Advanced Aircraft Sequencing:
Stacking the deck to deal you a better hand

Vivek Kumar
David Teale
Jianfeng Wang
Seth Wenchel, Team Lead

Sponsors:
Dr. Lance Sherry
Dr. John Shortle
Center for Air Transportation Systems Research
George Mason University

Table of Contents

|. Executive Summary 3
Il. Introduction 4
A. Background 4
B. Problem Statement 5
[ll. Modeling Approach 5
A. Performance Metrics 5
B. Assumptions 6
C. Models 6
1. First Come, First Serve (FCFS) 8
2. Passenger Delay Minimization, P_delay
3. Vehicle Delay Minimization, V_delay 9
4. Vehicle Throughput Maximization, V__ thrpt 10
5. Airline Fairness, A_fair 11
6. Weight Class Grouping, WCG 12
D. Model Implementation 13
E. Sequential Windowing 13
IV. Results & Analysis 16
A. FCFS 17
B. PAX Delay 18
C. Vehicle Delay 20
D. Throughput 22
E. Airline Fairness 24
F. Weight Class Grouping 26
V. Conclusion 27
References Used 28
Appendix A — Model Source Code 29
Appendix B — Work Breakdown Structure 51
List of Figures
Figure 1. lllustration of the Optimization ProCesS..........ccovvviiiiiiiiiiiiiiiiin e eeeeeenn 14
Figure 2. Windowing Optimization Flow Chart..............ccccovriiiiiiiiiiiiiii e, 14
Figure 3. Number of Hourly Arrivals Scheduled O24rHOUIS............ccvvviiiiiiiiiiinnnnnnn, 16
Figure 4. Flight Delay Results From FCFS ... oo eee e 17
Figure 5. Average PAX Delay RESUILS oo eeermmmmiiiaiieeeeeeeeeeeeeeeeeiesneeinnnnneeees 18
Figure 6. Average Vehicle Delay By Aircraft Type d%lay Model.........cccovrriiiiiiiiiins 19
Figure 7. New Position From Re-Sequencing .. etneeaeerreensnneeeeeennnnnneeeeeeesnnnas 20
Figure 8. Results For Average Vehicle Delay ..ccccee.veeiiiiiiiiiiiiiiiiieeeas 21
Figure 9. Results For Hourly Average Vehicle Delay..........ccccooovviiiiiiiiiiiiiiiiiiiiine, 22
Figure 10. Hourly Pax UtIlIZatioN..........ccecccceeeeieee e e e e e eeeeeee e e e e 23
Figure 11. Hourly Vehicle ULIIZAtioNcceeieeiiiiiiiiiiiiiaaee e eeeeeeeeeeieveeeeeeeeeeees 24
Figure 12. Airline-Based Average PAX Delay...ccccccoooviiiviiiiiiiiiiiiiiiie e 25
Figure 13 Delay by WeIight CIaSSuuui e 26

|. Executive Summary

US airports use first come, first serve (FCFS) qugto land aircratft.
Unfortunately, while this has a nice simplicityjstunlikely the best situation for all three
major stakeholders: passengers, airlines, andréstptVhat makes FCFS less than ideal
is that each aircraft has an arrival slot, butgpacing between arrival slots is dependant
upon the size of the plane that just landed angblidn@e that is about to land. These slot
sizes are mandated by the FAA and vary from a IbW2eseconds to a maximum of 280
seconds. Inthe US, planes are binned into ofeunfsize categories, Heavy (H),
Boeing-757 (B757), Large (L), and Small (S).

As an example, assume that the three next plapesiaving in the following
order: SHS. Under the FCFS scheme, the minimura fiom when the first plane lands
until the last one can land is 352 seconds, abwuhmutes. If we could switch the
ordering to SSH, the time would be 192 secondsyta®oninutes. Assuming all of the
planes showed up at the same time, this choicedeirimg saves 160 seconds, enough
time to land a fourth plane of size L or larger.

This paper examines five different sequencing s&seamd compares the outputs
to that of a sixth scheme, FCFS, to judge improvemer degradations. The six
schemes are FCFS, passenger delay minimizatiorcledbr flight) delay minimization,
vehicle throughput maximization, airline fairnesaximization, and weight class
grouping. Each was run with data from one dayaddlardia airport. LaGuardia was
chosen because it is a fairly congested airportadsmhas only one runway which
simplified the model building.

One of the first issues we knew that we wouldinia was that of dimensionality.
With over 500 flights in one day, the state spddd® problem is simply too large for
modern computers to solve in a reasonable amouirthef However, the problem has a
nice structure in that flights landing at 0800 héitke to do with flights landing at 1700.
We broke the data into smaller overlapping windawd ran sequential optimizations
over one window at a time. With this simplificatiove were able to sequence the entire
day'’s flights within a couple of hours.

For the FCFS model we found that the averagetftighay for the whole day was
4.9 minutes with standard deviation of 4.7 minut€éke average passenger delay was 4.7
minutes. Approximately 85% of all flights incurredme delay and 39% were delayed
by more than five minutes.

Using the Passenger Delay model we found thatoulaeduce the average
passenger delay to 2.7 minutes, a 43% reductionf@ES. This occurred because we
bumped many smaller flights back and allowed thgdaaircraft to land sooner.

In running the Vehicle Delay model, we found thatwere able to reduce the
average vehicle delay to 4.3 minutes, a 9% impr@regraver FCFS. While this
produced some gains, the average passenger detagsed slightly to 5.0 minutes.

The Vehicle Throughput model produced no particimgprovement. This model
tried to minimize the time of landing for the vdagt plane. However, as we did not
allow planes to land earlier than they were schetitd arrive, when looking at the whole
day, the last plane landed as early as possild# models. When looking at the
schedule on an hour by hour basis, there were esawigonly one or two flights per

hour. This is likely due to LaGuardia’s homogenausture of planes which is 90% L,
7% B757, and 3% S.

The Airline Fairness maximization looked at thealrfines that had more than
200 passengers per day and attempted to equadizvénage per passenger delay. For
FCFS, the average per passenger delay for this@mupgvas 5.0 minutes with a standard
deviation of 2.0 minutes and a range of 7.4 minufgse per passenger delay for this
Airline Fairness model was worse at 5.9 minutespoth the standard deviation and
range were smaller at 1.9 minutes and 6.5 minuspgectively.

Finally, the Weight Class Grouping model was ariséia technique that creates
groups of aircraft of the same weight class and them in batches. The idea was to
have a technique that could produce better rethdts FCFS but without the
computational complexity of an optimization routinEhe average passenger delay was
4.2 minutes with a standard deviation of 5.7 misut€he average vehicle delay was 4.5
minutes with a standard deviation of 5.7 minutes.

While the Passenger Delay model gave the singlgelst improvement, it heavily
penalizes small flights to achieve those gainsm@ater flights which are scheduled for
an hour in duration would often take one and a halfrs, something that would not be
favorable with the passengers or airlines. Adddity, these results are highly data
dependant. Data from another airport with a m@terogeneous mixture of planes may
yield a very different set of results. However pimg it may be, given this information,
it IS unwise to crown a winner.

Future work on this problem should consider immating dynamic window
sizes for the optimizations as this would likellpal large gains in performance and
possibly produce better results if those given laeeesuboptimal. Additional analysis on
other airports with more heterogeneous flight nesuwould be useful to see if any gains
were to be had. Additionally, the models couldidified to handle small advances of
flights, i.e. landing early.

[I. Introduction

A. Background

Currently, most airports in the US land planes dinsh come, first served (FCFS)
basis. While this seems like a fair and easy systense, it is not the most efficient and
is vulnerable to abuse. Airlines have been knawimytand game the system by filing
incorrect flight plans which they know will win appval and then changing them mid-
flight. By cutting corners out of their scheduledite they try to move up their arrival
time despite efforts from air traffic managemenhauty to smooth out the flow of
traffic.

Additionally, in all but a few airports, airlineseafree to schedule arrivals and
departures at will. This leads to clusters of elpspaced flights separated by gaps
during which the runway is idle. More efficienteusf the runway would benefit all
stakeholders including passengers, airlines, aipods.

The FAA mandates separation distances between [@admgs for safety. These
distances depend on the respective sizes of tihe phat just landed and the one that is
next in line. Based on these separations, somdegng of arrival slots by moving an
airplane ahead or behind in the queue by plus nusiien positions could allow greater

throughput of aircraft and create a more efficigse of the service resource, which is in
this case the runway.

B. Problem Statement

The air traffic industry has many stakeholders, tmogably passengers who fly
and pay for the service. Other stakeholders aaitines that operate the aircraft and
airports that control the ground infrastructureack of these stakeholders plays a key
role in the overall industry and each has their @erspective on what would be best.

Passengers, for example, do not want to be labey Would want minimal
arrival delay from the traffic system.

Airlines want to be profitable which means attragtpassengers. One way to do
this is by keeping the percentage of flights delbge low as possible. If an airport to
which the airline offers service has chronic deldlgs airline is negatively affected. This
is especially true if the airport in question isub of the airline. Airlines also want to
keep their own flights on time so that the compongeffect of a delayed flight on the
remaining day’s schedule is kept in check. ForgXa, when a flight is delayed, it can
affect the airline’s gate schedule, the next outioofilight and subsequent flights by that
vehicle, and other outbound flights that require dielayed crew. Thus, airlines want
minimal vehicle delay (overall but especially foetr own flights) and minimal
passenger delay from their own flights.

Airports want to get as many flights as possibte the airport to raise money
directly and drive commerce in their concoursesrasg@ective cities. Their objective is
to maximize vehicle throughput and minimize vehitédays.

Any new solution to sequencing arrivals over theent FCFS discipline has to
consider ways to ensure its scheme does not fawx@awline over another. The new
sequencing strategy must also be fair to the stdlers, who are passengers, airlines,
and airports. The problem that we are then faaéuig/this: “given multiple competing
interests, how can arrivals be sequenced fairlyedficiently?”

lll. Modeling Approach

A. Performance Metrics

In addition to tracking individual flight delay, wdh is the difference between
assigned and scheduled arrival times, the distabudf flight delays is of interest and is
characterized by its average and standard deviation

Average passenger delay, defined by the sum olftigats of the product of
flight delay and number of passengers on thattflsglled by the total of all passengers is
also reported. A modification of this metric isedgor airline fairness and is defined
below in the section for that model.

