
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Advanced Aircraft Sequencing: 
Stacking the deck to deal you a better hand 

 
Vivek Kumar 
David Teale 

Jianfeng Wang 
Seth Wenchel, Team Lead 

 
Sponsors: 

Dr. Lance Sherry 
Dr. John Shortle 

Center for Air Transportation Systems Research 
George Mason University



 2 

Table of Contents 
I. Executive Summary 3 
II. Introduction 4 

A. Background 4 
B. Problem Statement 5 

III. Modeling Approach 5 
A. Performance Metrics 5 
B. Assumptions 6 
C. Models 6 

1. First Come, First Serve (FCFS) 8 
2. Passenger Delay Minimization, P_delay 8 
3. Vehicle Delay Minimization, V_delay 9 
4. Vehicle Throughput Maximization, V_ thrpt 10 
5. Airline Fairness, A_fair 11 
6. Weight Class Grouping, WCG 12 

D. Model Implementation 13 
E. Sequential Windowing 13 

IV. Results & Analysis 16 
A. FCFS 17 
B. PAX Delay 18 
C. Vehicle Delay 20 
D. Throughput 22 
E. Airline Fairness 24 
F. Weight Class Grouping 26 

V. Conclusion 27 
References Used 28 
Appendix A – Model Source Code 29 
Appendix B – Work Breakdown Structure 51 
 

List of Figures 
Figure 1. Illustration of the Optimization Process............................................................ 14 
Figure 2. Windowing Optimization Flow Chart ............................................................... 14 
Figure 3. Number of Hourly Arrivals Scheduled Over 24 Hours..................................... 16 
Figure 4. Flight Delay Results From FCFS ...................................................................... 17 
Figure 5. Average PAX Delay Results ............................................................................. 18 
Figure 6. Average Vehicle Delay By Aircraft Type, P_delay Model............................... 19 
Figure 7. New Position From Re-Sequencing .................................................................. 20 
Figure 8. Results For Average Vehicle Delay .................................................................. 21 
Figure 9. Results For Hourly Average Vehicle Delay...................................................... 22 
Figure 10. Hourly Pax Utilization..................................................................................... 23 
Figure 11. Hourly Vehicle Utilization .............................................................................. 24 
Figure 12. Airline-Based Average PAX Delay................................................................. 25 
Figure 13 Delay by weight class....................................................................................... 26 

 



 3 

 

I. Executive Summary 
US airports use first come, first serve (FCFS) queuing to land aircraft.  

Unfortunately, while this has a nice simplicity, it is unlikely the best situation for all three 
major stakeholders: passengers, airlines, and airports.  What makes FCFS less than ideal 
is that each aircraft has an arrival slot, but the spacing between arrival slots is dependant 
upon the size of the plane that just landed and the plane that is about to land.  These slot 
sizes are mandated by the FAA and vary from a low of 72 seconds to a maximum of 280 
seconds.  In the US, planes are binned into one of four size categories, Heavy (H), 
Boeing-757 (B757), Large (L), and Small (S).   

As an example, assume that the three next planes are arriving in the following 
order: SHS.  Under the FCFS scheme, the minimum time from when the first plane lands 
until the last one can land is 352 seconds, about six minutes.  If we could switch the 
ordering to SSH, the time would be 192 seconds, about 3 minutes.  Assuming all of the 
planes showed up at the same time, this choice of ordering saves 160 seconds, enough 
time to land a fourth plane of size L or larger. 

This paper examines five different sequencing schemes and compares the outputs 
to that of a sixth scheme, FCFS, to judge improvements or degradations.  The six 
schemes are FCFS, passenger delay minimization, vehicle (or flight) delay minimization, 
vehicle throughput maximization, airline fairness maximization, and weight class 
grouping.  Each was run with data from one day at LaGuardia airport.  LaGuardia was 
chosen because it is a fairly congested airport and also has only one runway which 
simplified the model building. 
 One of the first issues we knew that we would run into was that of dimensionality.  
With over 500 flights in one day, the state space of the problem is simply too large for 
modern computers to solve in a reasonable amount of time.  However, the problem has a 
nice structure in that flights landing at 0800 have little to do with flights landing at 1700.  
We broke the data into smaller overlapping windows and ran sequential optimizations 
over one window at a time.  With this simplification, we were able to sequence the entire 
day’s flights within a couple of hours.  
 For the FCFS model we found that the average flight delay for the whole day was 
4.9 minutes with standard deviation of 4.7 minutes.  The average passenger delay was 4.7 
minutes.  Approximately 85% of all flights incurred some delay and 39% were delayed 
by more than five minutes. 
 Using the Passenger Delay model we found that we could reduce the average 
passenger delay to 2.7 minutes, a 43% reduction over FCFS.  This occurred because we 
bumped many smaller flights back and allowed the larger aircraft to land sooner. 
 In running the Vehicle Delay model, we found that we were able to reduce the 
average vehicle delay to 4.3 minutes, a 9% improvement over FCFS.  While this 
produced some gains, the average passenger delay increased slightly to 5.0 minutes.   
 The Vehicle Throughput model produced no particular improvement.  This model 
tried to minimize the time of landing for the very last plane.  However, as we did not 
allow planes to land earlier than they were scheduled to arrive, when looking at the whole 
day, the last plane landed as early as possible in all models.  When looking at the 
schedule on an hour by hour basis, there were changes of only one or two flights per 



 4 

hour.  This is likely due to LaGuardia’s homogenous mixture of planes which is 90% L, 
7% B757, and 3% S. 
 The Airline Fairness maximization looked at the 17 airlines that had more than 
200 passengers per day and attempted to equalize the average per passenger delay.  For 
FCFS, the average per passenger delay for this subgroup was 5.0 minutes with a standard 
deviation of 2.0 minutes and a range of 7.4 minutes.  The per passenger delay for this 
Airline Fairness model was worse at 5.9 minutes, but both the standard deviation and 
range were smaller at 1.9 minutes and 6.5 minutes, respectively. 
 Finally, the Weight Class Grouping model was a heuristic technique that creates 
groups of aircraft of the same weight class and land them in batches.  The idea was to 
have a technique that could produce better results than FCFS but without the 
computational complexity of an optimization routine.  The average passenger delay was 
4.2 minutes with a standard deviation of 5.7 minutes.  The average vehicle delay was 4.5 
minutes with a standard deviation of 5.7 minutes. 
 While the Passenger Delay model gave the single biggest improvement, it heavily 
penalizes small flights to achieve those gains.  Commuter flights which are scheduled for 
an hour in duration would often take one and a half hours, something that would not be 
favorable with the passengers or airlines.  Additionally, these results are highly data 
dependant.  Data from another airport with a more heterogeneous mixture of planes may 
yield a very different set of results.  However tempting it may be, given this information, 
it is unwise to crown a winner. 
 Future work on this problem should consider implementing dynamic window 
sizes for the optimizations as this would likely allow large gains in performance and 
possibly produce better results if those given here are suboptimal.  Additional analysis on 
other airports with more heterogeneous flight mixtures would be useful to see if any gains 
were to be had.  Additionally, the models could be modified to handle small advances of 
flights, i.e. landing early.   

II. Introduction 

A. Background 
Currently, most airports in the US land planes on a first come, first served (FCFS) 

basis. While this seems like a fair and easy system to use, it is not the most efficient and 
is vulnerable to abuse.  Airlines have been known to try and game the system by filing 
incorrect flight plans which they know will win approval and then changing them mid-
flight.  By cutting corners out of their scheduled route they try to move up their arrival 
time despite efforts from air traffic management authority to smooth out the flow of 
traffic. 

Additionally, in all but a few airports, airlines are free to schedule arrivals and 
departures at will.  This leads to clusters of closely spaced flights separated by gaps 
during which the runway is idle.  More efficient use of the runway would benefit all 
stakeholders including passengers, airlines, and airports.   

The FAA mandates separation distances between plane landings for safety. These 
distances depend on the respective sizes of the plane that just landed and the one that is 
next in line. Based on these separations, some reordering of arrival slots by moving an 
airplane ahead or behind in the queue by plus or minus ten positions could allow greater 
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throughput of aircraft and create a more efficient use of the service resource, which is in 
this case the runway.  
 

B. Problem Statement 
The air traffic industry has many stakeholders, most notably passengers who fly 

and pay for the service.  Other stakeholders are the airlines that operate the aircraft and 
airports that control the ground infrastructure.  Each of these stakeholders plays a key 
role in the overall industry and each has their own perspective on what would be best.  

Passengers, for example, do not want to be late.  They would want minimal 
arrival delay from the traffic system.  

Airlines want to be profitable which means attracting passengers.  One way to do 
this is by keeping the percentage of flights delayed as low as possible.  If an airport to 
which the airline offers service has chronic delays, the airline is negatively affected.  This 
is especially true if the airport in question is a hub of the airline.  Airlines also want to 
keep their own flights on time so that the compounding effect of a delayed flight on the 
remaining day’s schedule is kept in check.  For example, when a flight is delayed, it can 
affect the airline’s gate schedule, the next outbound flight and subsequent flights by that 
vehicle, and other outbound flights that require the delayed crew.  Thus, airlines want 
minimal vehicle delay (overall but especially for their own flights) and minimal 
passenger delay from their own flights. 

Airports want to get as many flights as possible into the airport to raise money 
directly and drive commerce in their concourses and respective cities.  Their objective is 
to maximize vehicle throughput and minimize vehicle delays. 

Any new solution to sequencing arrivals over the current FCFS discipline has to 
consider ways to ensure its scheme does not favor one airline over another.  The new 
sequencing strategy must also be fair to the stakeholders, who are passengers, airlines, 
and airports.  The problem that we are then faced with is this: “given multiple competing 
interests, how can arrivals be sequenced fairly and efficiently?” 

III. Modeling Approach 

A. Performance Metrics 
In addition to tracking individual flight delay, which is the difference between 

assigned and scheduled arrival times, the distribution of flight delays is of interest and is 
characterized by its average and standard deviation.    

Average passenger delay, defined by the sum over all flights of the product of 
flight delay and number of passengers on that flight scaled by the total of all passengers is 
also reported.  A modification of this metric is used for airline fairness and is defined 
below in the section for that model. 

Vehicle or passenger throughput is defined as the number of vehicles or 
passengers per unit time, respectively.  Capacity is defined as the maximum theoretical 
throughput.  We have assumed a capacity for vehicles based on the minimum separation 
for a stream of 100% large aircraft and a capacity for passengers based on 100% large 
aircraft carrying 100 passengers.  These capacities are 43.3 veh/hr and 4333 
passengers/hr.  Finally, utilization is defined as throughput scaled by capacity. 
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B. Assumptions 
 

1. Deterministic Optimization 
All the flights show up on their scheduled arrival time. 
 

2. No Network effect 
For the purpose of our study we assume that the airport is isolated and there is no 
network propagation of delays due to reshuffling. 
 

