = \begin{cases} 1 & \text{flight j follows flight i} \\ 0 & \text{otherwise} \end{cases}$

Data:

M is a large constant $t_{separation}(i,j)$ is known based on plane sizes

MIN Z = *OBJECTIVE FUNCTION* SUBJECT TO:

$$\begin{array}{lll} t_{i} - t_{j} \geq t_{separation}(j,i) - M y_{ij} & \text{for } j > i \\ t_{j} - t_{i} \geq t_{separation}(i,j) - M (1 - y_{ij}) & \text{for } j > i \end{array}$$

Every pair of planes (independent of relative order) is separated by at least the minimum safety requirement

Approaches: Optimization Using C++ CATSR

Problem : Computation time for MIP increases rapidly with number of flights considered

Workaround

- Exploit problem structure
- Optimize small windows. Things to consider:
 - Window size
 - Windows should overlap

Arrive for sequencing $\longrightarrow 876543210$ optimize and slide window 876451230

Window Size: Speed vs Efficiency Trade-Off

<u>Conclusion</u>: Without compromising too much on Efficiency we make considerable gain in Processing Speed.

Hence, windowing works!!

Same Weight Class Grouping

- Objective is to provide a strategy that gives
 - better performance than FCFS
 - faster implementation than optimization strategies
- Heuristics to sequence aircraft landing
 - 1. Similar to knapsack heuristics
 - 2. If there is a gap between adjacent flights, use FCFS
 - 3. If there is not a gap between adjacent flights
 - choose same weight class aircraft if available
 - choose next weight class aircraft if same weight class unavailable

- Reasoning behind the heuristic
 - Arbitrary sequence of different weight class aircraft requires long separation overall
 - Grouping same weight class requires shorter time to land all aircraft

RESULTS

Case Study: New York's LaGuardia Airport June 1st, 2006

Example Resequencings

 $S \leftarrow L \leftarrow B \leftarrow S$ For the given sequence: (assuming they have same scheduled arrival time) Strategy **Resultant Sequence:** FCFS: S←L←B←S $S \leftarrow S \leftarrow L \leftarrow B$ V_thrpt: $S \leftarrow S \leftarrow L \leftarrow B$ V_delay: $B \leftarrow L \leftarrow S \leftarrow S$ P_delay: WCG: $S \leftarrow S \leftarrow L \leftarrow B$ S: Small

- L: Large
- B: B757

LGA Case Study: Input Data

FAACARRIER	FLTNO	ETMS_EQPT	DEP_LOCID	ARR_LOCID	SCHINTM
TCF	6453	E170	DFW	LGA	00:04
CHQ	3028	E145	PHL	LGA	00:16
FFT	514	A319	DEN	LGA	06:15
DAL	1905	MD88	BOS	LGA	06:59
COM	618	CRJ1	DCA	LGA	06:59
USA	2158	A319	DCA	LGA	06:59
PDT	4110	DH8B	MHT	LGA	07:00
USA	2115	A319	BOS	LGA	07:07
CHQ	3108	E145	BWI	LGA	07:12
AWI	3716	CRJ2	PHL	LGA	07:12
EGF	867	E135	BGR	LGA	07:15
CJC	4880	SF34	ITH	LGA	07:15
CHQ	3276	E145	RIC	LGA	07:17
EGF	863	E135	CMH	LGA	07:18

Time Separation (sec)		Trailing aircraft					
		Heavy	B757	Large	Small		
Leading aircraft	Heavy	96	137	157	280		
	B757	96	103	121	271		
	Large	72	77	83	182		
	Small	72	77	83	120		

Separation standard

ASPM data, June, 1, 2006

Aircraft type	Weight catogory
A319	L
A320	L
A321	L
B190	S
B712	L
B732	L
B733	L
B734	L
B735	L
B737	L
B738	L
B752	B757
B763	L

Aircraft weight category

ETMS_NAME	TYPICAL_SEATS	EDMS_AIRFRAME
A124	8	B747-200
A300	250	A300-600
A30062	266	A300-B4-622R
A306	266	A300-B4-605R
A30B	250	A300B
A310	220	A310
A318	107	A318
A319	124	A319
A32	164	A320
A320	164	A320
A32023	150	A320-200
A321	199	A321
A32123	199	A321
A330	295	A330
A33034	295	A330-300