Vehicle or passenger throughput is defined as timeber of vehicles or
passengers per unit time, respectively. Capagitiefined as the maximum theoretical
throughput. We have assumed a capacity for vehimsed on the minimum separation
for a stream of 100% large aircraft and a capdoitypassengers based on 100% large
aircraft carrying 100 passengers. These capaciteed3.3 veh/hr and 4333
passengers/hr. Finally, utilization is definedlasughput scaled by capacity.

B. Assumptions

1. Deterministic Optimization
All the flights show up on their scheduled arritiate.

2. No Network effect
For the purpose of our study we assume that tiperirs isolated and there is no
network propagation of delays due to reshuffling.

3. Capacity Estimation
Utilization is the ratio of throughput and capaciye estimate the capacity by
assuming a case of a fleet having 100% large &iscrehis assumption is reasonable
since the given data has fleet mix: 0% heavy, 7%iBp757, 90% large, and 3%
small. Refer to Results and Analysis Section IVdetails.

4. Aircraft cannot be delayed more than 30 minutes
This assumption puts an upper cap on the amouirhefan aircraft can be held up in
the air before it is assigned a landing slot. #vents aircraft from being delayed
indefinitely.

5. No early arrivals allowed
For the purpose of this study we assumed thatrara#icould not arrive before its

Scheduled arrival time. Even though this seemsdikencoherent assumption, especially

from a passenger’s perspective who does not mimdreg a few minutes early, an early
arrival is not desirable in common practice. Anyeaircraft sits and waits for a

marshaller to aid with final parking, and then wddr someone to position the jet way
and open the door. Because flight attendants dagel&inbound, the boarding process

for the next aircraft is delayed and the aircrajparts late. This is described in the paper

“The Network Airline Production Problem” by R. Bda

C. Models

The benchmark model for this study is a FCFS qugediscipline. This closely
models the arrival sequencing strategy used intipeac

The formulation of the four optimization strategie based on the machine
scheduling model which is well known in the fielidoptimization. Other models were
considered, but it was believed that the machiheduling model would lend itself to
the problem nicely and in a straightforward wayeci3ion variables and constraints in
the machine scheduling model are analogous to haser problem.

We did consider the general assignment model, accessfully applied this to
the aircraft problem for the case in which arristait sizes were uniform (results
omitted). In order to account for variations intsizes due to aircraft size and wake
vortices, however, the machine scheduling modelwtiéized.

The four objective functions in our optimizatiorodels are as follows:

* minimize total passenger delay
* minimize total vehicle delay

* minimize time of the last plane (to maximize thrbpgt)
* minimize the greatest airline specific passengtyd@o increase airline equity)

The general form of the machine scheduling modsimes there is some number
of machines available to process different jolsssdme cases, only certain jobs can be
performed on a given machine. For example mackiadds part A to the product
whereas machine Y adds part B, before the producbe completely assembled.
Accordingly, some jobs must be executed in a paeroorder, and the machine
scheduling model can account for this. Additioc@hstraints can also be added
including a product completion time for any partaayjob or sequence of jobs.

The aircraft sequencing problem modeled in thidystssumes that one runway
is available for arrivals. This runway is analog@o one machine that processes jobs.
Each flight is a job and only one flight can occupg runway at any time. The
optimization routine must assign a landing slostart time for each job. This slot time,
which is the main decision variable, must not bengo than the aircraft is available to
land. The assigned time must also be later thaptévious plane’s start time by at least
the separation time mandated by the FAA for safety.

The main constraints in the model are designedisare minimum separation.
They compare every pair of planes to be considaneldforce the absolute difference
between their landing times to be at least themimn separation time. These minimum
separation times are known in advance and (as odehignored wind effects) depend
only on the size of each plane. These times aresin Table 1. There are four
categories for size in the U.S. These are, inasing order of size, heavy, Boeing 757,
large, and small. The larger the plane, the moieeviarbulence it creates behind it and
the more air turbulence it can safely fly throudrhis makes the situation in which a
small immediately follows a heavy the worst ofsbjuence pairs in terms of separation
time (280 sec) and hence poor traffic throughput.

Table 1 Aircraft Separation Requirements

Trailing aircraft

Time Separation (sec)
Heavy B757 Large Small
Heavy 96 137 157 280
Leading B757 96 103 121 271
aircraft Large 72 77 83 182
Small 72 77 83 120

1. First Come, First Serve (FCFS)

The first queue discipline we modeled was FCF® v breaking based on a
random variable. As mentioned previously, FCFhéssystem currently used at most
airports, so we used this as a baseline for theofesur models. FCFS was relatively
simple to implement and verify the solution; it thd added advantage of extremely fast
solution times.

We formulated the problem as follows:

Oi, j O{i < j} :{eta. <eta, X, —X Zsepl‘j},i,j :1,2,..N @
Oi, x = eta, (2)

There are N total flights. The earliest time ohal for a flight, i, is given byeta,. The
minimum separation time for a pair of flights (givie Table 1) is represented &p;;.
The final landing time assigned to the flight bg thptimization is¢. Constraint 1 says
that for a pair of flightsi]j], if they have different ETAs, the time separatim@iween the
final landing timesy;, must be at least the minimum separation distaffdbey have the
same ETA, then we choose one flight at random thrgip namely flighti, and then
assign the minimum separation accordingly. Comdteaensures that the final arrival
time cannot be earlier than the scheduled arrinad.t

2. Passenger Delay Minimization, P_delay

Having completed the baseline case, we next loakegtimizing landing
sequences with respect to our three defined stdketso passengers (PAX), airport, and
airlines. For optimization with respect to PAX @bjective was to minimize the total
amount of passenger delay, defined as the sumatiiights of the product of the
number of passengers on a flight multiplied bydby (measured in seconds) for that
flight. While this gets more passengers throughsystem more quickly, it has the
drawback of penalizing smaller flights in favorlafger ones.

The formulation for this approach is:

MIN z=ZPAXi*deIayi (3)

st.

Du,JD{'<J}'{eta,--eta-Zsepi,j"\"(l‘yi’J))

Oi, delay, = x —eta (5)
O, x>eta 2)
Oi, delay, <1800 (6)
i,i:1,2,3.N

There are N total flights. The earliest time ohaal for a flight, i, is given byeta,. The
minimum separation time for a pair of flights (givie Table 1) is represented &p;;.
The final landing time assigned to the flight bg thptimization is¢. PAX; is the number
of passengers on flightanddelay; is the delay in seconds of flight We use a binary
decision variabley;;, to ensure that only one of the two constrainfdared above in
Constraint 4 is binding.

Because this is an optimization we have added kmuat the objective function,
which says that we are trying to minimize the surtotal passenger-seconds.
Passenger-seconds are calculated by multiplyingtih&ber for passengers on flighty
the delay in seconds for flight Constraint 4 replaces Constraint 1 from FCFSsays
that ify;; is O, then the top constraint is binding and tbedm one is slack. I is 1,
then the opposite is trué is a large constant which ensures that the rightitside of
the inequality is always less than the left hale siAgain, we use Constraint 2 to ensure
the final arrival time cannot be earlier than tbhkeesluled arrival time. Finally, we say
that the delay (defined by Equation 5) for anywndiial flight cannot be more than 30
minutes (1800 seconds) in Constraint 6.

3. Vehicle Delay Minimization, V_delay

To optimize the timely arrival of vehicles, we dsan objective that minimized
the sum of delay for all vehicles. Although simila the PAX optimization discussed
above, this treats every plane of equivalent semgardless of passengers, as equal.

The formulation for this approach is:

MIN z=> delay, (7)
st.

eta —eta. = =My .
Di,jD{i<j}:{et &9, =5, Y } (4)

aj —etg, 2 Sepi,j -M (1_ yi,j)

Ui, delay, = x —eta, (5)
Ui, x =eta (2)
Ui, delay, <1800 (6)
1,j:1,2,3,..N

There are N total flights. The earliest time ohaal for a flight, i, is given byeta,. The
minimum separation time for a pair of flights (givie Table 1) is represented &p;;.
The final landing time assigned to the flight bg thptimization is¢. The delay in
seconds of flight is delay;. We use a binary decision variabfg, to ensure that only
one of the two constraints in Constraint 4 is bmgdi

This formulation is almost identical to the Passgrigelay Minimization. All of
the constraints (2, 4, 5, and 6) have carried ameroperate identically as described
above. The change here is only in the objectinetion, Equation 7, which is now
minimizing the sum of the delays for each flightweighted by the number of
passengers on each flight. Constraint 4 saysftlygtis 0, then the top constraint is
binding and the bottom one is slack.yilfis 1, then the opposite is trubl is a large

constant which ensures that the right hand sideeoinequality is always less than the
left hand side. Again, we use Constraint 2 to emthe final arrival time cannot be
earlier than the scheduled arrival time. Finalg, say that the delay (defined by
Equation 5) for any individual flight cannot be radhan 30 minutes (1800 seconds) in
Constraint 6.

4. Vehicle Throughput Maximization, V_ thrpt

For airport optimization, the objective was to qiete the given list of arrivals
within the shortest amount of time. This is analagjto generating the maximum
throughput of vehicles. This optimization alsateeeach plane equally regardless of
size, however, it can increase delays for somat8ign order to increase vehicle
throughput.

We used the following formulation:

MI N Z= tl r‘nQasthane (8)
st.

D|,1D{I < J}'{etaj —eta > sep | -M(1- yi,j))

Ui, delay, = x —eta, (5)
Oi, x =eta, (2)
Oi, delay, <1800 (6)
Oi, 1iMe gpiane 2 % (9)
1,j:1,2,3,.N

There are N total flights. The earliest time ohal for a flight, i, is given byeta,. The
minimum separation time for a pair of flights (givie Table 1) is represented &p;;.
The final landing time assigned to the flight bg thptimization is¢. The landing time
assigned to the last plane is capturediimg.spane. The delay in seconds of flights
delay;. We use a binary decision variablg, to ensure that only one of the two
constraints in Constraint 4 is binding.

This formulation is almost identical to the prevsawo. All of the constraints (2,
4, 5, and 6) have carried over and operate iddhtiaa described above. There are two
changes here: the objective function, Equationi8clvis now minimizing the time that
the last plane lands, and Constraint 9 which ts@Esaspiane t0 the time of the latest flight.
Constraint 4 says thatyf; is 0, then the top constraint is binding and togdm one is
slack. Ify;;is 1, then the opposite is trubl is a large constant which ensures that the
right hand side of the inequality is always lesmtkhe left hand side. Again, we use
Constraint 2 to ensure the final arrival time carimearlier than the scheduled arrival
time. Finally, we say that the delay (defined lmu&tion 5) for any individual flight
cannot be more than 30 minutes (1800 seconds) mst&ont 6.