3. Capacity Estimation 
Utilization is the ratio of throughput and capacity. We estimate the capacity by 
assuming a case of a fleet having 100% large aircrafts. This assumption is reasonable 
since the given data has fleet mix: 0% heavy, 7% Boeing 757, 90% large, and 3% 
small.  Refer to Results and Analysis Section IV for details. 
 

4. Aircraft cannot be delayed more than 30 minutes 
This assumption puts an upper cap on the amount of time an aircraft can be held up in 
the air before it is assigned a landing slot. It prevents aircraft from being delayed 
indefinitely. 
 

5. No early arrivals allowed 
For the purpose of this study we assumed that an aircraft could not arrive before its 
Scheduled arrival time. Even though this seems like an incoherent assumption, especially 
from a passenger’s perspective who does not mind arriving a few minutes early, an early 
arrival is not desirable in common practice. An early aircraft sits and waits for a 
marshaller to aid with final parking, and then waits for someone to position the jet way 
and open the door. Because flight attendants are delayed inbound, the boarding process 
for the next aircraft is delayed and the aircraft departs late.   This is described in the paper 
“The Network Airline Production Problem” by R. Baiada. 

 

C. Models 
 The benchmark model for this study is a FCFS queuing discipline.  This closely 
models the arrival sequencing strategy used in practice.   
 The formulation of the four optimization strategies is based on the machine 
scheduling model which is well known in the field of optimization.  Other models were 
considered, but it was believed that the machine scheduling model would lend itself to 
the problem nicely and in a straightforward way.  Decision variables and constraints in 
the machine scheduling model are analogous to those in our problem.   

We did consider the general assignment model, and successfully applied this to 
the aircraft problem for the case in which arrival slot sizes were uniform (results 
omitted).  In order to account for variations in slot sizes due to aircraft size and wake 
vortices, however, the machine scheduling model was utilized.     
 The four objective functions in our optimization models are as follows:  

• minimize total passenger delay 
• minimize total vehicle delay 



 7 

• minimize time of the last plane (to maximize throughput) 
• minimize the greatest airline specific passenger delay (to increase airline equity) 

 
The general form of the machine scheduling model assumes there is some number 

of machines available to process different jobs.  In some cases, only certain jobs can be 
performed on a given machine.  For example machine X adds part A to the product 
whereas machine Y adds part B, before the product can be completely assembled.  
Accordingly, some jobs must be executed in a particular order, and the machine 
scheduling model can account for this.  Additional constraints can also be added 
including a product completion time for any particular job or sequence of jobs.  

The aircraft sequencing problem modeled in this study assumes that one runway 
is available for arrivals.  This runway is analogous to one machine that processes jobs.  
Each flight is a job and only one flight can occupy the runway at any time.  The 
optimization routine must assign a landing slot or start time for each job.  This slot time, 
which is the main decision variable, must not be sooner than the aircraft is available to 
land.  The assigned time must also be later than the previous plane’s start time by at least 
the separation time mandated by the FAA for safety.  

The main constraints in the model are designed to ensure minimum separation.  
They compare every pair of planes to be considered and force the absolute difference 
between their landing times to be at least the minimum separation time.  These minimum 
separation times are known in advance and (as our model ignored wind effects) depend 
only on the size of each plane.  These times are shown in Table 1.  There are four 
categories for size in the U.S.  These are, in decreasing order of size, heavy, Boeing 757, 
large, and small. The larger the plane, the more wake turbulence it creates behind it and 
the more air turbulence it can safely fly through.  This makes the situation in which a 
small immediately follows a heavy the worst of all sequence pairs in terms of separation 
time (280 sec) and hence poor traffic throughput.   

 

Table 1 Aircraft Separation Requirements 

Trailing aircraft 
Time Separation (sec) 

Heavy B757 Large Small 

Heavy 96 137 157 280 

B757 96 103 121 271 

Large 72 77 83 182 

Leading 
aircraft 

Small 72 77 83 120 
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1. First Come, First Serve (FCFS) 
 The first queue discipline we modeled was FCFS with tie breaking based on a 
random variable.  As mentioned previously, FCFS is the system currently used at most 
airports, so we used this as a baseline for the rest of our models.  FCFS was relatively 
simple to implement and verify the solution; it had the added advantage of extremely fast 
solution times.   
 We formulated the problem as follows: 
 

 { } { },, : , , :1,2,... (1)i j j i i ji j i j eta eta x x sep i j N∀ ∈ < ≤ − ≥  

                                       , (2)i ii x eta∀ ≥  

 
There are N total flights.  The earliest time of arrival for a flight, i, is given by etai. The 
minimum separation time for a pair of flights (given in Table 1) is represented by sepi,j.   
The final landing time assigned to the flight by the optimization is xi.  Constraint 1 says 
that for a pair of flights [i,j], if they have different ETAs, the time separation between the 
final landing times, xi, must be at least the minimum separation distance.  If they have the 
same ETA, then we choose one flight at random to go first, namely flight i, and then 
assign the minimum separation accordingly.  Constraint 2 ensures that the final arrival 
time cannot be earlier than the scheduled arrival time.   
 

2. Passenger Delay Minimization, P_delay 
 Having completed the baseline case, we next looked at optimizing landing 
sequences with respect to our three defined stakeholders: passengers (PAX), airport, and 
airlines.  For optimization with respect to PAX our objective was to minimize the total 
amount of passenger delay, defined as the sum over all flights of the product of the 
number of passengers on a flight multiplied by the delay (measured in seconds) for that 
flight.  While this gets more passengers through the system more quickly, it has the 
drawback of penalizing smaller flights in favor of larger ones. 
 The formulation for this approach is: 
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There are N total flights.  The earliest time of arrival for a flight, i, is given by etai. The 
minimum separation time for a pair of flights (given in Table 1) is represented by sepi,j.   
The final landing time assigned to the flight by the optimization is xi.  PAXi is the number 
of passengers on flight i, and delayi is the delay in seconds of flight i.  We use a binary 
decision variable, yi,j, to ensure that only one of the two constraints explained above in 
Constraint 4 is binding.   

Because this is an optimization we have added Equation 3, the objective function, 
which says that we are trying to minimize the sum of total passenger-seconds.  
Passenger-seconds are calculated by multiplying the number for passengers on flight i by 
the delay in seconds for flight i.  Constraint 4 replaces Constraint 1 from FCFS and says 
that if yi,j is 0, then the top constraint is binding and the bottom one is slack.  If yi,j is 1, 
then the opposite is true.  M is a large constant which ensures that the right hand side of 
the inequality is always less than the left hand side.  Again, we use Constraint 2 to ensure 
the final arrival time cannot be earlier than the scheduled arrival time.  Finally, we say 
that the delay (defined by Equation 5) for any individual flight cannot be more than 30 
minutes (1800 seconds) in Constraint 6. 

3. Vehicle Delay Minimization, V_delay 
 To optimize the timely arrival of vehicles, we used an objective that minimized 
the sum of delay for all vehicles.  Although similar to the PAX optimization discussed 
above, this treats every plane of equivalent size, regardless of passengers, as equal. 

The formulation for this approach is: 
 

{ } , ,

, ,
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There are N total flights.  The earliest time of arrival for a flight, i, is given by etai. The 
minimum separation time for a pair of flights (given in Table 1) is represented by sepi,j.   
The final landing time assigned to the flight by the optimization is xi.  The delay in 
seconds of flight i is delayi.  We use a binary decision variable, yi,j, to ensure that only 
one of the two constraints in Constraint 4 is binding.   

This formulation is almost identical to the Passenger Delay Minimization.  All of 
the constraints (2, 4, 5, and 6) have carried over and operate identically as described 
above.  The change here is only in the objective function, Equation 7, which is now 
minimizing the sum of the delays for each flight, unweighted by the number of 
passengers on each flight.  Constraint 4 says that if yi,j is 0, then the top constraint is 
binding and the bottom one is slack.  If yi,j is 1, then the opposite is true.  M is a large 
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constant which ensures that the right hand side of the inequality is always less than the 
left hand side.  Again, we use Constraint 2 to ensure the final arrival time cannot be 
earlier than the scheduled arrival time.  Finally, we say that the delay (defined by 
Equation 5) for any individual flight cannot be more than 30 minutes (1800 seconds) in 
Constraint 6. 

4. Vehicle Throughput Maximization, V_ thrpt 
 For airport optimization, the objective was to complete the given list of arrivals 
within the shortest amount of time.  This is analogous to generating the maximum 
throughput of vehicles.  This optimization also treats each plane equally regardless of 
size, however, it can increase delays for some flights in order to increase vehicle 
throughput. 
 We used the following formulation: 
 

{ } , ,
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There are N total flights.  The earliest time of arrival for a flight, i, is given by etai. The 
minimum separation time for a pair of flights (given in Table 1) is represented by sepi,j.   
The final landing time assigned to the flight by the optimization is xi.  The landing time 
assigned to the last plane is captured by timelastplane.  The delay in seconds of flight i is 
delayi.  We use a binary decision variable, yi,j, to ensure that only one of the two 
constraints in Constraint 4 is binding.   

This formulation is almost identical to the previous two.  All of the constraints (2, 
4, 5, and 6) have carried over and operate identically as described above.  There are two 
changes here: the objective function, Equation 8, which is now minimizing the time that 
the last plane lands, and Constraint 9 which sets timelastplane to the time of the latest flight.  
Constraint 4 says that if yi,j is 0, then the top constraint is binding and the bottom one is 
slack.  If yi,j is 1, then the opposite is true.  M is a large constant which ensures that the 
right hand side of the inequality is always less than the left hand side.  Again, we use 
Constraint 2 to ensure the final arrival time cannot be earlier than the scheduled arrival 
time.  Finally, we say that the delay (defined by Equation 5) for any individual flight 
cannot be more than 30 minutes (1800 seconds) in Constraint 6. 
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5. Airline Fairness, A_fair 
 For airline fairness optimization, the objective was to consider all groups of 
flights arriving at the same time and to then allocate PAX delay evenly over the airlines 
in competition for arrival slots.  FCFS is used to roughly sequence all flights, and 
optimization is used to finely sequence the subgroups of two to six flights having the 
same pre-scheduled arrival times.     

We limited the optimization to airlines that had more than 200 passengers per day. 
This was primarily to eliminate general aviation flights which may not be constant from 
day to day and so would not appear in a standard schedule.  Reducing the number of 
airlines considered also has a huge improvement on runtime because it reduced the 
dimensionality of the problem. 