Number of seats

Input: Flight Schedule

FAACARRIER	FLTNO	ETMS_EQPT	DEP_LOCID	ARR_LOCID	SCHINTM
TCF	6453	E170	DFW	LGA	00:04
CHQ	3028	E145	PHL	LGA	00:16
FFT	514	A319	DEN	LGA	06:15
DAL	1905	MD88	BOS	LGA	06:59
COM	618	CRJ1	DCA	LGA	06:59
USA	2158	A319	DCA	LGA	06:59
PDT	4110	DH8B	MHT	LGA	07:00
USA	2115	A319	BOS	LGA	07:07
CHQ	3108	E145	BWI	LGA	07:12
AWI	3716	CRJ2	PHL	LGA	07:12
EGF	867	E135	BGR	LGA	07:15
CJC	4880	SF34	ITH	LGA	07:15
CHQ	3276	E145	RIC	LGA	07:17
EGF	863	E135	CMH	LGA	07:18

Input: Aircraft Separation Standard CATSR

Time Separation (sec)		Trailing aircraft					
		Heavy	B757	Large	Small		
	Heavy	96	137	157	280		
Leading aircraft	B757	96	103	121	271		
	Large	72	77	83	182		
	Small	72	77	83	120		

Input: Aircraft Weight Category CATSR

Aircraft type	Weight category
B738	Large
B752	B757
B763	Large
C560	Small
C750	Large
CL60	Small
CRJ1	Large

Aircraft weight category

Input: Aircraft Seat Information

ETMS_NAME	TYPICAL_SEATS	EDMS_AIRFRAME
A124	8	B747-200
A300	250	A300-600
A30062	266	A300-B4-622R
A306	266	A300-B4-605R
A30B	250	A300B

Number of seats

Pre-Scheduled LGA Arrival Rate

CATSR

Benchmark: LGA Results (FCFS)

27 85% of flights delayed and 39% have delay >5 min

LGA Results: Vehicle (Flight) Delay

LGA Results: PAX Delay

LGA Hourly PAX Delay

Pax Delay: P_delay Results

PAX Delay And Vehicle Delay

LGA: Airline Fairness

Conclusions

- Little to no gains seen over FCFS for V_trpt, V_delay, A_fair, and WCG
 - Input data is very homogenous
 - LGA is operating at or near capacity for most of the day
- Airline fairness maximization gives worst performance in terms of vehicle delay and passenger delay
 - Constraints are imposed without considering delay metrics
- PAX_delay model shows gains at the cost of smaller flights
 - Delaying small aircraft (3% of the fleet mix) reduces average passenger delay significantly.

Improvements and Future Work

- Optimize multiple weighted objectives at once
- Allow flights to arrive early by a small amount
- Weight A_Fair by number of flights scheduled
- Look for a more heterogeneous data set
- Only process slots where there are collisions
- Increase number of flights that get fixed at each iteration

Acknowledgements

Thanks to our sponsors, Dr. Shortle and Dr. Sherry from GMU's Center for Air Transportation Systems Research for their continued guidance and encouragement through the semester and to Dr. Laskey for helping us improve our presentation and keeping us on track.

Back up

Multi Objective Optimization

Different Strategies

PAX delay

- Vehicle throughput
- Vehicle delay
- Airline Fairness

A strategy represents a different approach to solving the problem such as FCFS.

LGA Schedule, Delay

LGA Case Study: Complexity

FT = FCFS with throughput opt

- FD = FCFS with delay opt
- FTD = FCFS with delay and throughput opt
- T = throughput opt
- D = delay opt
- TD = delay and throughput opt

Run statistics: [for non-FCFS: number of integer variables ~ $O(N^2)$]

MODEL	FLIGHTS	SOLN TIME, SEC	
FT	50	30	
FD	40	30	
FTD	40	30	2
Т	20	10	
D	15	1	
TD	15	1	

Research

Analysis of Sequencing and Scheduling Methods for Arrival Traffic, 1990

- Polynomial Time Feasibility Condition for Multi-Class Aircraft Sequencing on a Single Runway Airport, 2004
- Air Transportation: A Tale of Prisoners, Sheep and Autocrats, 2007
- Equitable Allocation of Limited Resources, 2003
- Potential Benefits of a Time-based Separation Procedure to maintain the Arrival Capacity of an Airport in strong head-wind conditions

Inter-arrival landing time constraint CATS

Constraint based on specified number of nautical miles

Separation in nm		Secon	d to Land	
		Large	Heavy	
First to	Large	3	3	3
land	Heavy	5	5	4

We consider it based on time (varies with wind speed and direction

Separation in sec		Second to Land			Separation in	
Separation in sec		Large Heavy		Separati		
First to	Large	78	78		First to	Larg
land	Heavy	125	104		land	Heav
No wind				20 Knot he	ad wi	

Separation in sec		Second to Land	
		Large	Heavy
First to	Large	ç	91 91
land	Heavy	14	45 122
20 Knot head wind			

HLHL inter-arrival delay is ~5½ min Single shift to HHLL delay becomes ~5 min

LGA: Vehicle Utilization

LGA: Pax Utilization

LGA Results: Delay

LGA: Airline Fairness