10

5. Airline Fairness, A_fair

For airline fairness optimization, the objectivasito consider all groups of
flights arriving at the same time and to then ated®AX delay evenly over the airlines
in competition for arrival slots. FCFS is useddaghly sequence all flights, and
optimization is used to finely sequence the subgsaf two to six flights having the
same pre-scheduled arrival times.

We limited the optimization to airlines that hadnathan 200 passengers per day.
This was primarily to eliminate general aviatioigfiits which may not be constant from
day to day and so would not appear in a standdreldste. Reducing the number of
airlines considered also has a huge improvementmmirme because it reduced the
dimensionality of the problem.

This optimization differs from the others that we gresenting in that rather than
using the data as a surrogate for a live data feedn be thought of as a way of
generating a daily schedule that is fair from taets This hypothetical schedule is based
on airlines’ preferences for landing slots.

We used the following formulation:

MIN z= penalty,_ (10)
st.
eta, < eta, X; =% = Sep, |
i< jr: . —X. =25ep . — My . 11
U<lignzaa | %7620, =My, (11)
X=X 2Sep;; ~ M(1- yi,j)
Oi, x >eta (2)
Oi, delay, = x —eta, (5)
Oi, delay. <1800 (6)
> PAX; * delay;
Ok, penalty, == 12
penalty, STPAX (12)
i0S,

Ok, penalty,.., = penalty, (13)
i,j:1,2,3,.N

k : index over airlines

There are N total flights. The earliest time ohal for a flight, i, is given byeta,. The
minimum separation time for a pair of flights (givie Table 1) is represented &p;;.
The final landing time assigned to the flight bg thptimization is¢. PAX; is the number
of passengers on flightanddelay; is the delay in seconds of flight The penalty for a
give airlinek, is penaltyx and the largest of thosepenalty.x. S is the set of all flights
in contentious slots operated by airlkheWe use a binary decision variabjg, to
ensure that only one of the two constraints in @an 4 is binding.

This formulation might be better considered as r@fiaitness minimization. The
constraints (2, 5, and 6) have carried over andadpédentically as described above.

11

Once again, we have a new objective function, BEqadtO, which minimizes the
maximum penalty assigned to a given airline. Qainst Set 11 replaces Constraint Set
4. Since this optimization is based around the &F@fethodology, we have the first line
which says that iflight; is scheduled to land befofigght;, then ensure the minimum
separation time. If the scheduled arrival timesthe same, then we need to choose an
ordering and ensure a minimum separation distambe. other constraint becomes
nonbinding and we enforce this by settingto either 0 or 1. Eagbenaltyy is calculated
in Equation 12; it is the total delay for passesgar flights in contentious slots for an
airline divided by the total number of passengerglights in contentious slots for an
airline. This could also be referred to as theage passenger delay expressed in
seconds per passenger. Constraint 13 aspamally .« the largest value of all
penalty’s. Constraint 4 says thatyif; is 0, then the top constraint is binding and the
bottom one is slack. if; is 1, then the opposite is trubl is a large constant which
ensures that the right hand side of the inequiliglways less than the left hand side.
Again, we use Constraint 2 to ensure the finalvahtime cannot be earlier than the
scheduled arrival time. Finally, we say that tkég (defined by Equation 5) for any
individual flight cannot be more than 30 minute8JQ seconds) in Constraint 6.

The raw data required preprocessing to create ablkonn matrix in order to
allow the MPL program to calculapenaltyy (see Appendix A.5).

6. Weight Class Grouping, WCG

While FCFS is easy to implement and understandnogv the results are
generally suboptimal. The results from our optaizn models tell us the best possible
solution for their respective objectives, but itres at the cost of huge computation
times. To try and find a balance between speedatithality, we developed a Weight
Class Grouping model in Java.

Table 1 shows that the required separation forgetaaircraft followed by a smaller
aircraft (e.g. H-B757) is longer than the separatieeded for a same weight class pair
(e.g. H-H). Therefore, it would be desirable towgy arrivals into batches of aircraft in
the same weight class. In this model, we accommplis task with the following
heuristics:

» The first scheduled arrival flight is set to be tinst arrival. Then, based on the
following heuristics, we search and determine #wad arrival. After that, we
search and determine the third arrival, and st fantil all flights are
resequenced.

 If the scheduled separation betwdkeght; andflight;; (j>1) is greater than that
mandated by the FAA (i.e. separation standard caing$ are nonbinding),
arrivals are sequenced based on FCFS.

» Ifthereis g, (j>1) such that the scheduled separation betvilegin; andflight;.;,
is less than that mandated by the FAA (i.e. sejmaratandard constraints are
binding), all arrivals which make the separatiamsiard constraints binding are
checked and compared. Preference for the nexarsigiven to aircraft in the
same weight class as the preceding arrival. Ifiravadt of the same weight class
is available, we start landing a batch of airchafin another weight class.

* When changing the weight class batch, we start &wyimg from smaller weight
classes to larger ones. That is, if we just laraledtch of Small aircraft we move

12

to Heavy, then Heavy to B757, and B757 to LargéterAhe heaviest weight
class batch is landed, we change directions amddgscending in weight class
size. Once we reach the smallest weight clagsfligits, we again switch
directions and continue in the fashion until atjlits have been resequenced.

» If separation standard constraints for a certaingdaircraft become nonbinding,
when arrivals sequence is based on FCFS, the idimgstset to be ascending the
next time the separation constraints become binding

As an example, the sequence H-S requires the taggparation, 280 seconds. If we
can swap the order to S-H the separation is onlgetdnds, a savings of 208 seconds. If
we cannot swap the pair and the next flight ishentwe try swapping S with that flight.
Over the three flight sequence, this could saveut seconds. While 24 seconds isn’t
much on its own, if we can make a few of these swegeh hour, we can fit in one or two
more flights per hour.

D. Model Implementation

For the optimization portion of our solution we d$@PL to encode our
mathematical models (P_delay, V_delay, V_thrpt, Anthir). MPL is a macro language
and development environment designed to automater#ation of mixed integer linear
programs (MILP). MPL is also integrated with CPLEXich is currently the industry
standard MILP solving engine. This means that amedave described our method in
MPL, CPLEX begins to work on solving the probleithere are other competing
products with MPL such as OPL and AMPL; however,LMias chosen because each
member of the team had used it in previous courdevand it was therefore the product
with the smallest learning curve.

E. Sequential Windowing

Trying to optimize all flights scheduled to landaat airport in a given day at once
is not realistic on stand alone computers todagwéier, we can exploit the structure of
the problem a bit to try and come close to an ogitscheduling. Flights landing at 8:00
a.m. have little to do with those landing at 5:0p Using flight arrival data from the
first of June 2006 for La Guardia airport as asgate for an actual live feed, we pull a
fixed window of n flights, optimize their sequene®d then fix the arrival of the first
one. We then add the next flight (flight n+1 froine original list) to the window and
rerun the optimization. We continue to iterat¢his way until we have sequenced the
entire day’s worth of flights. See Figure 1 forikustration of the optimization process.

To automate this task we used the Optimax2000 [B+ary provided by
Maximal Software. This allowed us to read in text fiile of flight data and then write
the flights in that window to an excel file. Weethcall MPL/CPLEX through the
Optimax2000 library and the optimization beginsac®it is finished we parse the results
and write them back out, including any current gelatroduced by the latest round of
optimization. Keeping track of the delays fronratgon to iteration ensures that we do
not delay a flight indefinitely and that we caldeléahe appropriate penalties in the end.
This process is explained in more detail belowteNbat this process was not needed to
solve for the FCFS model; furthermore, it was notable to solve the A_fair model,
which needs to consider the entire day’'s wortHights to create equity.

13

Arnvals “‘.““‘

Set of finalized aircraft

trigger

Return winning flight index

Figure 2. Windowing Optimization Flow Chart

14

Walk through of the process

Given a consolidated input data excel sheet, whacttains all the N flights that needs to
be sequenced sorted according to the scheduleglarme. Let us denote the window
size by ‘w’. The first (w+1) rows from the consdditd input file is read and copied into
a temporary input file (which will be used by thetnization code in the next step). The
first flight out of these (w+1) flights is alreadixed. Then we reshuffle the remaining

‘w’ flights according to the desired strategy. Magning flight is assigned a final slot
and is made the leading flight for the next itematiThis process continues until we
exhaust all the N flights that needs to be sequknce

The algorithm depicted in Figure 2 works as follows
Given,
* aset oiN flights to resequence. These N flights shoulddréed by their
scheduled arrival time.
* Let the window size be (user-settable parameter)
* Letcountdenote the iteration #.
* Letveuntdenote the index of the first flight for iteratién

Do the following:

1. Pick the first ‘w+1’ entries of the N flights.

2. Set, maxCount=N-w & count=1

3. Set\ =1, i.e fix the first flight on the list, i.e. rka it the leading flight.

4. Reshuffle the remaining sequence of ‘w’ flightsdxhen the desired optimization
strategy, i.e. Min Passenger delay, Max Vehicleolighput etc. Set §unt+1 tO
the index of the first flight.

5. if (count<=maxCount)

then, finalize the slot for flight ‘Vount+1,
Make it the leading flight for the next iteraticand
Replace the leading flight of this iteratiom®, iountby the next
flight, i.e. the (w+1+counbflight.
count = count+1
Go to Step 4
Else (* this is for the last window*)
finalize the slots for all the ‘w’ flights in theimdow in the order
determined by Optimization
STOP

The two librarys used in this process were Opti2@80 and Basic Excel- A
Class to Read and Write to Microsoft Excel. Optirsaan object oriented component
library used to embed an optimization into an esdrapplication. We used it to
integrate our MPL models into the Visual C++ codere information about the
Optimax library can be found at the following URttp://www.maximal-
usa.com/optimax/

15

Basic Excel is an open source library to read,teraad modify excel files
through C++. It is fairly simple to use and docutaéinn along with the source is
available atttp://www.codeproject.com/useritems/BasicExcel.aspe MPL, C++, and
Java source code for each of these models is shothie appendix at the end of this
document.