This optimization differs from the others that we are presenting in that rather than 
using the data as a surrogate for a live data feed, it can be thought of as a way of 
generating a daily schedule that is fair from the start.  This hypothetical schedule is based 
on airlines’ preferences for landing slots.   

We used the following formulation: 
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There are N total flights.  The earliest time of arrival for a flight, i, is given by etai. The 
minimum separation time for a pair of flights (given in Table 1) is represented by sepi,j.   
The final landing time assigned to the flight by the optimization is xi.  PAXi is the number 
of passengers on flight i, and delayi is the delay in seconds of flight i.  The penalty for a 
give airline k, is penaltyk and the largest of those is penaltymax.  Sk is the set of all flights 
in contentious slots operated by airline k.  We use a binary decision variable, yi,j, to 
ensure that only one of the two constraints in Constraint 4 is binding.   

This formulation might be better considered as an unfairness minimization.  The 
constraints (2, 5, and 6) have carried over and operate identically as described above.  
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Once again, we have a new objective function, Equation 10, which minimizes the 
maximum penalty assigned to a given airline.  Constraint Set 11 replaces Constraint Set 
4.  Since this optimization is based around the FCFS methodology, we have the first line 
which says that if flighti is scheduled to land before flightj, then ensure the minimum 
separation time.  If the scheduled arrival times are the same, then we need to choose an 
ordering and ensure a minimum separation distance.  The other constraint becomes 
nonbinding and we enforce this by setting yi,j to either 0 or 1.  Each penaltyk is calculated 
in Equation 12; it is the total delay for passengers on flights in contentious slots for an 
airline divided by the total number of passengers on flights in contentious slots for an 
airline.  This could also be referred to as the average passenger delay expressed in 
seconds per passenger.  Constraint 13 assigns penaltymax the largest value of all 
penaltyk’s.  Constraint 4 says that if yi,j is 0, then the top constraint is binding and the 
bottom one is slack.  If yi,j is 1, then the opposite is true.  M is a large constant which 
ensures that the right hand side of the inequality is always less than the left hand side.  
Again, we use Constraint 2 to ensure the final arrival time cannot be earlier than the 
scheduled arrival time.  Finally, we say that the delay (defined by Equation 5) for any 
individual flight cannot be more than 30 minutes (1800 seconds) in Constraint 6. 

The raw data required preprocessing to create a two-column matrix in order to 
allow the MPL program to calculate penaltyk (see Appendix A.5)..   

6. Weight Class Grouping, WCG 
 While FCFS is easy to implement and understand, we know the results are 
generally suboptimal.  The results from our optimization models tell us the best possible 
solution for their respective objectives, but it comes at the cost of huge computation 
times.  To try and find a balance between speed and optimality, we developed a Weight 
Class Grouping model in Java. 

Table 1 shows that the required separation for a larger aircraft followed by a smaller 
aircraft (e.g. H-B757) is longer than the separation needed for a same weight class pair 
(e.g. H-H).  Therefore, it would be desirable to group arrivals into batches of aircraft in 
the same weight class.  In this model, we accomplish this task with the following 
heuristics: 

• The first scheduled arrival flight is set to be the first arrival. Then, based on the 
following heuristics, we search and determine the second arrival.  After that, we 
search and determine the third arrival, and so forth, until all flights are 
resequenced. 

• If the scheduled separation between flighti and flighti+j, (j≥1) is greater than that 
mandated by the FAA (i.e. separation standard constraints are nonbinding), 
arrivals are sequenced based on FCFS. 

• If there is a j, (j≥1) such that the scheduled separation between flighti and flighti+j, 

is less than that mandated by the FAA (i.e. separation standard constraints are 
binding), all arrivals which make the separation standard constraints binding are 
checked and compared. Preference for the next arrival is given to aircraft in the 
same weight class as the preceding arrival. If no aircraft of the same weight class 
is available, we start landing a batch of aircraft from another weight class.  

• When changing the weight class batch, we start by moving from smaller weight 
classes to larger ones.  That is, if we just landed a batch of Small aircraft we move 
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to Heavy, then Heavy to B757, and B757 to Large.  After the heaviest weight 
class batch is landed, we change directions and start descending in weight class 
size.   Once we reach the smallest weight class with flights, we again switch 
directions and continue in the fashion until all flights have been resequenced. 

• If separation standard constraints for a certain pair of aircraft become nonbinding, 
when arrivals sequence is based on FCFS, the direction is set to be ascending the 
next time the separation constraints become binding. 

 
As an example, the sequence H-S requires the largest separation, 280 seconds.  If we 

can swap the order to S-H the separation is only 72 seconds, a savings of 208 seconds.  If 
we cannot swap the pair and the next flight is L, then we try swapping S with that flight.  
Over the three flight sequence, this could save up to 24 seconds.  While 24 seconds isn’t 
much on its own, if we can make a few of these swaps each hour, we can fit in one or two 
more flights per hour. 

D. Model Implementation 
For the optimization portion of our solution we used MPL to encode our 

mathematical models (P_delay, V_delay, V_thrpt, and A_fair).  MPL is a macro language 
and development environment designed to automate the creation of mixed integer linear 
programs (MILP).  MPL is also integrated with CPLEX which is currently the industry 
standard MILP solving engine.  This means that once we have described our method in 
MPL, CPLEX begins to work on solving the problem.  There are other competing 
products with MPL such as OPL and AMPL; however, MPL was chosen because each 
member of the team had used it in previous coursework, and it was therefore the product 
with the smallest learning curve. 

E. Sequential Windowing 
Trying to optimize all flights scheduled to land at an airport in a given day at once 

is not realistic on stand alone computers today.  However, we can exploit the structure of 
the problem a bit to try and come close to an optimal scheduling.  Flights landing at 8:00 
a.m. have little to do with those landing at 5:00 p.m.  Using flight arrival data from the 
first of June 2006 for La Guardia airport as a surrogate for an actual live feed, we pull a 
fixed window of n flights, optimize their sequence, and then fix the arrival of the first 
one.  We then add the next flight (flight n+1 from the original list) to the window and 
rerun the optimization.  We continue to iterate in this way until we have sequenced the 
entire day’s worth of flights. See Figure 1 for an illustration of the optimization process. 
 To automate this task we used the Optimax2000 C++ library provided by 
Maximal Software.  This allowed us to read in the text file of flight data and then write 
the flights in that window to an excel file.  We then call MPL/CPLEX through the 
Optimax2000 library and the optimization begins.  Once it is finished we parse the results 
and write them back out, including any current delays introduced by the latest round of 
optimization.  Keeping track of the delays from iteration to iteration ensures that we do 
not delay a flight indefinitely and that we calculate the appropriate penalties in the end.  
This process is explained in more detail below.  Note that this process was not needed to 
solve for the FCFS model; furthermore, it was not suitable to solve the A_fair model, 
which needs to consider the entire day’s worth of flights to create equity.   
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Excel Sheet Application Code 
 

Library Used 

  
  

 
Figure 1. Illustration of the Optimization Process 

 
 
 
 

Figure 2. Windowing Optimization Flow Chart 
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Walk through of the process  
 
Given a consolidated input data excel sheet, which contains all the N flights that needs to 
be sequenced sorted according to the scheduled arrival time. Let us denote the window 
size by ‘w’. The first (w+1) rows from the consolidated input file is read and copied into 
a temporary input file (which will be used by the Optimization code in the next step). The 
first flight out of these (w+1) flights is already fixed. Then we reshuffle the remaining 
‘w’ flights according to the desired strategy. The winning flight is assigned a final slot 
and is made the leading flight for the next iteration. This process continues until we 
exhaust all the N flights that needs to be sequenced. 
 
 
The algorithm depicted in Figure 2 works as follows:  
Given,  

• a set of N flights to resequence.  These N flights should be sorted by their 
scheduled arrival time. 

• Let the window size be w (user-settable parameter) 
• Let count denote the iteration #. 
• Let vcount denote the index of the first flight for iteration #. 

 
Do the following: 

1. Pick the first ‘w+1’ entries of the N flights. 
2. Set,  maxCount = N-w  &  count=1 
3. Set v1 = 1, i.e fix the first flight on the list, i.e. make it the leading flight. 
4. Reshuffle the remaining sequence of ‘w’ flights based on the desired optimization 

strategy, i.e. Min Passenger delay, Max Vehicle Throughput etc. Set ‘vcount+1’ to 
the index of the first flight. 

5. if (count<=maxCount ) 
  then,  finalize the slot for flight ‘vcount+1’, 
   Make it the leading flight for the next iteration, and 
   Replace the leading flight of this iteration, i.e. vcount by the next  
   flight, i.e. the (w+1+count)th flight. 
   count = count+1 
   Go to Step 4 
  Else, (* this is for the last window*) 
   finalize the slots for all the ‘w’ flights in the window in the order  
   determined by Optimization 
   STOP 
 

The two librarys used in this process were Optimax 2000 and Basic Excel- A 
Class to Read and Write to Microsoft Excel.  Optimax is an object oriented component 
library used to embed an optimization into an end-user application. We used it to 
integrate our MPL models into the Visual C++ code. More information about the 
Optimax library can be found at the following URL http://www.maximal-
usa.com/optimax/.  



 16 

Basic Excel is an open source library to read, create and modify excel files 
through C++. It is fairly simple to use and documentation along with the source is 
available at http://www.codeproject.com/useritems/BasicExcel.asp.  The MPL, C++, and 
Java source code for each of these models is shown in the appendix at the end of this 
document. 

IV. Results & Analysis 
LaGuardia is known to be a highly congested airport.  The schedule of arrivals at 

LaGuardia on the day studied is quite full and consists of 523 flights in a 24 hour period.  
Figure 3 shows the hourly schedule of arrivals.  Between the hours of 8 AM and 6 PM 
the hourly traffic intensity, defined as the number of arrivals per hour divided by the 
average service rate, is at least 0.78 (assuming the average service rate is that for large-
sized craft equal to 43.3 per hour).  It is safe to assume this average service rate, because 
the fraction of large-sized planes is high.  The distribution of sizes is as follows: 0% 
heavy, 7% Boeing 757, 90% large, and 3% small.  We demonstrate later how this high 
traffic intensity and particular homogeneous size distribution does not allow significant 
gains by re-sequencing vehicles. 
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 Figure 3. Number of Hourly Arrivals Scheduled Over 24 Hours 
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A. FCFS 
Figure 4 shows significant delays from 1200 to 1800 for the FCFS discipline.  