V. Results & Analysis

LaGuardia is known to be a highly congested airp®ite schedule of arrivals at
LaGuardia on the day studied is quite full and eir®f 523 flights in a 24 hour period.
Figure 3 shows the hourly schedule of arrivalsiwgen the hours of 8 AM and 6 PM
the hourly traffic intensity, defined as the numbegarrivals per hour divided by the
average service rate, is at least 0.78 (assumengulrage service rate is that for large-
sized craft equal to 43.3 per hour). It is safagdsume this average service rate, because
the fraction of large-sized planes is high. Threrdution of sizes is as follows: 0%
heavy, 7% Boeing 757, 90% large, and 3% small. ddfaonstrate later how this high
traffic intensity and particular homogeneous sistrithution does not allow significant
gains by re-sequencing vehicles.

45

Number of Flights

Hour of Day

Figure 3. Number of Hourly Arrivals Scheduled Over24 Hours

16

A. FCFS

Figure 4 shows significant delays from 1200 to 180Ghe FCFS discipline.
The average flight delay for the whole day wasmiButes with standard deviation of 4.7
minutes. The average passenger delay was 4.7 esindbout 85% of all flights
incurred some delay and 39% were delayed by marefitie minutes. Passenger
throughput was 2091 pax/hr (based on capacity éefoy the large category, and a
midrange value of 100 pax/veh) and pax utilizatsas 0.48. Vehicle throughput was
22.1 units/hr and corresponding utilization at 0.51

20 ? 4
18 $
oo
16 LR
3‘0}
0““:
14 000 o0, ¢
e o8
k 3
. Lo
12 * ¢’¢ o P o hd
£ °* . Y
S b 3 ¢ e *°%o ‘
> 10 | PR
% . f . ‘00 3¢ <
o 8 R o: < LR R *
$ MEEJ S
° A P
: o3 0“ ‘o :o . . s
6 4 ‘3. KA LEPIA 2"6 -
- *
‘e o ¢ ot o A .
‘; % P 2 R . .
4 79 ; 0‘ P & °
e % LR i ¢
3.2 0“ "’ ¢ “»““ . . ¢
A4 PR . .
2 R T L L S, So— 3o
R R :::‘ IR MR SICRY 0
0 | * ‘:»|: > o 154 o s 30

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00
Time of Day

Figure 4. Flight Delay Results From FCFS

17

B. PAX Delay

PAX delay, shown in Figure 5, is the lowest for Ehedelay model at 2.7
min/person. PAX delay is the highest for vehititighput optimization at 5.2
min/person. Other strategies produce PAX delagiranfrom 4.6 to 5.1 min/person.

We expected P_delay to be the best strategy fonmaimg pax delay, since its
objective function is that very expression. Altgbw_delay would also provide low
PAX delay results, as it did as the second bestemdttat model strives to minimize the
sum of vehicle delay independent of the PAX petii

14.0

12.0

10.0 A

8.0

Minutes

6.0

4.0

2.0

FCFS V_thrpt P_delay V_delay A_fair WCG
Model

0.0

Figure 5. Average PAX Delay Results

There is a significant reduction in PAX delay wiika P_delay is executed using
from five to ten flights per optimization batchtire sliding window. When the window
size is five flights, delay is 3.1 min/person. \Wihbke window is ten, the delay is 2.7
min/person. This indicates that the larger winddlews a sequence that is closer to
optimality, defined by the case in which all 52iglfits could be optimized at once
without needing the sliding window. Based on tleisult, we present results for all
windowing models with a window size of ten.

To probe deeper into the P_delay model and invastigow PAX delay is
significantly better, we show average vehicle dégwircraft size in Figure 6. Clearly,

18

the larger the plane and corresponding PAX capattigylower the vehicle delay. Higher
landing priority is given to larger craft.

w
o

22

N
(@)

a1

1

Average Veh
Delay, min
=
o

o

B757 Large Small

Aircraft Size

Figure 6. Average Vehicle Delay By Aircraft Type, Pdelay Model

We also observe that the re-sequencing of flightshie more extensive for
P_delay compared to that of FCFS. Let us defirectiange in position of a given flight
due to re-sequencing as the absolute differenaedeetits original position and its new
position (e.g. if original position is 10 and thewnposition is 13, then the change is 3)
and call it the reposition quantity. Figure 7 draplly compares these P_delay and
FCFES reposition results. FCFS results in a maximgosition of 6 with an average of
0.5 and standard deviation of 1.0 (note that tpesiion quantity is 6 when seven flights
have the same scheduled arrival time or originaltfwpm and must be given unique
landing times or new positions). P_delay has aimam reposition of 19 (average of
3.3 and standard deviation of 3.6). This strengthtbe argument that improvement in
system performance metrics, PAX delay for examglguires more significant re-
sequencing than that employed by FCFS.

19

600

500 +

400
c
§e)
‘D
S 300 O P_delay
= - FCFS
[}
z
200 -
100

0 N > T T T T T
0 100 200 300 400 500 600

Original Position

Figure 7. New Position From Re-Sequencing

C. Vehicle Delay

Not surprisingly, the best strategy for vehicleayak the model that optimizes for
this very metric resulting in a value of 4.3 mifihe next best model is the vehicle
throughput model whose delay metric is 4.7 minhedimodels produce delay values
from 5.0 to 5.2 min on average. These results areiged in Figure 8. P_delay does not
yield a low average vehicle delay, because it peeskmall planes, as discussed in the
previous section.

As shown in Table 2, the standard deviation of slehdelay is lowest for the
FCFS (4.7 min) and for airline fairness (which atsoploys FCFS as the base
sequencing rule). The PAX delay model produceshihleest variability in flight delay
as indicated by a standard deviation of 7.9 minutes

Also from Table 2, we see that the amount of réposng is similar for FCFS
and A _fair. This is not surprising since A _faiilimes FCFS for course sequencing. , the
amount of repositioning is similar among V_delayd®lay, and V_thrpt.

When we compare average vehicle delay for FCFS/anélay on an hourly
basis as shown in Figure 9, we see that V_delaybmstter overall model for this
performance metric.

20

14.0

12.0
10.0
» 80
L
.%
6.0 -
50 5|2
4|3 45
4.0
2.0
0.0
FCFS V_thrpt P_delay V_delay A_fair WCG
Model
Figure 8. Results For Average Vehicle Delay
Table 2. Summary of Results for Delay Metrics
Max Ave Standard
Std Reposition | Reposition | Deviation
Dev Qty Qty of
Ave Vehicle Vehicle Reposition
Model Ave Pax Delay Delay Delay Qty
FCFS 4.73 491 4.70 6 0.5 1.0
V_thrpt 5.16 4.73 6.29 18 2.6 3.0
P_delay 2.68 4.96 7.87 19 3.3 3.6
V_delay 4.64 4.31 6.45 18 2.3 3.1
A_fair 5.13 5.21 4.82 5 0.4 0.8
WCG 4.21 452 5.73 36 1.2 2.9

21

Ave Delay, min

14

12

10

0 2 4

—e—FCFS
—a—V_delay

6 8 10 12

14

Hour of Day

16 18 20 22 24

Figure 9. Results For Hourly Average Vehicle Delay

D. Throughput
The passenger and vehicle throughput values foertiee day are each constant
over all models. This is because each model assignsame landing times to the first

and last planes. Accordingly, the utilization \edufor the entire day are also constant.

See Table 3 for these and a summary of all results.

Table 3. Summary of Results

Std Dev PAX Vehicle
Ave PAX | Ave Vehicle Vehicle Throughput,| Throughput,, PAX Vehicle

Model | Delay, min| Delay,min | Delay, min PAX/hr veh/hr Utilization | Utilization
FCFS 4.73 4.91 4.70 2091 22.1 0.483 0.5111
V_thrpt 5.16 4.73 6.29 2091 22.1 0.483 0.511
P_delay 2.68 4.96 7.87 2091 22.1 0.483 0.511
V_delay 4.64 4.31 6.45 2091 22.1 0.483 0.511
A_fair 5.13 5.21 4.82 2091 22.1 0.483 0.511
WCG 4.21 4.52 5.73 2091 22.1 0.483 0.511

When examined on an hourly basis, there is omgreation in the order of one to

two flights in any hour across all models. HouplgX utilization is shown in Figure 10
and hourly vehicle utilization is shown in Figurg. INote that results for all five models
are quite similar. This can be attributed to salVfactors. Namely these are the
restriction that no flights can arrive early, thghhtraffic intensity from 8 AM to 6 PM,
the uniformity of the fleet size (90% large), ahd size of the optimization window
(limited to ten by computational complexity). Ahing flights to arrive early might
redistribute the hourly throughput by reducing samegestion and thereby increasing
throughput immediately prior to congested times.

22

A change in fleet size distribution from 100% shb@al100% heavy, for example,
would result in a higher overall or hourly throughor vehicles and PAX. However,
when utilization is less than unity (which impligst there are times when the server or
runway is idle), interchanging the position of twehicles, large and small for example,
would have relatively less of an impact on throughp

= FCFS
-V _thrpt
- P_delay
e V _delay
- A fair
WCG

Utilization

O 2 4 6 8 10 12 14 16 18 20 22
Hour of Day

Figure 10. Hourly Pax Utilization

23

1.0

o NAA

0.8 /N N

0.7
|

0.6 ,

0.5
0.4

Utilization

0.3 |
0.2 |

I

= FCFS
-V _thrpt
- P _delay
—-V_delay
- A fair
WCG

0.1 l

0.0 *‘H‘\”\”\”\"/*

Hour of Day

Figure 11. Hourly Vehicle Utilization

E. Airline Fairness

8 10 12 14 16 18 20 22

Since the A_fair model is essentially FCFS withestVe breaking of ties, the
results are similar to the benchmark FCFS modewever, in an attempt to create
equity among airlines, the fairness model prodstightly higher average delays. For
the following discussion, we consider only thelligithat have an arrival conflict and
which belong to the 17 airlines having more tha@ P@X/day (see Table 4). Table 4
shows the average PAX delay results for thesenaslfrom the two models mentioned.
These results are also plotted in Figure 12 asetifun of the total PAX per airline

(again only for the set of flights that have anvairconflict).