The average flight delay for the whole day was 4.9 minutes with standard deviation of 4.7 
minutes.  The average passenger delay was 4.7 minutes.  About 85% of all flights 
incurred some delay and 39% were delayed by more than five minutes.  Passenger 
throughput was 2091 pax/hr (based on capacity defined by the large category, and a 
midrange value of 100 pax/veh) and pax utilization was 0.48.  Vehicle throughput was 
22.1 units/hr and corresponding utilization at 0.51.  
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Figure 4. Flight Delay Results From FCFS 
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B. PAX Delay 
PAX delay, shown in Figure 5, is the lowest for the P_delay model at 2.7 

min/person.  PAX delay is the highest for vehicle throughput optimization at 5.2 
min/person.  Other strategies produce PAX delay ranging from 4.6 to 5.1 min/person.   

We expected P_delay to be the best strategy for minimizing pax delay, since its 
objective function is that very expression.  Although V_delay would also provide low 
PAX delay results, as it did as the second best model, that model strives to minimize the 
sum of vehicle delay independent of the PAX per flight. 
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Figure 5. Average PAX Delay Results 

There is a significant reduction in PAX delay when the P_delay is executed using 
from five to ten flights per optimization batch in the sliding window.  When the window 
size is five flights, delay is 3.1 min/person.  When the window is ten, the delay is 2.7 
min/person.  This indicates that the larger window allows a sequence that is closer to 
optimality, defined by the case in which all 523 flights could be optimized at once 
without needing the sliding window.  Based on this result, we present results for all 
windowing models with a window size of ten. 

To probe deeper into the P_delay model and investigate how PAX delay is 
significantly better, we show average vehicle delay by aircraft size in Figure 6.  Clearly, 
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the larger the plane and corresponding PAX capacity, the lower the vehicle delay.  Higher 
landing priority is given to larger craft. 
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Figure 6. Average Vehicle Delay By Aircraft Type, P_delay Model 

 
We also observe that the re-sequencing of flights can be more extensive for 

P_delay compared to that of FCFS.  Let us define the change in position of a given flight 
due to re-sequencing as the absolute difference between its original position and its new 
position (e.g. if original position is 10 and the new position is 13, then the change is 3) 
and call it the reposition quantity.  Figure 7 graphically compares these P_delay and 
FCFS reposition results.  FCFS results in a maximum reposition of 6 with an average of 
0.5 and standard deviation of 1.0 (note that the reposition quantity is 6 when seven flights 
have the same scheduled arrival time or original position and must be given unique 
landing times or new positions).  P_delay has a maximum reposition of 19 (average of 
3.3 and standard deviation of 3.6).  This strengthens the argument that improvement in 
system performance metrics, PAX delay for example, requires more significant re-
sequencing than that employed by FCFS. 
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Figure 7. New Position From Re-Sequencing 

C. Vehicle Delay 
Not surprisingly, the best strategy for vehicle delay is the model that optimizes for 

this very metric resulting in a value of 4.3 min.  The next best model is the vehicle 
throughput model whose delay metric is 4.7 min.  Other models produce delay values 
from 5.0 to 5.2 min on average. These results are provided in Figure 8.  P_delay does not 
yield a low average vehicle delay, because it penalizes small planes, as discussed in the 
previous section.   

As shown in Table 2, the standard deviation of vehicle delay is lowest for the 
FCFS (4.7 min) and for airline fairness (which also employs FCFS as the base 
sequencing rule).  The PAX delay model produces the highest variability in flight delay 
as indicated by a standard deviation of 7.9 minutes. 

Also from Table 2, we see that the amount of repositioning is similar for FCFS 
and A_fair.  This is not surprising since A_fair utilizes FCFS for course sequencing.  , the 
amount of repositioning is similar among V_delay, P_delay, and V_thrpt. 

 When we compare average vehicle delay for FCFS and V_delay on an hourly 
basis as shown in Figure 9, we see that V_delay is a better overall model for this 
performance metric. 
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Figure 8. Results For Average Vehicle Delay 

 

Table 2. Summary of Results for Delay Metrics 

Model Ave Pax Delay 
Ave Vehicle 
Delay 

Std 
Dev 
Vehicle 
Delay 

Max 
Reposition 
Qty 

Ave 
Reposition 
Qty 

Standard 
Deviation 
of 
Reposition 
Qty 

FCFS 4.73 4.91 4.70 6 0.5 1.0 
V_thrpt 5.16 4.73 6.29 18 2.6 3.0 
P_delay 2.68 4.96 7.87 19 3.3 3.6 
V_delay 4.64 4.31 6.45 18 2.3 3.1 
A_fair 5.13 5.21 4.82 5 0.4 0.8 
WCG 4.21 4.52 5.73 36 1.2 2.9 
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Figure 9. Results For Hourly Average Vehicle Delay 

D. Throughput 
The passenger and vehicle throughput values for the entire day are each constant 

over all models.  This is because each model assigns the same landing times to the first 
and last planes.  Accordingly, the utilization values for the entire day are also constant.  
See Table 3 for these and a summary of all results. 

 

Table 3. Summary of Results 

Model 
Ave PAX 
Delay, min 

Ave Vehicle 
Delay,min 

Std Dev 
Vehicle 

Delay, min 

PAX 
Throughput, 

PAX/hr 

Vehicle 
Throughput, 

veh/hr 
PAX 

Utilization 
Vehicle 

Utilization 
FCFS 4.73 4.91 4.70 2091 22.1 0.483 0.511 

V_thrpt 5.16 4.73 6.29 2091 22.1 0.483 0.511 
P_delay 2.68 4.96 7.87 2091 22.1 0.483 0.511 
V_delay 4.64 4.31 6.45 2091 22.1 0.483 0.511 
A_fair 5.13 5.21 4.82 2091 22.1 0.483 0.511 
WCG 4.21 4.52 5.73 2091 22.1 0.483 0.511 

 
 When examined on an hourly basis, there is only a variation in the order of one to 
two flights in any hour across all models.  Hourly PAX utilization is shown in Figure 10 
and hourly vehicle utilization is shown in Figure 11.  Note that results for all five models 
are quite similar.  This can be attributed to several factors.  Namely these are the 
restriction that no flights can arrive early, the high traffic intensity from 8 AM to 6 PM, 
the uniformity of the fleet size (90% large), and the size of the optimization window 
(limited to ten by computational complexity).  Allowing flights to arrive early might 
redistribute the hourly throughput by reducing some congestion and thereby increasing 
throughput immediately prior to congested times. 
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 A change in fleet size distribution from 100% small to 100% heavy, for example, 
would result in a higher overall or hourly throughput for vehicles and PAX.  However, 
when utilization is less than unity (which implies that there are times when the server or 
runway is idle), interchanging the position of two vehicles, large and small for example, 
would have relatively less of an impact on throughput. 
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Figure 10. Hourly Pax Utilization 
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Figure 11. Hourly Vehicle Utilization 

E. Airline Fairness 
Since the A_fair model is essentially FCFS with selective breaking of ties, the 

results are similar to the benchmark FCFS model.  However, in an attempt to create 
equity among airlines, the fairness model produces slightly higher average delays.  For 
the following discussion, we consider only the flights that have an arrival conflict and 
which belong to the 17 airlines having more than 200 PAX/day (see Table 4).  Table 4 
shows the average PAX delay results for these airlines from the two models mentioned.  
These results are also plotted in Figure 12 as a function of the total PAX per airline 
(again only for the set of flights that have an arrival conflict). 

The FCFS model results in a distribution of airline specific PAX delay values that 
has an average of 5.0, standard deviation of 2.0, and range of 7.4 min/person.  The A_fair 
model’s delay distribution is shifted slightly higher with average of 5.9 min/person.  
However, its distribution over airlines is less broad with standard deviation of 1.9 and 
range of 6.5 min/person (see Table 5).  
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Table 4. Airline-Based Average PAX Delay from Flights In Slot Contention 

Airline FCFS A_fair 
American Airlines 4.8 4.3 
Air Canada 4.5 5.1 
American Trans Air 2.5 1.5 
Chautauqua Airlines  4.3 4.2 
Colgan Air 5.9 5.5 
Continental Airlines 3.9 5.0 
Comair 4.9 5.5 
Delta Airlines 5.4 5.5 
American Eagle 7.4 7.2 
Jet Blue 4.0 7.8 
Midwest Exp 1.2 2.8 
Spirit Airlines 4.4 7.5 
Northwest Airlines 2.8 6.7 
Usair Exp 7.9 7.8 
Airtran Airlines 7.4 8.0 
United Airlines 8.6 8.0 
Usair    5.7 6.9 
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Figure 12. Airline-Based Average PAX Delay 
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Table 5. Summary of Airline PAX Delay Distribution 

PAX Delay (Function of Airline k) FCFS A_fair 

Average 5.0 5.9 

Standard Deviation 2.0 1.9 

Range 7.4 6.5 

 

F. Weight Class Grouping 
The weight class grouping strategy tries to group same weight class aircrafts 

together. Since the dominant weight class in LGA is Large, Large aircraft are usually 
grouped while B757 and Small aircraft are pushed back which produces high delay for 
those types, as shown in Figure 13.  
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Figure 13 Average delay by weight class 
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V. Conclusion 
Overall we saw some minor advantages over the current FCFS system.  This is 

likely due to the airport having a utilization of over 0.8 for 10 of the 18 hours that it was 
operating.  This high utilization (and resulting congestion) of LaGuardia makes it 
difficult to find opportunities for improvement.  The other issue is the largely 
homogeneous mixture of aircraft type, 90% large, 7% Boeing 757, and 3% small.  With 
that many aircraft of a single type, small localized reorderings are not going to find 
improvements by closing gaps in the arrival slots. 

In the one case where we saw noticeable improvement, PAX Delay minimization, 
the improvement came from bumping the small flights for as long as possible.  It is hard 
to imagine that this scheme would be able to have buy-in from airlines that primarily 
operate smaller regional jets or general aviation flights.  However, it is important to note 
that such a small fraction (3%) of this particular size aircraft so greatly disrupts the on-
time arrival of other larger flights.  Specifically, if the average PAX delay is reduced 
from 4.7 for FCFS to 2.7 min/psn for PAX delay minimization by unfairly delaying small 
planes, then one might be led to inquire about the effect of removing such flights entirely. 

While it is tempting to crown a winner from this group of algorithms, it cannot be 
stressed enough that we only looked at one day’s worth of data at one airport and we only 
considered the landing schedule.  We made no attempts to model gate constraints or 
when a plane would be next required for service. 