The FCFS model results in a distribution of airlgpecific PAX delay values that
has an average of 5.0, standard deviation of adyange of 7.4 min/person. The A_fair
model’s delay distribution is shifted slightly higghwith average of 5.9 min/person.
However, its distribution over airlines is lessdmlavith standard deviation of 1.9 and

range of 6.5 min/person (see Table 5).

24

Table 4. Airline-Based Average PAX Delay from Fligks In Slot Contention

Airline FCFS A fair
American Airlines 4.8 4.3
Air Canada 4.5 5.1
American Trans Air 2.5 1.5
Chautauqua Airlines 4.3 4.2
Colgan Air 5.9 5.5
Continental Airlines 3.9 5.0
Comair 4.9 5.5
Delta Airlines 5.4 5.5
American Eagle 7.4 7.2
Jet Blue 4.0 7.8
Midwest Exp 1.2 2.8
Spirit Airlines 4.4 7.5
Northwest Airlines 2.8 6.7
Usair Exp 7.9 7.8
Airtran Airlines 7.4 8.0
United Airlines 8.6 8.0
Usair 5.7 6.9
10
9|
|]
8 ¢ X *
|
X [0, *
g
2 6 ’: : ® Airli
o) irline
E > ¢ ;'. : ® FCFS
8 41 n "
g]
) * []
z]
2
*
1]
0 ; : : : :
0 1000 2000 3000 4000 5000 6000

Total Pax In Contention For Airline k

Figure 12. Airline-Based Average PAX Delay

Table 5. Summary of Airline PAX Delay Distribution

PAX Delay (Function of Airline k FCFS A_fair
Average 5.0 5.9
Standard Deviation 2.0 1.9
Range 7.4 6.5

F. Weight Class Grouping

The weight class grouping strategy tries to graupe weight class aircrafts
together. Since the dominant weight class in LGRagye, Large aircraft are usually
grouped while B757 and Small aircraft are pushek méhich produces high delay for

those types, as shown in Figure 13.

delay (min)
18
16
14
12
10
8
6
4
2
0
B757 LARGE SMALL

o delay (min)

Figure 13 Average delay by weight class

26

V. Conclusion

Overall we saw some minor advantages over the muR€FS system. This is
likely due to the airport having a utilization ofey 0.8 for 10 of the 18 hours that it was
operating. This high utilization (and resultinghgestion) of LaGuardia makes it
difficult to find opportunities for improvement. h€ other issue is the largely
homogeneous mixture of aircraft type, 90% large,B@éing 757, and 3% small. With
that many aircraft of a single type, small locatizeorderings are not going to find
improvements by closing gaps in the arrival slots.

In the one case where we saw noticeable improver®&X Delay minimization,
the improvement came from bumping the small fligbtsas long as possible. It is hard
to imagine that this scheme would be able to hanei from airlines that primarily
operate smaller regional jets or general aviatiights. However, it is important to note
that such a small fraction (3%) of this particidere aircraft so greatly disrupts the on-
time arrival of other larger flights. Specificaliy the average PAX delay is reduced
from 4.7 for FCFS to 2.7 min/psn for PAX delay mimzation by unfairly delaying small
planes, then one might be led to inquire aboutffext of removing such flights entirely.

While it is tempting to crown a winner from thisogip of algorithms, it cannot be
stressed enough that we only looked at one dayrthved data at one airport and we only
considered the landing schedule. We made no atsetmpnodel gate constraints or
when a plane would be next required for service.

Future work could include expanding these modelsatadle airports with
multiple landing strips. This would allow use @td from many more airports.
Additionally, finding an airport with a more hetgeneous traffic mixture might see
more improvement.

27

References Used

Baiada, R. MichaelThe Network Airline Production Problem. ATH Group. June 2005.

Donohue, G. LAir Transportation: A Tale of Prisoners, Sheep and Autocrats. GMU
Vision Lecture Series. 2007.

Harikiopoulo, D., Neogi, NPolynomial Time Feasibility Condition for Multi-Class
Aircraft Sequencing on a Singe Runway Airport. AIAA 1% Intelligent Systems Technical
Conference. 2004.

Neuman, F., Erzberger, Analysis of Sequencing and Scheduling Methods for Arrival
Traffic, NASA Technical Memorandum.1990.

Yen, J. W., Zabinsky, Z. B., Serve, C.IAcorporating Weather Uncertainty in Airport

Arrival Rate Decisions. FAA-NEXTOR-INFORMS Conference on Air Traffic
Management and Control. 2003.

28

Appendix A — Model Source Code

A.l. FCFS
Algorithm used:
Create SA(i) I scheduled arrival for flight i

Where SA(i) = SA(j), assign SAC(i) = SA(i) + U[0,1]
Else SAC(i) = SA(i) I'U[0,1] is a uniform randovariable

Sort flight data based on SAC(i) and assign addltiandex j = 0 ..N based on sorted
order

Set x(i:;j=0) = SA(i:j=0) I X(i) is the assignedriding time for flight i

Forj=1to N
X(i:)) = max { SA(i:)) , x(i:j-1) + sep(size(i:j-1)size(i))) }

I sep(a,b) is the separation matrix based on Haee

end
A.2. P_delay
TITLE
paxdelay; I min pax delay
DATA
numB := EXCELRANGE("batchSize.xIs", "batch"); !sc hed arrival
INDEX

0..numB; ! planes
iy

i
i
dataFields := 1..5;

size :=(H,L, M, S);
sizel :=size;
size2 :=size;
DATA
dataR[i,dataFields] := DATAFILE("lga.csv");
SA[i] := dataR{[i,2];
S[i] := dataR{[i,5];
NP[i] := dataR[i,4];

sep[sizel,size2] := DATAFILE("sep.csv"); Iseparat ion matrix
based on flight data, 10 planes, 11 x 11

VARIABLE

X[i]
EXPORT TO EXCELRANGE("mplOutput.xIs”,"slot");
delay]i]

29

EXPORT TO EXCELRANGE("mplOutput.xIs”,"delay");
lastplane;

BINARY VARIABLES
ylijl;
MACRO
passdelay = sum(i: delay * NP);
MODEL
MIN z = passdelay;

SUBJECT TO

excludeli,j>i] : x[i] - x[j] >= sep[sizel:=S[j], size2:=S][i]]
- 100000 v[i,jl;

exclude2[i,j>i] : x[j] - x[i] >= sep][sizel:=S]i] , Size2:=S[j]]
- 100000 (1 - y[i,jl);

find_arrivaldelay[i]: delay >= x - SA;

X[0]=SA[0];

pp[i] : X[II>=SA[0];

last_in[i>0]: lastplane >= x;
BOUNDS

latest[i]: delay <= 1800;
earliest[i]: X >= SA;
END

A.3. V_delay
TITLE
V_delay; I min vehicle delay

DATA
numB := EXCELRANGE("batchSize.xIs", "batch"); !sc hed arrival

INDEX
i :=0..numB; ! planes
j =1

dataFields := 1..5;

size :=(H,L, M, S);
sizel :=size;
size2 :=size;
DATA
dataR[i,dataFields] := DATAFILE("lga.csv");
SA[i] := dataR{i,2];
S[i] := dataR{i,5];
NPJ[i] := dataR[i,4];

sep[sizel,size2] := DATAFILE("sep.csv"); Iseparat ion matrix
based on flight data, 10 planes, 11 x 11

VARIABLE

x[i]
EXPORT TO EXCELRANGE("mplOutput.xIs”,"slot");
delayli]

EXPORT TO EXCELRANGE("mplOutput.xIs”,"delay");
lastplane;

BINARY VARIABLES
yliil;
MACRO
totalDelay = sum(i:delay);

MODEL
MIN z = totaldelay;

SUBJECT TO

excludeli,j>i] : x[i] - x[j] >= sep[sizel:=S[j], size2:=S][i]]
- 100000 v[i,jl;

exclude2[i,j>i] : x[j] - x[i] >= sep][sizel:=S]i] , Size2:=S[j]]
- 100000 (1 - y[i,jl);

find_arrivaldelay[i]: delay >= x - SA;

X[0]=SA[0];

pp[i] : X[II>=SA[0];

last_in[i>0]: lastplane >= x;
BOUNDS

latest[i]: delay <= 1800;
earliest[i]: X >= SA;
END

A.4.V_thrpt
TITLE
V_thrpt; ! max vehicle throughput

DATA
numB := EXCELRANGE("batchSize.xIs", "batch"); !sc hed arrival

INDEX
i :=0..numB; ! planes
j =1

dataFields := 1..5;

size :=(H,L, M, S);
sizel :=size;
size2 :=size;
DATA
dataR[i,dataFields] := DATAFILE("lga.csv");
SA[i] := dataR{i,2];
S[i] := dataR{i,5];
NPJ[i] := dataR[i,4];

sep[sizel,size2] := DATAFILE("sep.csv"); Iseparat ion matrix
based on flight data, 10 planes, 11 x 11

VARIABLE

x[i]
EXPORT TO EXCELRANGE("mplOutput.xIs”,"slot");
delayli]

EXPORT TO EXCELRANGE("mplOutput.xIs”,"delay");
lastplane;

BINARY VARIABLES
yliil;
MACRO
totalDelay = sum(i:delay);

MODEL
MIN z = lastplane;

SUBJECT TO

excludeli,j>i] : x[i] - x[j] >= sep[sizel:=S[j], size2:=S][i]]
- 100000 v[i,jl;

exclude2[i,j>i] : x[j] - x[i] >= sep][sizel:=S]i] , Size2:=S[j]]
- 100000 (1 - y[i,jl);

find_arrivaldelay[i]: delay >= x - SA;

X[0]=SA[0];

pp[i] : X[II>=SA[0];

last_in[i>0]: lastplane >= x;
BOUNDS

latest[i]: delay <= 1800;
earliest[i]: X >= SA;
END

A.5. A fair
TITLE

FA; I fcfs rule with airline fairness opt, data preprocessed
INDEX

i := EXCELRANGE("lga.xIs", "index"); 10isth e start,
planes
j =10

a = EXCELRANGE("lga_catable","airlines");

size :=(H,B7,L,S);
sizel :=size;
size2 :=size;

ca_fl[a,i] := (COM,3 DAL,4 USA,5 CHQ,9 CJC,10 EGF 11 CHQ,14

CHQ,15 CJC,16 COM,17 CJC,21 CJC,22 EGF,23 CJC,29 PD T,30 ACA,32 EGF,33
EGF,34 COM,35 EGF,36 TRS,37 CHQ,40 USA,41 NWA,49 CO M,54 DAL,55 EGF,56
CJC,61 USA,62 AAL,64 JBU,65 COM,70 USA,71 EGF,73 UA L,74 AMT,80 COM,86
DAL,87 CHQ,88 CHQ,89 CJC,90 COM,91 EGF,92 AAL,97 AA L,98 DAL,99 NWA,101
PDT,102 AAL,108 COA,109 DAL,110 NKS,111 PDT,112 ACA 115 EGF,116 USA,118
USA,119 CHQ,126 TRS,127 AAL,129 DAL,130 EGF,131 EGF ,132 ACA,136 CJC,137
EGF,138 CJC,141 MEP,142 UAL,146 USA,147 AAL,152 AAL ,153 CJC,157 CJC,158
DAL,159 DAL,160 DAL,161 EGF,162 AAL,167 CJC,171 NWA 1172 CHQ,176 CHQ,177
AAL,179 CJC,180 CJC,181 COM,182 DAL,183 PDT,184 AAL ,186 USA,187 CHQ,195
CHQ,196 CJC,198 COM,199 DAL,200 PDT,201 ACA,205 CJC 206 JBU,207 EGF,214
AAL,218 AMT,219 COM,220 DAL,221 EGF,222 NWA,223 UAL 226 USA,227 CHQ,234
CHQ,235 COA,236 DAL,237 DAL,238 DAL,239 AAL,240 AAL 241 CJC,242 PDT,243

32

AAL,245 ACA,246 COM,248 PDT,249 PDT,253 CJC,254 COM ,255 DAL,256 DAL,257

EGF,258 EGF,259 NWA,260 CJC,262 UAL,263 AAL,272 DAL ,273 AAL,276 COM,277
CJC,279 COM,280 DAL,281 DAL,282 TRS,283 EGF,284 EGF ,285 EGF,286 PDT,287
PDT,289 UAL,290 CJC,297 CJC,298 NKS,299 CHQ,300 CHQ ,301 CJC,302 COM,303
EGF,304 ACA,306 USA,307 DAL,310 TRS,311 AAL,319 CJC ,320 EGF,321 EGF,322
EGF,323 NKS,324 DAL,326 JBU,327 AAL,328 EGF,329 CHQ ,334 CJC,335 DAL,336
USA,337 AAL,338 AAL,339 EGF,340 EGF,341 UAL,342 PDT ,344 UAL,345 CHQ,348
USA,349 AAL,352 DAL,353 MEP,354 ACA,358 AAL,363 ACA ,364 COM,365 MEP,366
CHQ,369 CJC,370 COM,371 DAL,372 PDT,373 DAL,374 EGF ,375 AAL,376 USA,377
EGF,380 AAL,383 AAL,384 CHQ,387 EGF,388 UAL,389 UAL ,390 CJC,392 DAL,393
AAL,399 USA,400 CJC,402 CJC,403 COA,404 DAL,405 DAL ,406 EGF,407 NKS,408
COM,412 PDT,413 AAL,421 AAL,422 CHQ,423 COM,427 DAL ,428 EGF,430 NWA,431
COA,437 USA,438 AAL,448 CHQ,449 MEP,450 AAL,465 DAL ,466 JBU,467 EGF,469
NWA,470 PDT,471 TRS,472 DAL,473 USA,474 AAL,479 JBU ,480 AAL,482 NKS,483
USA,484 DAL,489 DAL,490 CJC,494 MEP,495 AAL,496 NWA ,497 AAL,500 COA,501
NKS,505 NWA,506 AAL,511 AAL,519 AMT,520 UAL,521);
DATA
SA[i] := EXCELRANGE("lga.xIs", "arrival); I sched arrival
S[i] := EXCELRANGE("lga.xIs", "size"); ! size from 1=heavy
NP[i] := EXCELRANGE("Iga.xls", "pax"); ! no. passe ngers
NPCJa] := EXCELRANGE("lga_catable.xIs", "paxdata") ; total

passengers for airline

sep[sizel,size2] := DATAFILE("sep.csv"); Iseparat ion
matrix based on flight data, 10 planes, 11 x 11

VARIABLE
x[i]
EXPORT TO EXCELRANGE("lga.xIs", "slot");
I landing slot time, as of start of final approa ch
delay]i]
EXPORT TO EXCELRANGE("lga.xIs", "delay");
larrival delay from schedule for flight
capen[a]
EXPORT TO EXCELRANGE("lga_catable.xIs", "delay") ;
Ipax delay fraction for carrier a
maxpen;
lastplane;

BINARY VARIABLES

ylil;

MACRO
passdelay = sum(i: delay * NP);
totalpen = sum(capen);

MODEL
MIN maxpen + totalpen;

SUBJECT TO
excludeli,j>i] WHERE SA[i] < SA[j] : x[j] - x[i] >
sizel:=9S]i], size2:=S[j]];

exclude2[i,j>i] WHERE SA[i] = SA[j] : x[j] - X[i]
sizel:=9Ji], size2:=S[j]] - 10000 y[i,j];

exclude3[i,j>i] WHERE SA[i] = SA[]] : x[i] - x[i]
sizel:=S]j], size2:=S]i]] - 10000 (1 - y[i,j]);

find_arrivaldelay[i]: delay = x - SA;

last_in[i]: lastplane >= x;
capenalty[a]: capen = 1/NPC * sum(i IN ca_fl : del
maxpenalty[a]: maxpen >= capen ;
BOUNDS
earliest[i]: x>=SA; |

0 <=delay <=1800;

END

A.6. WCG

/*
* Flight.java

* Created on April 23, 2007, 3:29 PM

*

* To change this template, choose Tools | Template
* and open the template in the editor.

*/

package databasetestl;

/**

* @author Jeffrey
*

public class Flight {

private int flightindex;
private String flightNumber;
private int scheduledArrivalTime;

=sep[

>=sep[

>= sep[

ay * NP) ;

Manager

34

private String aircraftType;
private String carrier;

private int numPassengers;
private WeightClass weightClass;
private int actualArrivalTime;
private int delay;

[** Creates a new instance of Flight */
public Flight() {
}

public Flight(int flightindex, int scheduledArr

carrier, int numPassengers, WeightClass weightClass

this.setFlightindex(flightindex);
this.setScheduledArrivalTime(scheduledArriv
this.setCarrier(carrier);
this.setNumPassengers(numPassengers);
this.setWeightClass(weightClass);

}

public int getFlightindex() {
return flightindex;

}

public void setFlightindex(int flightindex) {
this.flightindex = flightindex;

}

public String getFlightNumber() {
return flightNumber;

}

public void setFlightNumber(String flightNumber
this.flightNumber = flightNumber;

}

public int getScheduledArrivalTime() {
return scheduledArrivalTime;

}

public void setScheduledArrivalTime(int schedul
this.scheduledArrivalTime = scheduledArriva

}

public String getAircraftType() {
return aircraftType;

}

public void setAircraftType(String aircraftType
this.aircraftType = aircraftType;

}

public String getCarrier() {
return carrier;

}

public void setCarrier(String carrier) {

ivalTime, String

)

alTime);

)

edArrivalTime) {
[Time;

)

35

this.carrier = carrier;

}

public int getNumPassengers() {
return numPassengers;

}

public void setNumPassengers(int numPassengers)
this.numPassengers = numPassengers;

}

public WeightClass getWeightClass() {
return weightClass;

}

public void setWeightClass(WeightClass weightCl
this.weightClass = weightClass;

}

public int getActualArrivalTime() {
return actualArrivalTime;

}

public void setActualArrivalTime(int actualArri
this.actualArrivalTime = actualArrivalTime;

}

public int getDelay() {
return delay;

}

public void setDelay(int delay) {
this.delay = delay;

}

public void updateDelay() {
setDelay(getActualArrivalTime()-getSchedule

public String toString() {
return (scheduledArrivalTime + ", " + weigh

, "+ actualArrivalTime + ", " + delay);

}
}
/*
* WeightClass.java

* Created on April 23, 2007, 3:38 PM

*

* To change this template, choose Tools | Template
* and open the template in the editor.
*/

package databasetest1;

import java.io.BufferedReader;
import java.io.File;

ass) {

valTime) {

dArrivalTime());

tClass.toString() +

Manager

36

import java.io.FileReader;
import java.io.|OException;
import java.util. Scanner;

/**

*

* @author Jeffrey
*
public enum WeightClass {
SMALL,
LARGE,
B757,
HEAVY;

private int beforeSmall;
private int beforeLarge;
private int beforeB757;

private int beforeHeavy;

public static final void initialization(File da
IOException {
BufferedReader inputStream = null;

String line;

Scanner s = null;

try {
inputStream =

new BufferedReader(new FileReader(d
for (WeightClass item : WeightClass.val

if ((line = inputStream.readLine())

s = new Scanner(line);

}

item.beforeSmall = s.nextInt();

item.beforeLarge = s.nextint();

item.beforeB757 = s.nextInt();

item.beforeHeavy = s.nextInt();

}

} finally {
if (inputStream != null) {

inputStream.close();
}

s.close();

}

public static WeightClass getWeightClassFromStr

weightClassString) {
WeightClass weightClass = LARGE;
if (weightClassString.equals(WeightClass.SM
weightClass = SMALL;
} else if

(weightClassString.equals(WeightClass.LARGE.toStrin

weightClass = LARGE;
} else if

(weightClassString.equals(WeightClass.B757.toString

weightClass = B757;

taFile) throws

ataFile));

ues()) {
1= null) {

ing (String

ALL.toString())) {

g0)) {

N {

37

} else if
(weightClassString.equals(WeightClass.HEAVY .toStrin
weightClass = HEAVY;
} else System.err.printin("wrong Wake Class
return weightClass;

}

public static WeightClass getWeightClassFromInt
weightClassint) {
WeightClass weightClass = LARGE;
if (weightClassint == 4) {
weightClass = SMALL;
} else if (weightClassint == 3) {
weightClass = LARGE;
} else if (weightClassint == 2) {
weightClass = B757;
} else if (weightClassint == 1) {
weightClass = HEAVY;
} else System.err.printin("wrong Wake Class
return weightClass;

}

int getSeparation (WeightClass weightClass) {

int separation=0;

switch (weightClass) {
case SMALL: separation = beforeSmall; b
case LARGE: separation = beforeLarge;
case B757: separation = beforeB757; bre
case HEAVY: separation = beforeHeavy; b
default: System.out.printin("Invalid we

}

return separation;

}

int convertedOrdinal (WeightClass desiredWeight

wantLarger) {

int relativeOrdinal = this.ordinal() -
desiredWeightClass.ordinal();

int convertedOrdinal = Math.abs(relativeOrd

if ((wantLarger && relativeOrdinal<0) || (!
relativeOrdinal>0)) {

convertedOrdinal += 3;
}

return convertedOrdinal;

}

boolean isBetterThan(WeightClass baseWeightClas
desiredWeightClass, Boolean wantLarger) {
if (this.convertedOrdinal(desiredWeightClas
baseWeightClass.convertedOrdinal(desiredWeightClass
return true;
}else {
return false;

g0)) {

String.");

(int

Int.");

reak;

break;

ak;

reak;

ightClass."); break;

Class, Boolean

inal);
wantLarger &&

s, WeightClass

s, wantLarger) <
, wantLarger)) {

38

* Main.java

*

*

package databasetestl;

import java.io.File;

import java.io.|OException;
import java.sqgl.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql. SQLException;
import java.sql.Statement;
import java.util.LinkedList;
import java.util.Listlterator;

/*

* Main.java

*

* Created on April 4, 2007, 8:36 PM

*

* To change this template, choose Tools | Template
* and open the template in the editor.