Future work could include expanding these models to handle airports with 
multiple landing strips.  This would allow use of data from many more airports. 
 Additionally, finding an airport with a more heterogeneous traffic mixture might see 
more improvement. 
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Appendix A – Model Source Code 
A.1. FCFS 
Algorithm used: 
Create SA(i)     ! scheduled arrival for flight i 
 
Where SA(i) = SA(j), assign SAC(i) = SA(i) + U[0,1]       

Else SAC(i) = SA(i)   ! U[0,1] is a uniform random variable   
 
Sort flight data based on SAC(i) and assign additional index j = 0 ..N based on sorted 
order 
 
Set x(i:j=0) = SA(i:j=0)   ! x(i) is the assigned landing time for flight i 
 
For j=1 to N 
x(i:j) = max { SA(i:j) , x(i:j-1) + sep(size(i:j-1), size(i:j)) }  
 

! sep(a,b) is the separation matrix based on plane size 
end  
 
 
 
A.2. P_delay 
TITLE 
    paxdelay; ! min pax delay 
 
DATA 
 numB := EXCELRANGE("batchSize.xls", "batch"); ! sc hed arrival 
 
INDEX 
 i  := 0..numB;    !  planes 
 j  := i; 
 
 dataFields := 1..5;  
 
 size  := (H, L, M, S); 
 size1  := size; 
 size2  := size; 
DATA 
 dataR[i,dataFields] := DATAFILE("lga.csv"); 
 SA[i] := dataR[i,2]; 
 S[i]  := dataR[i,5]; 
 NP[i] := dataR[i,4]; 
 
 sep[size1,size2] :=  DATAFILE("sep.csv"); !separat ion matrix 
based on flight data, 10 planes, 11 x 11 
    
VARIABLE 
 x[i]  
  EXPORT TO EXCELRANGE("mplOutput.xls","slot");  
 delay[i] 
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  EXPORT TO EXCELRANGE("mplOutput.xls","delay");  
 lastplane; 
 
BINARY VARIABLES 
 y[i,j];  
 
MACRO 
 passdelay = sum(i: delay * NP); 
MODEL 
    MIN z = passdelay; 
 
SUBJECT TO 
 exclude[i,j>i]  : x[i] - x[j] >= sep[ size1:=S[j],  size2:=S[i] ] 
- 100000 y[i,j]; 
 exclude2[i,j>i]  : x[j] - x[i] >= sep[ size1:=S[i] , size2:=S[j] ] 
- 100000 (1 - y[i,j] ); 
 find_arrivaldelay[i]: delay >= x - SA; 
 x[0]=SA[0]; 
 pp[i] : x[i]>=SA[0]; 
 
 last_in[i>0]:   lastplane >= x; 
 
BOUNDS 
  latest[i]: delay <= 1800; 
  earliest[i]:  x >= SA ;    
END 
 

A.3. V_delay 
TITLE 
    V_delay; ! min vehicle delay 
 
DATA 
 numB := EXCELRANGE("batchSize.xls", "batch"); ! sc hed arrival 
 
INDEX 
 i  := 0..numB;    !  planes 
 j  := i; 
 
 dataFields := 1..5;  
 
 size  := (H, L, M, S); 
 size1  := size; 
 size2  := size; 
DATA 
 dataR[i,dataFields] := DATAFILE("lga.csv"); 
 SA[i] := dataR[i,2]; 
 S[i]  := dataR[i,5]; 
 NP[i] := dataR[i,4]; 
 
 sep[size1,size2] :=  DATAFILE("sep.csv"); !separat ion matrix 
based on flight data, 10 planes, 11 x 11 
    
VARIABLE 
 x[i]  
  EXPORT TO EXCELRANGE("mplOutput.xls","slot");  
 delay[i] 
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  EXPORT TO EXCELRANGE("mplOutput.xls","delay");  
 lastplane; 
 
BINARY VARIABLES 
 y[i,j];  
 
MACRO 
  totalDelay = sum(i:delay); 
MODEL 
    MIN z = totaldelay; 
 
SUBJECT TO 
 exclude[i,j>i]  : x[i] - x[j] >= sep[ size1:=S[j],  size2:=S[i] ] 
- 100000 y[i,j]; 
 exclude2[i,j>i]  : x[j] - x[i] >= sep[ size1:=S[i] , size2:=S[j] ] 
- 100000 (1 - y[i,j] ); 
 find_arrivaldelay[i]: delay >= x - SA; 
 x[0]=SA[0]; 
 pp[i] : x[i]>=SA[0]; 
 
 last_in[i>0]:   lastplane >= x; 
 
BOUNDS 
  latest[i]: delay <= 1800; 
  earliest[i]:  x >= SA ;    
END 
 

A.4. V_thrpt 
TITLE 
    V_thrpt; ! max vehicle throughput 
 
DATA 
 numB := EXCELRANGE("batchSize.xls", "batch"); ! sc hed arrival 
 
INDEX 
 i  := 0..numB;    !  planes 
 j  := i; 
 
 dataFields := 1..5;  
 
 size  := (H, L, M, S); 
 size1  := size; 
 size2  := size; 
DATA 
 dataR[i,dataFields] := DATAFILE("lga.csv"); 
 SA[i] := dataR[i,2]; 
 S[i]  := dataR[i,5]; 
 NP[i] := dataR[i,4]; 
 
 sep[size1,size2] :=  DATAFILE("sep.csv"); !separat ion matrix 
based on flight data, 10 planes, 11 x 11 
    
VARIABLE 
 x[i]  
  EXPORT TO EXCELRANGE("mplOutput.xls","slot");  
 delay[i] 
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  EXPORT TO EXCELRANGE("mplOutput.xls","delay");  
 lastplane; 
 
BINARY VARIABLES 
 y[i,j];  
 
MACRO 
  totalDelay = sum(i:delay); 
MODEL 
    MIN z = lastplane; 
 
SUBJECT TO 
 exclude[i,j>i]  : x[i] - x[j] >= sep[ size1:=S[j],  size2:=S[i] ] 
- 100000 y[i,j]; 
 exclude2[i,j>i]  : x[j] - x[i] >= sep[ size1:=S[i] , size2:=S[j] ] 
- 100000 (1 - y[i,j] ); 
 find_arrivaldelay[i]: delay >= x - SA; 
 x[0]=SA[0]; 
 pp[i] : x[i]>=SA[0]; 
 
 last_in[i>0]:   lastplane >= x; 
 
BOUNDS 
  latest[i]: delay <= 1800; 
  earliest[i]:  x >= SA ;    
END 
 

A.5. A_fair 
TITLE 
 
    FA; ! fcfs rule with airline fairness opt, data  preprocessed 
 
INDEX 
  
 i  := EXCELRANGE("lga.xls", "index");    ! 0 is th e start, 
planes 
 j  := i; 
 a  := EXCELRANGE("lga_catable","airlines"); 
  
 size  := (H, B7, L, S); 
 size1  := size; 
 size2  := size; 
 
 ca_fl[a,i] :=  (COM,3 DAL,4 USA,5 CHQ,9 CJC,10 EGF ,11 CHQ,14 
CHQ,15 CJC,16 COM,17 CJC,21 CJC,22 EGF,23 CJC,29 PD T,30 ACA,32 EGF,33 
EGF,34 COM,35 EGF,36 TRS,37 CHQ,40 USA,41 NWA,49 CO M,54 DAL,55 EGF,56 
CJC,61 USA,62 AAL,64 JBU,65 COM,70 USA,71 EGF,73 UA L,74 AMT,80 COM,86 
DAL,87 CHQ,88 CHQ,89 CJC,90 COM,91 EGF,92 AAL,97 AA L,98 DAL,99 NWA,101 
PDT,102 AAL,108 COA,109 DAL,110 NKS,111 PDT,112 ACA ,115 EGF,116 USA,118 
USA,119 CHQ,126 TRS,127 AAL,129 DAL,130 EGF,131 EGF ,132 ACA,136 CJC,137 
EGF,138 CJC,141 MEP,142 UAL,146 USA,147 AAL,152 AAL ,153 CJC,157 CJC,158 
DAL,159 DAL,160 DAL,161 EGF,162 AAL,167 CJC,171 NWA ,172 CHQ,176 CHQ,177 
AAL,179 CJC,180 CJC,181 COM,182 DAL,183 PDT,184 AAL ,186 USA,187 CHQ,195 
CHQ,196 CJC,198 COM,199 DAL,200 PDT,201 ACA,205 CJC ,206 JBU,207 EGF,214 
AAL,218 AMT,219 COM,220 DAL,221 EGF,222 NWA,223 UAL ,226 USA,227 CHQ,234 
CHQ,235 COA,236 DAL,237 DAL,238 DAL,239 AAL,240 AAL ,241 CJC,242 PDT,243 
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AAL,245 ACA,246 COM,248 PDT,249 PDT,253 CJC,254 COM ,255 DAL,256 DAL,257 
EGF,258 EGF,259 NWA,260 CJC,262 UAL,263 AAL,272 DAL ,273 AAL,276 COM,277 
CJC,279 COM,280 DAL,281 DAL,282 TRS,283 EGF,284 EGF ,285 EGF,286 PDT,287 
PDT,289 UAL,290 CJC,297 CJC,298 NKS,299 CHQ,300 CHQ ,301 CJC,302 COM,303 
EGF,304 ACA,306 USA,307 DAL,310 TRS,311 AAL,319 CJC ,320 EGF,321 EGF,322 
EGF,323 NKS,324 DAL,326 JBU,327 AAL,328 EGF,329 CHQ ,334 CJC,335 DAL,336 
USA,337 AAL,338 AAL,339 EGF,340 EGF,341 UAL,342 PDT ,344 UAL,345 CHQ,348 
USA,349 AAL,352 DAL,353 MEP,354 ACA,358 AAL,363 ACA ,364 COM,365 MEP,366 
CHQ,369 CJC,370 COM,371 DAL,372 PDT,373 DAL,374 EGF ,375 AAL,376 USA,377 
EGF,380 AAL,383 AAL,384 CHQ,387 EGF,388 UAL,389 UAL ,390 CJC,392 DAL,393 
AAL,399 USA,400 CJC,402 CJC,403 COA,404 DAL,405 DAL ,406 EGF,407 NKS,408 
COM,412 PDT,413 AAL,421 AAL,422 CHQ,423 COM,427 DAL ,428 EGF,430 NWA,431 
COA,437 USA,438 AAL,448 CHQ,449 MEP,450 AAL,465 DAL ,466 JBU,467 EGF,469 
NWA,470 PDT,471 TRS,472 DAL,473 USA,474 AAL,479 JBU ,480 AAL,482 NKS,483 
USA,484 DAL,489 DAL,490 CJC,494 MEP,495 AAL,496 NWA ,497 AAL,500 COA,501 
NKS,505 NWA,506 AAL,511 AAL,519 AMT,520 UAL,521); 
 
DATA 
 SA[i] := EXCELRANGE("lga.xls", "arrival"); ! sched  arrival 
 
 S[i] := EXCELRANGE("lga.xls", "size"); ! size from  1=heavy 
 
 NP[i] := EXCELRANGE("lga.xls", "pax"); ! no. passe ngers 
 
 
 NPC[a] := EXCELRANGE("lga_catable.xls", "paxdata") ; ! total 
passengers for airline 
 
 
 sep[size1,size2] :=  DATAFILE("sep.csv"); !separat ion 
matrix based on flight data, 10 planes, 11 x 11 
 
    
VARIABLE 
 
 x[i]   
   EXPORT TO EXCELRANGE("lga.xls", "slot");  
 
   ! landing slot time, as of start of final approa ch 
 
 delay[i] 
   EXPORT TO EXCELRANGE("lga.xls", "delay");  
 
   !arrival delay from schedule for flight 
 
 capen[a] 
   EXPORT TO EXCELRANGE("lga_catable.xls", "delay") ;  
 
   !pax delay fraction for carrier a 
 
 maxpen; 
 
 lastplane; 
 
BINARY VARIABLES 
 
 y[i,j]; 
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MACRO 
 passdelay = sum(i: delay * NP); 
 totalpen = sum(capen); 
 
MODEL 
    MIN maxpen + totalpen; 
 
SUBJECT TO 
 exclude[i,j>i] WHERE SA[i] < SA[j] : x[j] - x[i] > = sep[ 
size1:=S[i], size2:=S[j] ]; 
 
 exclude2[i,j>i] WHERE SA[i] = SA[j] : x[j] - x[i] >= sep[ 
size1:=S[i], size2:=S[j] ] - 10000 y[i,j]; 
 
 exclude3[i,j>i] WHERE SA[i] = SA[j] : x[i] - x[j] >= sep[ 
size1:=S[j], size2:=S[i] ] - 10000 (1 - y[i,j] ); 
 
 find_arrivaldelay[i]: delay = x - SA; 
 
 last_in[i]:   lastplane >= x; 
 
 capenalty[a]: capen = 1/NPC * sum(i IN ca_fl : del ay * NP) ; 
 
 maxpenalty[a]: maxpen >= capen ; 
 
BOUNDS 
 earliest[i]:  x >= SA ;  ! 
 
  0 <= delay  <= 1800; 
 
END 
 

A.6. WCG 
 
/* 
 * Flight.java 
 * 
 * Created on April 23, 2007, 3:29 PM 
 * 
 * To change this template, choose Tools | Template  Manager 
 * and open the template in the editor. 
 */ 
 
package databasetest1; 
 
/** 
 * 
 * @author Jeffrey 
 */ 
public class Flight { 
     
    private int flightIndex; 
    private String flightNumber; 
    private int scheduledArrivalTime; 
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    private String aircraftType; 
    private String carrier; 
    private int numPassengers; 
    private WeightClass weightClass; 
    private int actualArrivalTime; 
    private int delay; 
     
    /** Creates a new instance of Flight */ 
    public Flight() { 
    } 
     
    public Flight(int flightIndex, int scheduledArr ivalTime, String  
carrier, int numPassengers, WeightClass weightClass ) { 
        this.setFlightIndex(flightIndex); 
        this.setScheduledArrivalTime(scheduledArriv alTime); 
        this.setCarrier(carrier); 
        this.setNumPassengers(numPassengers); 
        this.setWeightClass(weightClass); 
    }  
 
    public int getFlightIndex() { 
        return flightIndex; 
    } 
 
    public void setFlightIndex(int flightIndex) { 
        this.flightIndex = flightIndex; 
    } 
 
    public String getFlightNumber() { 
        return flightNumber; 
    } 
 
    public void setFlightNumber(String flightNumber ) { 
        this.flightNumber = flightNumber; 
    } 
 
    public int getScheduledArrivalTime() { 
        return scheduledArrivalTime; 
    } 
 
    public void setScheduledArrivalTime(int schedul edArrivalTime) { 
        this.scheduledArrivalTime = scheduledArriva lTime; 
    } 
 
    public String getAircraftType() { 
        return aircraftType; 
    } 
 
    public void setAircraftType(String aircraftType ) { 
        this.aircraftType = aircraftType; 
    } 
 
    public String getCarrier() { 
        return carrier; 
    } 
 
    public void setCarrier(String carrier) { 



 36 

        this.carrier = carrier; 
    } 
 
    public int getNumPassengers() { 
        return numPassengers; 
    } 
 
    public void setNumPassengers(int numPassengers)  { 
        this.numPassengers = numPassengers; 
    } 
 
    public WeightClass getWeightClass() { 
        return weightClass; 
    } 
 
    public void setWeightClass(WeightClass weightCl ass) { 
        this.weightClass = weightClass; 
    } 
 
    public int getActualArrivalTime() { 
        return actualArrivalTime; 
    } 
 
    public void setActualArrivalTime(int actualArri valTime) { 
        this.actualArrivalTime = actualArrivalTime;  
    } 
 
    public int getDelay() { 
        return delay; 
    } 
 
    public void setDelay(int delay) { 
        this.delay = delay; 
    } 
     
    public void updateDelay() { 
        setDelay(getActualArrivalTime()-getSchedule dArrivalTime()); 
    } 
     
    public String toString() { 
        return (scheduledArrivalTime + ", " + weigh tClass.toString() + 
", " + actualArrivalTime + ", " + delay); 
    } 
} 
/* 
 * WeightClass.java 
 * 
 * Created on April 23, 2007, 3:38 PM 
 * 
 * To change this template, choose Tools | Template  Manager 
 * and open the template in the editor. 
 */ 
 
package databasetest1; 
 
import java.io.BufferedReader; 
import java.io.File; 
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import java.io.FileReader; 
import java.io.IOException; 
import java.util.Scanner; 
 
/** 
 * 
 * @author Jeffrey 
 */ 
public enum WeightClass { 
    SMALL, 
    LARGE, 
    B757, 
    HEAVY; 
     
    private int beforeSmall; 
    private int beforeLarge; 
    private int beforeB757; 
    private int beforeHeavy; 
     
    public static final void initialization(File da taFile) throws 
IOException { 
        BufferedReader inputStream = null; 
        String line; 
        Scanner s = null; 
        try { 
            inputStream =  
                new BufferedReader(new FileReader(d ataFile)); 
            for (WeightClass item : WeightClass.val ues()) { 
                if ((line = inputStream.readLine())  != null) { 
                    s = new Scanner(line); 
                }                 
                item.beforeSmall = s.nextInt(); 
                item.beforeLarge = s.nextInt(); 
                item.beforeB757 = s.nextInt(); 
                item.beforeHeavy = s.nextInt(); 
            }  
 
        } finally { 
            if (inputStream != null) { 
                inputStream.close(); 
            } 
        } 
        s.close(); 
    } 
     
    public static WeightClass getWeightClassFromStr ing (String 
weightClassString) { 
        WeightClass weightClass = LARGE; 
        if (weightClassString.equals(WeightClass.SM ALL.toString())) { 
            weightClass = SMALL; 
        } else if 
(weightClassString.equals(WeightClass.LARGE.toStrin g())) { 
            weightClass = LARGE; 
        } else if 
(weightClassString.equals(WeightClass.B757.toString ())) { 
            weightClass = B757; 
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        } else if 
(weightClassString.equals(WeightClass.HEAVY.toStrin g())) { 
            weightClass = HEAVY; 
        } else System.err.println("wrong Wake Class  String."); 
        return weightClass; 
    } 
     
    public static WeightClass getWeightClassFromInt  (int 
weightClassInt) { 
        WeightClass weightClass = LARGE; 
        if (weightClassInt == 4) { 
            weightClass = SMALL; 
        } else if (weightClassInt == 3) { 
            weightClass = LARGE; 
        } else if (weightClassInt == 2) { 
            weightClass = B757; 
        } else if (weightClassInt == 1) { 
            weightClass = HEAVY; 
        } else System.err.println("wrong Wake Class  Int."); 
        return weightClass; 
    } 
  
    int getSeparation (WeightClass weightClass) { 
        int separation=0; 
        switch (weightClass) { 
            case SMALL: separation = beforeSmall; b reak; 
            case LARGE: separation =  beforeLarge; break; 
            case B757: separation = beforeB757; bre ak; 
            case HEAVY: separation = beforeHeavy; b reak; 
            default: System.out.println("Invalid we ightClass."); break; 
        } 
        return separation; 
    } 
     
    int convertedOrdinal (WeightClass desiredWeight Class, Boolean 
wantLarger) { 
        int relativeOrdinal = this.ordinal() - 
desiredWeightClass.ordinal(); 
        int convertedOrdinal = Math.abs(relativeOrd inal); 
        if ((wantLarger && relativeOrdinal<0) || (! wantLarger && 
relativeOrdinal>0)) { 
            convertedOrdinal += 3; 
        } 
        return convertedOrdinal; 
    } 
     
    boolean isBetterThan(WeightClass baseWeightClas s, WeightClass 
desiredWeightClass, Boolean wantLarger) { 
        if (this.convertedOrdinal(desiredWeightClas s, wantLarger) < 
baseWeightClass.convertedOrdinal(desiredWeightClass , wantLarger)) { 
            return true; 
        } else { 
            return false; 
        } 
    } 
} 
/* 
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 * Main.java 
 * 
 */ 
 
package databasetest1; 
 
import java.io.File; 
import java.io.IOException; 
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.ResultSet; 
import java.sql.SQLException; 
import java.sql.Statement; 
import java.util.LinkedList; 
import java.util.ListIterator; 
 
/* 
 * Main.java 
 * 
 * Created on April 4, 2007, 8:36 PM 
 * 
 * To change this template, choose Tools | Template  Manager 
 * and open the template in the editor. 
 */ 
 
package databasetest1; 
 
import java.io.File; 
import java.io.IOException; 
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.ResultSet; 
import java.sql.SQLException; 
import java.sql.Statement; 
import java.util.LinkedList; 
import java.util.ListIterator; 
 