*

package databasetestl;

import java.io.File;

import java.io.|OException;
import java.sqgl.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.LinkedList;
import java.util.Listlterator;

/**
*
* @author Jeffrey
*/
public class Main {

/** Creates a new instance of Main */
public Main() {
}

/**
* @param args the command line arguments
*/
public static void main(String[] args) throws |
WeightClass.initialization(new File("sep fr
int.txt");
LinkedList<Flight> flights = new LinkedList

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDr

Manager

OException {
omstoh

0

iver");

39

Connection ¢ =

DriverManager.getConnection("jdbc:odbc:or680excel”,

Statement stmnt = c.createStatement();
String query = "select * from [Sheet1$]
ResultSet rs = stmnt.executeQuery(query
while (rs.next()) {
flights.add(new Flight(rs.getint("i
rs.getint("sched"), rs.getString("carrier"),

rs.getint("pax"),WeightClass.getWeightClassFromint(

)

stmnt.close();
c.close();
} catch (SQLException s) {
System.out.printin("SQL Error: " + s.to
s.getErrorCode() + " " + s.getSQLState());
System.exit(0);
} catch (Exception e) {
System.out.printin("Error: " + e.toStri
e.getMessage());
System.exit(0);
}
Listlterator<Flight> flightlterator = fligh
LinkedList<Flight> flightsSequenced = new L
Flight previousFlight = null;
Flight iteratedFlight = null;
if (flightlterator.hasNext()) {
iteratedFlight = flightlterator.next();

iteratedFlight.setActualArrivalTime(iteratedFlight.
ime());
iteratedFlight.updateDelay();
flightlterator.remove();
flightsSequenced.add(iteratedFlight);
previousFlight = iteratedFlight;
}else {
System.out.printin("Empty schedule!");
return;
}
Boolean wantLarger = true;
while (flightlterator.hasNext()) {
int earliestArrivalTimeForSmall =
previousFlight.getActualArrivalTime() +

previousFlight.getWeightClass().getSeparation(Weigh

Flight bestEligibleFlight = null;
do {
iteratedFlight = flightlterator.nex
if (iteratedFlight.getScheduledArri
previousFlight.getActualArrivalTime() +
previousFlight.getWeightClass().getSeparation(itera

lass())) {
if (bestEligibleFlight == null
iteratedFlight.getWeightClass().isBetterThan(bestEl
htClass(), previousFlight.getWeightClass(), wantLar
bestEligibleFlight = iterat
}
}

rs.getint("size"))

String() +" " +

ng() +

ts.listlterator();
inkedList();

getScheduledArrivalT

tClass.SMALL);

tQ);
valTime()<=
tedFlight.getWeightC

I
igibleFlight.getWeig

gen)) {
edFlight;

40

} while (iteratedFlight.getScheduledArr
earliestArrivalTimeForSmall && flightlterator.hasNe
if (bestEligibleFlight == null) {
wantLarger = true;
flightlterator = flights.listlterat
iteratedFlight = flightlterator.nex

iteratedFlight.setActualArrivalTime(iteratedFlight.
ime());
}else {
if
(bestEligibleFlight.getWeightClass().convertedOrdin
tWeightClass(), wantLarger) > 3) {
wantLarger = lwantLarger;

flightlterator =
flights.listlterator(flights.indexOf(bestEligibleFI
iteratedFlight = flightlterator.nex

iteratedFlight.setActualArrivalTime(previousFlight.

0+
previousFlight.getWeightClass().getSeparation(itera

lass()));
}

iteratedFlight.updateDelay();
flightlterator.remove();
flightsSequenced.add(iteratedFlight);
previousFlight = iteratedFlight;
flightlterator = flights.listlterator()

flightlterator = flightsSequenced.listitera
int totalNumFlights = 0;
int totalFlightDelay = 0O;
int totalNumPassengers = 0;
int totalPassengerDelay = 0;
while (flightlterator.hasNext()) {
iteratedFlight = flightlterator.next();
totalNumFlights++ ;
totalFlightDelay += iteratedFlight.getD
totalNumPassengers += iteratedFlight.ge
totalPassengerDelay += iteratedFlight.g
iteratedFlight.getNumPassengers();
}
double averageFlightDelay = (double)(totalF
totalNumFlights;
double averagePassengerDelay = (double) (to
totalNumPassengers;
System.out.printin("Number of flights: " +
System.out.printin("Average flight delay in
averageFlightDelay/60);
System.out.printin("Number of passengers: "
totalNumPassengers);
System.out.printin("Average passenger delay
averagePassengerDelay/60);

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDr

ivalTime() <=

xt());

or();
t();

getScheduledArrivalT

al(previousFlight.ge

ight));
tQ);

getActualArrivalTime

tedFlight.getWeightC

tor();

elay();
tNumPassengers();

etDelay() *
lightDelay) /
talPassengerDelay) /

totalNumFlights);
minutes: " +

+

in minutes: " +

iver");

41

Connection ¢ =

DriverManager.getConnection("jdbc:odbc:or680excel”,

Statement stmnt = c.createStatement();
stmnt.executeUpdate("DROP TABLE [output
stmnt.executeUpdate("CREATE TABLE [outp
INTEGER, " +
"scheduledArrivalTime INTEGER,
INTEGER, " +
"weightClass VARCHAR, actualArr
delay INTEGER, newSequence INTEGER)");
int newSequence = 0;
for (Flight item: flightsSequenced) {
int thisFlightindex = item.getFligh
String thisFlightNumber = item.getF
String query = "INSERT INTO [output
scheduledArrivalTime, numPassengers, " +
"weightClass, actualArrival
newSequence) VALUES ("
+ item.getFlightindex() +
"" + item.getScheduledArri
"" + item.getNumPassengers
"""+ item.getWeightClass(
"" + item.getActualArrival

;" + item.getDelay() +

;" + newSequence++ +
Dl
stmnt.executeUpdate(query);
}
String query = "select * from [Sheet1$]
ResultSet rs = stmnt.executeQuery(query
stmnt.close();
c.close();
} catch (SQLException s) {
System.out.printin("SQL Error: " + s.to
s.getErrorCode() + " " + s.getSQLState());
System.exit(0);
} catch (Exception e) {
System.out.printin("Error: " + e.toStri
e.getMessage());
System.exit(0);
}
}

}
A.7. Windowing Code

myExcelSep.cpp

"),

ut] (flightindex
numPassengers

ivalTime INTEGER,

tindex();
lightNumber();
] (flightindex,

Time, delay,

valTime() +

0+

)+ "+
Time() +

String() +" " +

ng() +

(This is the main code which calls the optimizatomaes and also does the excel sheet

manipulations)

#include "conio.h"
#include "BasicExcelVC6.cpp"
#include <time.h>

using namespace YExcel;

42

double* mainOfOptimax(int,char*);

int max(int a, int b) {
int maxval;
if @>=h){
maxval = a;
}else {
maxval = b;
}
return maxval;
Hlend max

int main(int argc, char* argvl])

int totalFlights = 523;

char *modelName =" \\T.mpl";

size_tone = 0; // variable type to open first w
excel file

int inputDataColumns = 5; // number of fields in
file

orksheet of any

the FlightData input

/l index, arrival time,, exp

arr time, size, PAX

int batch;
time_t start,end;
double dif;

BasicExcel elndex;

elndex.Load("batchSize.xIs");

BasicExcelWorksheet* sheet_index = elndex.GetWork
batch = sheet_index->Cell(0,0)->GetInteger();

/I Load the workbook FLIGHTDATA with one sheet 'd
all the flight data

BasicExcel e;

e.Load("flightData.xIs");

BasicExcelWorksheet* sheet_fData = e.GetWorksheet

/lcreate another worksheet, FinalOutput which con
of flights
BasicExcel e3;
e3.New(1);
BasicExcelWorksheet* sheet_finalOutput = e3.GetWo

[ffirst row of the input file FLIGHTDATA is the h
the leading flight(already fixed)
I/l Load the workbook Iga which contains the input
BasicExcel el;
el.New(1);
BasicExcelWorksheet* sheet_l|ga = el.GetWorksheet(

for (size_t r=0;r<batch+1;++r)

{

for (size_t c=0;c<inputDataColumns;++c)

{

sheet(one);

ata’', this contains

(one);

tains the final seq

rksheet(one);

eader, second row is

for this iteration

one);

/Isheet_lga->Cell(r+1,c)-

>SetDouble(sheet_fData->Cell(r+1,c)->GetDouble());
sheet_lga->Cell(r,c)->SetDouble(sheet_fData-

>Cell(r+1,c)->GetDouble());

if(r==0){

sheet_finalOutput->Cell(1,c)-
>SetDouble(sheet_fData->Cell(r+1,c)->GetDouble());
}

}
if(r==0)
{
sheet_finalOutput->Cell(0,0)-

>SetString("Index");

sheet_finalOutput->Cell(0,1)-

>SetString("Arrival);

sheet_finalOutput->Cell(0,2)->SetString("E

Arrival");

sheet_finalOutput->Cell(0,3)-

>SetString("Type");