/** 
 * 
 * @author Jeffrey 
 */ 
public class Main { 
     
    /** Creates a new instance of Main */ 
    public Main() { 
    } 
     
    /** 
     * @param args the command line arguments 
     */ 
    public static void main(String[] args) throws I OException { 
        WeightClass.initialization(new File("sep fr om s to h 
int.txt")); 
        LinkedList<Flight> flights = new LinkedList (); 
        try { 
            Class.forName("sun.jdbc.odbc.JdbcOdbcDr iver"); 
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            Connection c = 
DriverManager.getConnection("jdbc:odbc:or680excel",  "",""); 
            Statement stmnt = c.createStatement(); 
            String query = "select * from [Sheet1$] "; 
            ResultSet rs = stmnt.executeQuery(query ); 
            while (rs.next()) { 
                flights.add(new Flight(rs.getInt("i ndex"), 
rs.getInt("sched"), rs.getString("carrier"), 
rs.getInt("pax"),WeightClass.getWeightClassFromInt( rs.getInt("size")) 
)); 
            } 
            stmnt.close(); 
            c.close(); 
        } catch (SQLException s) { 
            System.out.println("SQL Error: " + s.to String() + " " + 
s.getErrorCode() + " " + s.getSQLState()); 
            System.exit(0); 
        } catch (Exception e) { 
            System.out.println("Error: " + e.toStri ng() + 
e.getMessage()); 
            System.exit(0); 
        } 
        ListIterator<Flight> flightIterator = fligh ts.listIterator(); 
        LinkedList<Flight> flightsSequenced = new L inkedList(); 
        Flight previousFlight = null; 
        Flight iteratedFlight = null; 
        if (flightIterator.hasNext()) { 
            iteratedFlight = flightIterator.next();  
            
iteratedFlight.setActualArrivalTime(iteratedFlight. getScheduledArrivalT
ime()); 
            iteratedFlight.updateDelay(); 
            flightIterator.remove(); 
            flightsSequenced.add(iteratedFlight); 
            previousFlight = iteratedFlight; 
        } else { 
            System.out.println("Empty schedule!"); 
            return; 
        } 
        Boolean wantLarger = true; 
        while (flightIterator.hasNext()) { 
            int earliestArrivalTimeForSmall = 
previousFlight.getActualArrivalTime() + 
previousFlight.getWeightClass().getSeparation(Weigh tClass.SMALL); 
            Flight bestEligibleFlight = null; 
            do { 
                iteratedFlight = flightIterator.nex t(); 
                if (iteratedFlight.getScheduledArri valTime()<= 
previousFlight.getActualArrivalTime() + 
previousFlight.getWeightClass().getSeparation(itera tedFlight.getWeightC
lass())) { 
                    if (bestEligibleFlight == null || 
iteratedFlight.getWeightClass().isBetterThan(bestEl igibleFlight.getWeig
htClass(), previousFlight.getWeightClass(), wantLar ger)) { 
                        bestEligibleFlight = iterat edFlight; 
                    } 
                } 
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            } while (iteratedFlight.getScheduledArr ivalTime() <= 
earliestArrivalTimeForSmall && flightIterator.hasNe xt()); 
            if (bestEligibleFlight == null) { 
                wantLarger = true; 
                flightIterator = flights.listIterat or(); 
                iteratedFlight = flightIterator.nex t(); 
                
iteratedFlight.setActualArrivalTime(iteratedFlight. getScheduledArrivalT
ime()); 
            } else { 
                if 
(bestEligibleFlight.getWeightClass().convertedOrdin al(previousFlight.ge
tWeightClass(), wantLarger) > 3) { 
                    wantLarger = !wantLarger; 
                } 
                flightIterator = 
flights.listIterator(flights.indexOf(bestEligibleFl ight)); 
                iteratedFlight = flightIterator.nex t(); 
                
iteratedFlight.setActualArrivalTime(previousFlight. getActualArrivalTime
() + 
previousFlight.getWeightClass().getSeparation(itera tedFlight.getWeightC
lass())); 
            } 
            iteratedFlight.updateDelay(); 
            flightIterator.remove(); 
            flightsSequenced.add(iteratedFlight); 
            previousFlight = iteratedFlight; 
            flightIterator = flights.listIterator() ; 
        } 
        flightIterator = flightsSequenced.listItera tor(); 
        int totalNumFlights = 0; 
        int totalFlightDelay = 0; 
        int totalNumPassengers = 0; 
        int totalPassengerDelay = 0; 
        while (flightIterator.hasNext()) { 
            iteratedFlight = flightIterator.next();  
            totalNumFlights++ ; 
            totalFlightDelay += iteratedFlight.getD elay(); 
            totalNumPassengers += iteratedFlight.ge tNumPassengers(); 
            totalPassengerDelay += iteratedFlight.g etDelay() * 
iteratedFlight.getNumPassengers(); 
        } 
        double averageFlightDelay = (double)(totalF lightDelay) / 
totalNumFlights; 
        double averagePassengerDelay = (double) (to talPassengerDelay) / 
totalNumPassengers; 
        System.out.println("Number of flights: " + totalNumFlights); 
        System.out.println("Average flight delay in  minutes: " + 
averageFlightDelay/60); 
        System.out.println("Number of passengers: "  + 
totalNumPassengers); 
        System.out.println("Average passenger delay  in minutes: " + 
averagePassengerDelay/60); 
        try { 
            Class.forName("sun.jdbc.odbc.JdbcOdbcDr iver"); 
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            Connection c = 
DriverManager.getConnection("jdbc:odbc:or680excel",  "",""); 
            Statement stmnt = c.createStatement(); 
            stmnt.executeUpdate("DROP TABLE [output ]"); 
            stmnt.executeUpdate("CREATE TABLE [outp ut] (flightIndex   
INTEGER, " + 
                    "scheduledArrivalTime INTEGER, numPassengers 
INTEGER, " + 
                    "weightClass VARCHAR, actualArr ivalTime INTEGER, 
delay INTEGER, newSequence INTEGER)"); 
            int newSequence = 0; 
            for (Flight item: flightsSequenced) { 
                int thisFlightIndex = item.getFligh tIndex(); 
                String thisFlightNumber = item.getF lightNumber(); 
                String query = "INSERT INTO [output ] (flightIndex, 
scheduledArrivalTime, numPassengers, " + 
                        "weightClass, actualArrival Time, delay, 
newSequence) VALUES (" 
                        + item.getFlightIndex() +  
                        "," + item.getScheduledArri valTime() + 
                        "," + item.getNumPassengers () +  
                        ",'" + item.getWeightClass( ) + "'" + 
                        "," + item.getActualArrival Time() +  
                        "," + item.getDelay() + 
                        "," + newSequence++ + 
                        ")"; 
                stmnt.executeUpdate(query); 
            } 
            String query = "select * from [Sheet1$] "; 
            ResultSet rs = stmnt.executeQuery(query ); 
            stmnt.close(); 
            c.close(); 
        } catch (SQLException s) { 
            System.out.println("SQL Error: " + s.to String() + " " + 
s.getErrorCode() + " " + s.getSQLState()); 
            System.exit(0); 
        } catch (Exception e) { 
            System.out.println("Error: " + e.toStri ng() + 
e.getMessage()); 
            System.exit(0); 
        } 
    } 
     
}  

A.7. Windowing Code 
     
myExcelSep.cpp  
(This is the main code which calls the optimization codes and also does the excel sheet 
manipulations) 
 
#include "conio.h" 
#include "BasicExcelVC6.cpp" 
#include <time.h> 
 
using namespace YExcel; 
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double* mainOfOptimax(int,char*); 
 
int max(int a, int b) { 
    int maxval; 
    if (a >= b) { 
        maxval = a; 
    } else { 
        maxval = b; 
    } 
    return maxval; 
}//end max 
 
int main(int argc, char* argv[]) 
{ 
  int totalFlights = 523; 
  char *modelName = ".\\T.mpl"; 
  size_t one = 0;  // variable type to open first w orksheet of any 
excel file 
  int inputDataColumns = 5; // number of fields in the FlightData input 
file 
       // index, arrival time,, exp 
arr time, size, PAX 
  
  int batch; 
  time_t start,end; 
  double dif; 
 
  BasicExcel eIndex; 
  eIndex.Load("batchSize.xls"); 
  BasicExcelWorksheet* sheet_index = eIndex.GetWork sheet(one); 
  batch = sheet_index->Cell(0,0)->GetInteger(); 
   
  // Load the workbook FLIGHTDATA with one sheet 'd ata', this contains 
all the flight data 
  BasicExcel e; 
  e.Load("flightData.xls"); 
  BasicExcelWorksheet* sheet_fData = e.GetWorksheet (one); 
 
 
  //create another worksheet, FinalOutput which con tains the final seq 
of flights 
  BasicExcel e3; 
  e3.New(1); 
  BasicExcelWorksheet* sheet_finalOutput = e3.GetWo rksheet(one); 
 
  //first row of the input file FLIGHTDATA is the h eader, second row is 
the leading flight(already fixed) 
 // Load the workbook lga which contains the input for this iteration 
  BasicExcel e1; 
  e1.New(1);   
  BasicExcelWorksheet* sheet_lga = e1.GetWorksheet( one); 
 
 for (size_t r=0;r<batch+1;++r) 
 { 
  for (size_t c=0;c<inputDataColumns;++c) 
   { 
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    //sheet_lga->Cell(r+1,c)-
>SetDouble(sheet_fData->Cell(r+1,c)->GetDouble());  
    sheet_lga->Cell(r,c)->SetDouble(sheet_fData-
>Cell(r+1,c)->GetDouble());  
    if(r==0){ 
       sheet_finalOutput->Cell(1,c)-
>SetDouble(sheet_fData->Cell(r+1,c)->GetDouble());  
      } 
   } 
  if(r==0) 
   { 
    sheet_finalOutput->Cell(0,0)-
>SetString("Index");  
    sheet_finalOutput->Cell(0,1)-
>SetString("Arrival");  
    sheet_finalOutput->Cell(0,2)->SetString("E 
Arrival");  
    sheet_finalOutput->Cell(0,3)-
>SetString("Type");  
    sheet_finalOutput->Cell(0,4)->SetString("PAX");   
    sheet_finalOutput->Cell(0,5)->SetString("Sched 
Arr");  
    sheet_finalOutput->Cell(0,6)-
>SetString("Delay");      
   } 
 } 
  
 size_t maxRows = sheet_lga->GetTotalRows(); 
    size_t maxCols = sheet_lga->GetTotalCols(); 
     
 e1.SaveAs("lga.xls"); 
 e3.SaveAs("finalOutput.xls"); 
 
 ofstream f("lga.csv"); 
    sheet_lga->Print(f, ',', '\"'); // Save the lga .xls file as lgs.CSV 
    f.close(); 
 
 size_t rr=0; 
 size_t cc=0; 
 BasicExcel eOut; 
 
 int num; 
 int leadIndex; 
   double leadSlot; 
   double leadDelay; 
 num= max(totalFlights-batch,0); 
 //num=1; 
 time (&start); 
 for (int iter = 0 ; iter < num ; ++iter)  
 { 
   // general comments: Call the MPL program.. it w ill return an 
integer which is the index 
   // of the Flight which will be first in the give n sequence 
(after the leading flight. index=0 
   // lets say that index is leadIndex 
    
   double *ret; 
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   ret = mainOfOptimax(batch,modelName); 
    
   leadIndex = ret[0]; 
   leadSlot  = ret[1]; 
   leadDelay = ret[2]; 
 
   if(iter!=num-1) 
   { 
    for (cc=0;cc<inputDataColumns;++cc) //because 2  new 
columns(sched arr, delay) 
   { 
    sheet_lga->Cell(0,cc)->SetDouble(sheet_lga-
>Cell(leadIndex,cc)->GetDouble());  
    sheet_finalOutput->Cell(iter+2,cc)-
>SetDouble(sheet_lga->Cell(leadIndex,cc)->GetDouble ());  
    // replace the winning flight row with the next  
row of our database(flightData) 
    sheet_lga->Cell(leadIndex,cc)-
>SetDouble(sheet_fData->Cell(iter+batch+2,cc)->GetD ouble());  
   } 
   
  // sarrival data: column 1 
 sheet_lga->Cell(0,1)->SetDouble(leadSlot); 
 //because 2 new columns(sched arr, delay) 
 sheet_finalOutput->Cell(iter+2,inputDataColumns)-
>SetDouble(leadSlot);  
 sheet_finalOutput->Cell(iter+2,inputDataColumns+1) -
>SetDouble(leadDelay);  
   } 
   else 
   { 
      time (&end);  
   dif = difftime (end,start); 
    
                 BasicExcel ee; 
   ee.Load("mplOutput.xls"); 
   BasicExcelWorksheet* sheet_mplOutput = 
ee.GetWorksheet(one); 
 
   sheet_finalOutput->Cell(1,8)->SetDouble(dif);  
     
 
   for (int ii=0;ii<batch;++ii) 
   { 
    for (cc=0;cc<inputDataColumns+2;++cc) //because  
2 new columns(sched arr, delay) 
    { 
     if(cc<inputDataColumns) 
     { 
      sheet_finalOutput-
>Cell(num+1+ii,cc)->SetDouble(sheet_lga->Cell(ii+1, cc)->GetDouble()); 
      
     } 
     else 
     { 
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      sheet_finalOutput-
>Cell(num+1+ii,cc)->SetDouble(sheet_mplOutput->Cell (ii+1,cc-
inputDataColumns)->GetDouble());       
     } 
    } 
   } 
   } 
     
 e1.SaveAs("lga.xls"); 
 ofstream f("lga.csv"); 
 sheet_lga->Print(f, ',', '\"'); // Save the lga.xl s file as 
lgs.CSV 
 f.close(); 
   
 e3.SaveAs("finalOutput.xls"); 
 //getch(); 
 } 
 
printf ("It took %.2lf seconds to RUN \n", dif ); 
 return 0; 
} 
 
 
 
 

myMPL.cpp  
(This is the code which is called by the above script(myExcelSep.cpp). This does the actual 
calling of the MPL optimization code.) 
 
  /*  OMaxTest.cpp  */ 
 
#include <stdio.h> 
#include <iostream.h> 
#include <tchar.h> 
#include<conio.h> 
 
#include <windows.h> 
#include <atlbase.h> 
 
#import "OptiMax.tlb" 
 
int minIndex; 
int batchS; 
double *combined; 
 
int minFunction(double *a,int size) 
{ 
 int i; 
 int index; 
 double temp=99999; 
 for (i=1;i<=size;i++) 
 { 
  if(a[i]<temp) 
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  { 
   temp=a[i]; 
   index = i; 
  } 
 } 
 cout<<a[index]; 
 return index; 
} 
 
void SolveModelTypeLib(char *ModelFilename, char *SolverName) 
{ 
  
 using namespace MPLLib; 
  
 printf("Call OptiMax using TypeLib\n"); 
 try { 
  IOptiMaxPtr pMpl( __uuidof(MPLLib::OptiMax)); 
 
  ISolverPtr    pSolver; 
  IModelPtr    pModel; 
  IMatrixPtr    pMatrix; 
  IVariablesPtr   pVars; 
  IConstraintsPtr  pCons; 
  ISolutionPtr   pSol; 
  IVariableVectorPtr     pVarVector; 
  IVariableVectorPtr     pVarVector1; 
  IVariablePtr   pVar; 
  IVariablePtr   pVar1; 
 
  long       result; 
 
  pSolver = pMpl->Solvers->Add(SolverName);    // Set pSolver = 
MPL.Solvers.Add "CPLEX" 
 
  pModel = pMpl->Models->Add("Model1");  // Set pModel = 
MPL.Models.Add("Model1") 
 
    printf("READ:  '%s'\n", ModelFilename);   
  result = pModel->ReadModel(ModelFilename);  // Set result = 
pModel.ReadModel("planning.mpl") 
     
  if (result) { 
   printf("ReadModel(%s) failed (result=%d\n\n", ModelFilename, result); 
   return; 
  } 
 
  pMatrix = pModel->Matrix;       
 // Set pMatrix = pModel.Matrix 
  pVars = pMatrix->Variables;      
 // Set pVars = pMatrix.Variables 
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  pCons = pMatrix->Constraints;      
 // Set pCons = pMatrix.Constraints 
 
 // printf("MODEL: vars=%d, cons=%d, nz=%d, int=%d\n",  
 //     pVars->Count, pCons->Count, pMatrix-
>NonZeroCount, pVars->IntegerCount); 
 
  result = pModel->Solve(pSolver);     
 // Set result = pModel.Solve(pSolver) 
  if (result) { 
   printf("Solve() failed (result=%d\n\n", result); 
   return; 
  } 
 
  pSol = pModel->Solution;       
 // Set pSol = pModel.Solution 
 
  printf("SOLVE: obj=%.10lg, iter=%d, nodes=%d, result='%s'\n",  
       pSol->ObjectValue, pSol->IterationCount,  
       pSol->NodeCount, (LPCSTR)pSol-
>ResultString); 
 
  pVarVector   = pModel->VariableVectors->GetItem("delay"); // pVarVector = 
pModel.VariableVectors("Production") 
  pVarVector1  = pModel->VariableVectors->GetItem("x"); // pVarVector = 
pModel.VariableVectors("Production") 
   
  int i = 0; 
   
  /* read this from excel file */ 
  /* int total = 8; (# of flights = total+1 )*/ 
// batch is a global variable = batch size 
 
  //batchS = 10; 
     
  double *delays; 
  double *xx; 
  delays = (double *) malloc((batchS+1)*sizeof(double)); 
  memset(delays,0,(batchS+1)*sizeof(double)); 
 // //double delays[11]; 
 
  xx = (double *) malloc((batchS+1)*sizeof(double)); 
  memset(xx,0,(batchS+1)*sizeof(double)); 
 
  combined = (double *) malloc(3*sizeof(double)); 
  memset(combined,0,3);  
 
 
  printf("DELAY: "); 
  pVar = pVarVector->MoveFirstPos(); 
  while (pVarVector->PosValid) { 
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   delays[i]=pVar->Activity; 
   i++; 
   printf(" [%d]=%.10lg,", i, pVar->Activity); // pVar.Activity 
   cout<<"\n"<<i<<"\n";    
   pVar = pVarVector->MoveNextPos(); 
  } 
  printf("\n\n"); 
 
  i=0; 
  printf("X(Slots): "); 
  pVar1 = pVarVector1->MoveFirstPos(); 
  while (pVarVector1->PosValid) { 
   xx[i]=pVar1->Activity; 
   i++; 
   printf(" [%d]=%.10lg,", i, pVar1->Activity); // pVar.Activity 
   cout<<"\n"<<i<<"\n";    
   pVar1 = pVarVector1->MoveNextPos(); 
  } 
  printf("\n\n"); 
 
 
 
  /* exclude the first element */ 
  // 0 is the header row 
  for (i=0; i<=batchS; i++) 
  {   cout<<i<<"\t"<<xx[i]<<"\n";  } 
 
  for (i=0; i<=batchS; i++) 
  {   cout<<i<<"\t"<<delays[i]<<"\n";  } 
   
   
   
  minIndex=minFunction(xx,batchS); 
  combined[0] = minIndex; 
  combined[1] = xx[minIndex]; 
  combined[2] = delays[minIndex]; 
 
 } 
 catch (const _com_error& Err) { 
  printf("Error: %s  (0x%x)\n\n%s\n",  
       (LPCSTR)Err.ErrorMessage(), Err.Error(), 
(LPCSTR)Err.Description());  
 } 
} 
 
double* mainOfOptimax(int x, char* modN) 
{ 
 batchS = x; 
 char *SolverName = "d:\\mplwin4\\cplex91.dll"; 
 CoInitialize(NULL); 
 int mm=0; 
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 cout<<"\n"<<"popo"<<"\n"; 
 cout<<minIndex<<"\n"; 
 SolveModelTypeLib(modN, SolverName); 
  
 cout<<minIndex<<"\n"; 
 cout<<combined[0]<<"\n"; 
 cout<<combined[1]<<"\n"; 
 cout<<combined[2]<<"\n"; 
 cout<<"\n"<<"popo"<<"\n"; 
 CoUninitialize(); 
 //return minIndex; 
 return combined; 
 //return 0; 
} 
 
 
/* 
int main() 
{ 
 batchS = 10; 
 
 char *SolverName = "d:\\mplwin4\\cplex91.dll"; 
 CoInitialize(NULL); 
 int mm=0; 
 cout<<"\n"<<"popo"<<"\n"; 
 cout<<minIndex<<"\n"; 
 //SolveModelTypeLib("C:\\Documents and 
Settings\\Administrator\\Desktop\\680_update\\opti\\FT.mpl", SolverName); 
 SolveModelTypeLib(".\\FT.mpl", SolverName); 
 cout<<minIndex<<"\n"; 
 cout<<"\n"<<"popo"<<"\n"; 
 CoUninitialize(); 
 return minIndex; 
 //return 0; 
} 
*/ 
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Appendix B – Work Breakdown Structure 
 
B.1 – Vivek Kumar 

• Prepared project proposal presentation and draft 
• Researched already existing work in the field 
• Explored Optimax library for J# 
• Implemented windowing in C++ 
• Used BasicExcel(open source) library for excel manipulations through C++ 
• Assisted with paper and presentation 

 
B.2 – David Teale 

• Solved FCFS case using Excel 
• Formulated MPL models 
• Ran and checked mpl models 
• Assisted with integration of windowing and mpl models 
• Massaged results 
• Analyzed results 
• Assisted with presentation and paper 

 
B.3 – Jianfeng Wang 

• Assisted with problem definition and formulation 
• Collected input data 
• Solved FCFS using Java 
• Used Java Database Connectivity (JDBC) to access Excel file 
• Implemented Weight Class Grouping using Java 
• Assisted with presentation and paper 

 
B.4 – Seth Wenchel 

• Organized tasking of group members 
• Researched previous work 
• Worked with Optimax and J# 
• Created windowing approach 
• Ran MPL models 
• Collected data 
• Assisted with presentation and paper 

 