Arr");

sheet_finalOutput->Cell(0,4)->SetString("PAX");
sheet_finalOutput->Cell(0,5)->SetString("Sched

sheet_finalOutput->Cell(0,6)-

>SetString("Delay");

}

size_t maxRows = sheet_Iga->GetTotalRows();

size_t maxCols = sheet_lga->GetTotalCols();

el.SaveAs("lga.xls");
e3.SaveAs("finalOutput.xIs");

ofstream f("Iga.csv");

sheet_lga->Print(f, ',', '\"); // Save the Iga
f.close();

size_t rr=0;
size_t cc=0;
BasicExcel eOut;

int num;
int leadindex;
double leadSlot;
double leadDelay;
num= max(totalFlights-batch,0);
/Inum=1;
time (&start);
for (int iter = O ; iter < num ; ++iter)

/I general comments: Call the MPL program.. it w

integer which is the index

/I of the Flight which will be first in the give

(after the leading flight. index=0

/I lets say that index is leadindex

double *ret;

Xls file as Igs.CSV

ill return an

n sequence

44

ret = mainOfOptimax(batch,modelName);

leadIindex = ret[0];
leadSlot = ret[1];
leadDelay = ret[2];

if(iterl=num-1)

for (cc=0;cc<inputDataColumns;++cc) //because 2 new
columns(sched arr, delay)

sheet_Iga->Cell(0,cc)->SetDouble(sheet_lga-
>Cell(leadIndex,cc)->GetDouble());

sheet_finalOutput->Cell(iter+2,cc)-
>SetDouble(sheet_lga->Cell(leadindex,cc)->GetDouble 0);

I replace the winning flight row with the next
row of our database(flightData)

sheet_lga->Cell(leadindex,cc)-
>SetDouble(sheet_fData->Cell(iter+batch+2,cc)->GetD ouble());

}

/I sarrival data: column 1

sheet_lga->Cell(0,1)->SetDouble(leadSlot);

/lbecause 2 new columns(sched arr, delay)

sheet_finalOutput->Cell(iter+2,inputDataColumns)-
>SetDouble(leadSlot);

sheet_finalOutput->Cell(iter+2,inputDataColumns+1) -
>SetDouble(leadDelay);

}

else

{
time (&end);
dif = difftime (end,start);

BasicExcel ee;
ee.Load("mplOutput.xIs");
BasicExcelWorksheet* sheet_mplOutput =
ee.GetWorksheet(one);

sheet_finalOutput->Cell(1,8)->SetDouble(dif);

for (int ii=0;ii<batch;++ii)

for (cc=0;cc<inputDataColumns+2;++cc) //because
2 new columns(sched arr, delay)

if(cc<inputDataColumns)

sheet_finalOutput-
>Cell(num+1+ii,cc)->SetDouble(sheet_lga->Cell(ii+1, cc)->GetDouble());

}

else

{

45

sheet_finalOutput-
>Cell(num+1+ii,cc)->SetDouble(sheet_mplOutput->Cell
inputDataColumns)->GetDouble());

}
}
}

el.SaveAs("lga.xls");

ofstream f("lga.csv");

sheet_lga->Print(f, ',', \"); // Save the Iga.xl
lgs.CSV

f.close();

e3.SaveAs("finalOutput.xIs");
llgetch();
}

printf ("It took %.2If seconds to RUN \n", dif);
return O;
}

myMPL.cpp

(ii+1,cc-

s file as

(This is the code which is called by the aboveps@myExcelSep.cpp). This does the actual

calling of the MPL optimization code.)
[* OMaxTest.cpp */

#include <stdio.h>
#include <iostream.h>
#include <tchar.h>
#include<conio.h>

#include <windows.h>
#include <atlbase.h>

#import "OptiMax.tlb"

int minindex;
int batchS;
double *combined;

int minFunction(double *a,int size)
{ -

inti;

int index;

double temp=99999;

for (i=1;i<=size;i++)

{

if(afil<temp)

46

temp=a[i;
index = i;
}
}
cout<<a[index];
return index;

}

void SolveModelTypeLib(char *ModelFilename, charof$erName)
{

using namespace MPLLib;

printf("Call OptiMax using TypeLib\n");

try {
IOptiMaxPtr pMpl(__uuidof(MPLLIib::OptiMax));
ISolverPtr pSolver;
IModelPtr pModel;
IMatrixPtr pMatrix;
IVariablesPtr pVars;
IConstraintsPtr pCons;
ISolutionPtr pSol;
IVariableVectorPtr pVarVector;
IVariableVectorPtr pVarVectorl;
IVariablePtr pVar;
IVariablePtr pVarl,

long result;

pSolver = pMpl->Solvers->Add(SolverName); ét$Solver =
MPL.Solvers.Add "CPLEX"

pModel = pMpl->Models->Add("Model1"); /I Set pMel =
MPL.Models.Add("Model1")

printf("READ: '%s'\n", ModelFilename);
result = pModel->ReadModel(ModelFilename); N Bsult =
pModel.ReadModel("planning.mpl")

if (result) {
printf("ReadModel(%s) failed (result=%d\n\n", BelFilename, result);
return;

}

pMatrix = pModel->Matrix;
/I Set pMatrix = pModel.Matrix

pVars = pMatrix->Variables;
/I Set pVars = pMatrix.Variables

47

pCons = pMatrix->Constraints;
/I Set pCons = pMatrix.Constraints

I printf("MODEL.: vars=%d, cons=%d, nz=%d, int=%t\
I pVars->Count, pCons->Count, pMatrix-
>NonZeroCount, pVars->IntegerCount);

result = pModel->Solve(pSolver);
/I Set result = pModel.Solve(pSolver)

if (result) {
printf("Solve() failed (result=%d\n\n", result);
return;

}

pSol = pModel->Solution;
/I Set pSol = pModel.Solution

printf("SOLVE: obj=%.10lg, iter=%d, hodes=%d, u#s'%s"\n",
pSol->ObjectValue, pSol->IterationCount,

pSol->NodeCount, (LPCSTR)pSol-
>ResultString);

pVarVector = pModel->VariableVectors->Getltenglay”); // pVarVector
pModel.VariableVectors("Production™)

pVarVectorl = pModel->VariableVectors->Getltexi(; /I pVarVector =
pModel.VariableVectors("Production™)

inti=0;

/* read this from excel file */
/* int total = 8; (# of flights = total+1)*/
[/l batch is a global variable = batch size

/IbatchS = 10;

double *delays;
double *xx;
delays = (double *) malloc((batchS+1)*sizeof(dm)h
memset(delays,0,(batchS+1)*sizeof(double));
Il //double delays[11];

xX = (double *) malloc((batchS+1)*sizeof(double))
memset(xx,0,(batchS+1)*sizeof(double));

combined = (double *) malloc(3*sizeof(double));

memset(combined,0,3);

printf("DELAY: ");
pVar = pVarVector->MoveFirstPos();
while (pVarVector->PosValid) {

48

delays[i]=pVar->Activity;

i++:

printf(" [%d]=%.10Ig,", i, pVar->Activity); Il War.Activity
cout<<"\n"<<i<<"\n";

pVar = pVarVector->MoveNextPos();

}
printf("\n\n");

i=0;
printf("X(Slots): ");
pVarl = pVarVectorl->MoveFirstPos();
while (pVarVectorl->PosValid) {
xx[i]=pVarl->Activity;
i++;
printf(" [%d]=%.10Ig,", i, pVarl->Activity); /pVar.Activity
cout<<"\n"<<i<<"\n";
pVarl = pVarVectorl->MoveNextPos();

}
printf("\n\n");

/* exclude the first element */

/1 0 is the header row

for (i=0; i<=batchsS; i++)

{ cout<<i<<"\t"<<xx[i]<<"\n"; }

for (i=0; i<=batchsS; i++)
{ cout<<i<<"\t"<<delays[i]<<"\n";

minindex=minFunction(xx,batchS);
combined[0] = minindex;
combined[1] = xx[minIndex];
combined[2] = delays[minindex];

}

catch (const _com_error& Err) {
printf("Error: %s (0x%x)\n\n%s\n",
(LPCSTR)Err.ErrorMessage(), Err.Error(),
(LPCSTR)Err.Description());

}

double* mainOfOptimax(int X, char* modN)

batchS = x;

char *SolverName = "d:\\mplwin4\\cplex91.dIl";
Colnitialize(NULL);

int mm=0;

cout<<"\n"<<"popo"<<"\n";
cout<<minlndex<<"\n";
SolveModelTypeLib(modN, SolverName);

cout<<minindex<<"\n";
cout<<combined[0]<<"\n";
cout<<combined[1l]<<"\n";
cout<<combined[2]<<"\n";
cout<<"\n"<<"popo"<<"\n";
CoUninitialize();

/Ireturn minindex;

return combined;

/Ireturn O;
}
/-k
int main()
{
batchS = 10;

char *SolverName = "d:\\mplwin4\\cplex91.dIl";
Colnitialize(NULL);

int mm=0;

cout<<"\n"<<"popo"<<"\n";
cout<<minindex<<"\n";
/[SolveModelTypeLib("C:\\Documents and

Settings\\Administrator\\Desktop\\680_update\\apTi\mpl", SolverName);

SolveModelTypeLib(".\\FT.mpl", SolverName);
cout<<minindex<<"\n";
cout<<"\n"<<"popo"<<"\n";

CoUninitialize();

return minindex;

[Ireturn O;

50

Appendix B — Work Breakdown Structure

B.1 — Vivek Kumar
* Prepared project proposal presentation and draft
* Researched already existing work in the field
* Explored Optimax library for J#
* Implemented windowing in C++
» Used BasicExcel(open source) library for excel mpalaitions through C++
» Assisted with paper and presentation

B.2 — David Teale
* Solved FCFS case using Excel
e Formulated MPL models
* Ran and checked mpl models
» Assisted with integration of windowing and mpl mtsde
* Massaged results
* Analyzed results
» Assisted with presentation and paper

B.3 — Jianfeng Wang
» Assisted with problem definition and formulation
» Collected input data
* Solved FCFS using Java
* Used Java Database Connectivity (JDBC) to accessl Hie
* Implemented Weight Class Grouping using Java
» Assisted with presentation and paper

B.4 — Seth Wenchel
» Organized tasking of group members
* Researched previous work
* Worked with Optimax and J#
* Created windowing approach
* Ran MPL models
* Collected data
» Assisted with presentation and paper

51

